Deep Learning Entrusted to Fog Nodes (DLEFN) Based Smart Agriculture
Abstract
:1. Introduction
2. Literature Review
3. Deep Learning in Smart Agriculture
4. Proposed Solution
4.1. Deep Learning Services on Fog Nodes
4.2. Proposed DLEFN Algorithm
Algorithm 1 The pseudo code for new application addition of DLEFN |
1: /* input fog node ID and new application */ 2: Input: , 3: Output: accept 4: 5: init accept = false 6: 7: foreach in 8: for = to step 9: if then 10: accept = false 11: return accept 12: 13: else if then 14: = 15: = 16: = 17: accept = true 18: break 19: end if 20: end for 21: 22: if allow is false then 23: while is not empty 24: foreach in 25: requiredOverhead = 26: requiredBandwidth = 27: 28: if has smallest requiredOverhead among and > = then 29: = 30: = requiredOverhead 31: = requiredBandwidth 32: break 33: end if 34: end foreach 35: 36: if then 37: accept = false 38: return accept 39: 40: else if then 41: = 42: = 43: = 44: 45: accept = true 46: break 47: end if 48: end while 49: end if 50: end foreach 51: 52: return accept |
Algorithm 2 The pseudo code for application replacement of DLEFN |
1: /* input new application */ 2: Input: 3: Output: replace 4: 5: init replace = false 6: 7: foreach in 8: if is largest and > then 9: 10: foreach in 11: replace = implement Algorithm1(, ) 12: if replace is false then 13: break; 14: end if 15: end foreach 16: break 17: end if 18: end foreach 19: 20: return replace |
5. Performance Evaluation
5.1. Experimental Environment and Scenarios
5.2. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Ayaz, M.; Uddin, M.A.; Sharif, Z.; Mansour, A.; Aggoune, E.M. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Q.; Gao, J.; Li, W.; Lu, J. Urban Street Cleanliness Assessment Using Mobile Edge Computing and Deep Learning. IEEE Access 2019, 7, 63550–63563. [Google Scholar] [CrossRef]
- Narvaez, F.Y.; Reina, G.; Torres-Torriti, M.; Kantor, G.; Cheein, F.A. A Survey of Ranging and Imaging Techniques for Precision Agriculture Phenotyping. IEEE/ASME Trans. Mechatron. 2017, 22, 2428–2439. [Google Scholar] [CrossRef]
- Naseer, S.; Saleem, Y.; Khalid, S.; Bashir, M.K.; Han, J.; Iqbal, M.M.; Han, K. Enhanced Network Anomaly Detection Based on Deep Neural Networks. IEEE Access 2018, 6, 48231–48246. [Google Scholar] [CrossRef]
- Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE Access 2018, 6, 6900–6919. [Google Scholar] [CrossRef]
- Liu, J.; Chai, Y.; Xiang, Y.; Zhang, X.; Gou, S.; Liu, Y. Clean energy consumption of power systems towards smart agriculture: Roadmap, bottlenecks and technologies. CSEE J. Power Energy Syst. 2018, 4, 273–282. [Google Scholar] [CrossRef]
- Shiruru, K. An introduction to artificial neural network. Int. J. Adv. Res. Innov. Ideas Educ. 2016, 1, 27–30. [Google Scholar]
- Fadlullah, Z.M.; Tang, F.; Mao, B.; Kato, N.; Akashi, O.; Inoue, T.; Mizutani, K. State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems. IEEE Commun. Surv. Tutor. 2017, 19, 2432–2455. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Tang, F.; Hu, S.; Lin, Z.; Zhang, L. DANoC: An Efficient Algorithm and Hardware Codesign of Deep Neural Networks on Chip. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3176–3187. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Internet of Things: A Comprehensive Review of Enabling Technologies, Architecture, and Challenges. IETE Tech. Rev. 2017, 2, 205–220. [Google Scholar] [CrossRef]
- Lane, N.D.; Georgiev, P.; Qendro, L. Deepear: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments Using Deep Learning. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 283–294. [Google Scholar]
- Alsheikh, M.A.; Niyato, D.; Lin, S.; Tan, H.; Han, Z. Mobile Big Data Analytics Using Deep Learning and Apache Spark. IEEE Netw. 2016, 30, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.; Dastjerdi, A.V.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. J. Softw. Pract. Exp. 2017, 47, 1275–1296. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Cao, Y.; Luo, Y.; Chen, G.; Vokkarane, V.; Yunsheng, M.; Chen, S.; Hou, P. A New Deep Learning-Based Food Recognition System for Dietary Assessment on An Edge Computing Service Infrastructure. IEEE Trans. Serv. Comput. 2018, 11, 249–261. [Google Scholar] [CrossRef]
- Lavassani, M.; Forsström, S.; Jennehag, U.; Zhang, T. Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT. Sensors 2018, 18, 1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018, 32, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; McElhannon, J. Future Edge Cloud and Edge Computing for Internet of Things Applications. IEEE Internet Things J. 2018, 5, 439–449. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications. IEEE Access 2017, 5, 6757–6779. [Google Scholar] [CrossRef]
- Komar, M.; Yakobchuk, P.; Golovko, V.; Dorosh, V.; Sachenko, A. Deep Neural Network for Image Recognition Based on the Caffe Framework. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Silva, B.N.; Han, K. Deep Learning Entrusted to Fog Nodes (DLEFN) Based Smart Agriculture. Appl. Sci. 2020, 10, 1544. https://doi.org/10.3390/app10041544
Lee K, Silva BN, Han K. Deep Learning Entrusted to Fog Nodes (DLEFN) Based Smart Agriculture. Applied Sciences. 2020; 10(4):1544. https://doi.org/10.3390/app10041544
Chicago/Turabian StyleLee, Kyuchang, Bhagya Nathali Silva, and Kijun Han. 2020. "Deep Learning Entrusted to Fog Nodes (DLEFN) Based Smart Agriculture" Applied Sciences 10, no. 4: 1544. https://doi.org/10.3390/app10041544
APA StyleLee, K., Silva, B. N., & Han, K. (2020). Deep Learning Entrusted to Fog Nodes (DLEFN) Based Smart Agriculture. Applied Sciences, 10(4), 1544. https://doi.org/10.3390/app10041544