Rheological and Resistance Properties of Magnetorheological Elastomer with Cobalt for Sensor Application
Abstract
:1. Introduction
2. Methodology
2.1. Raw Materials
2.2. MRE Fabrication
2.3. Material Characterization
2.4. Rheological and Resistance Properties
3. Result and Discussion
3.1. Magnetic Properties
3.2. Morphology of MRE
4. Rheological Properties
4.1. Strain Amplitude Sweep Test
4.2. Frequency Sweep Test
4.3. Magnetic Field Sweep Test
5. Resistance Properties
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumbhar, S.B.; Chavan, S.P.; Gawade, S.S. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite. Mech. Syst. Signal Process. 2018, 100, 208–223. [Google Scholar] [CrossRef]
- Komatsuzaki, T.; Inoue, T.; TerasFighima, O. Mechatronics Broadband vibration control of a structure by using a magnetorheological elastomer-base d tune d dynamic absorb er. Mechatronics 2016, 40, 128–136. [Google Scholar] [CrossRef]
- Sun, S.; Deng, H.; Yang, J.; Li, W.; Du, H. Performance evaluation and comparison of magnetorheological elastomer absorbers working in shear and squeeze modes. J. Intell. Mater. Syst. Struct. 2015, 26, 1757–1763. [Google Scholar] [CrossRef]
- Moučka, R.; Goňa, S.; Sedlačík, M. Accurate measurement of the true plane-wave shielding effectiveness of thick polymer composite materials via rectangular waveguides. Polymers 2019, 11, 1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramchuk, S.; Kramarenko, E.; Stepanov, G.; Nikitin, L.V.; Filipcsei, G. Novel highly elastic magnetic materials for dampers and seals: Part I. Preparation and characterization of the elastic materials. Polym. Adv. Technol. 2007, 18, 883–890. [Google Scholar] [CrossRef]
- Liao, G.J.; Gong, X.; Xuan, S.H.; Kang, C.J.; Zong, L.H. Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct. 2011, 23, 25–33. [Google Scholar] [CrossRef]
- Ausanio, G.; Iannotti, V.; Ricciardi, E.; Lanotte, L.; Lanotte, L. Physical Magneto-piezoresistance in Magnetorheological elastomers for magnetic induction gradient or position sensors. Sens. Actuators A 2014, 205, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Gong, X.; Wang, Y.; Xuan, S. The conductive three dimensional topological structure enhanced magnetorheological elastomer towards a strain sensor. Compos. Sci. Technol. 2016, 135, 92–99. [Google Scholar] [CrossRef]
- Volkova, T.I.; Böhm, V.; Kaufhold, T.; Popp, J.; Becker, F.; Borin, D.Y.; Stepanov, G.V.; Zimmermann, K. Motion behaviour of magneto-sensitive elastomers controlled by an external magnetic fi eld for sensor applications. J. Magn. Magn. Mater. 2017, 431, 262–265. [Google Scholar] [CrossRef]
- Wan, Y.; Xiong, Y.; Zhang, S. Temperature dependent dynamic mechanical properties of Magnetorheological elastomers: Experiment and modeling. Compos. Struct. 2018, 202, 768–773. [Google Scholar] [CrossRef]
- Qiao, X.; Lu, X.; Li, W.; Chen, J.; Gong, X. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly (styrene-b-ethylene-ethylenepropylene-b-styrene). Smart Mater. Strucut. 2012, 21, 115028. [Google Scholar] [CrossRef]
- Landa, R.A.; Soledad Antonel, P.; Ruiz, M.M.; Perez, O.E.; Butera, A.; Jorge, G.; Oliveira, C.L.P.; Negri, R.M. Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains. J. Appl. Phys. 2013, 114, 213912. [Google Scholar] [CrossRef] [Green Version]
- Małecki, P.; Krolewicz, M.; Hiptmair, F.; Krzak, J.; Kaleta, J.; Major, Z.; Pigłowski, J. Influence of carbonyl iron particle coating with silica on the properties of magnetorheological elastomers. Smart Mater. Struct. 2016, 25, 105030. [Google Scholar] [CrossRef]
- Lee, C.J.; Kwon, S.H.; Choi, H.J.; Chung, K.H.; Jung, J.H. Enhanced magnetorheological performance of carbonyl iron/natural rubber composite elastomer with gamma-ferrite additive. Colloid Polym. Sci. 2018, 296, 1609–1613. [Google Scholar] [CrossRef]
- Jung, H.S.; Kwon, S.H.; Choi, H.J.; Jung, J.H.; Kim, Y.G. Magnetic carbonyl iron/natural rubber composite elastomer and its magnetorheology. Compos. Struct. 2016, 136, 106–112. [Google Scholar] [CrossRef]
- Bica, I. Influence of the magnetic field on the electric conductivity of magnetorheological elastomers. J. Ind. Eng. Chem. 2010, 16, 359–363. [Google Scholar] [CrossRef]
- Li, W.; Kostidis, K.; Zhang, X.; Zhou, Y. Development of a force sensor working with MR elastomers. In Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009; pp. 233–238. [Google Scholar]
- Tian, T.F.; Li, W.H.; Alici, G.; Du, H.; Deng, Y.M. Microstructure and magnetorheology of graphite-based MR elastomers. Rheol. Acta 2011, 50, 825–836. [Google Scholar] [CrossRef]
- Schümann, M.; Morich, J.; Kaufhold, T.; Böhm, V.; Zimmermann, K.; Odenbach, S. A mechanical characterisation on multiple timescales of electroconductive magnetorheological elastomers. J. Magn. Magn. Mater. 2018, 453, 198–205. [Google Scholar] [CrossRef]
- Shabdin, M.K.; Rahman, A.; Azizi, M.; Mazlan, S.A.; Hapipi, N.M.; Adiputra, D.; Aziz, S.A.A.; Bahiuddin, I.; Choi, S.B. Material Characterizations of Gr-Based Magnetorheological Elastomer for Possible Sensor Applications: Rheological and Resistivity Properties. Materials 2019, 12, 391. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Dong, X.; Qi, M. Improved tunable range of the field-induced storage modulus by using flower-like particles as the active phase of magnetorheological elastomers. Soft Matter 2018, 14, 3504–3509. [Google Scholar] [CrossRef]
- Sorokin, V.V.; Ecker, E.; Stepanov, G.V.; Shamonin, M.; Monkman, G.J.; Kramarenko, E.Y.; Khokhlov, A.R. Experimental study of the magnetic fi eld enhanced Payne e ff ect in magnetorheological elastomers. Soft Matter 2014, 10, 8765–8776. [Google Scholar] [CrossRef] [PubMed]
- Phewthongin, N.; Saeoui, P.; Sirisinha, C. Rheological Behavior of CPE / NR Blends Filled with Precipitated Silica. J. Appl. Polym. Sci. 2006, 100, 2565–2571. [Google Scholar] [CrossRef]
- Fan, Y.C.; Gong, X.L.; Jiang, W.Q.; Zhang, W.; Wei, B.; Li, W.H. Effect of maleic anhydride on the damping property of magnetorheological elastomers. Smart Mater. Struct. 2010, 19, 055015. [Google Scholar] [CrossRef]
- Hapipi, N.; Aziz, S.A.A.; Mazlan, S.A.; Ubaidillah; Choi, S.B.; Mohamad, N.; Khairi, M.H.A.; Fatah, A.Y.A. The field-dependent rheological properties of plate-like carbonyl iron particle-based magnetorheological elastomers. Results Phys. 2019, 12, 2146–2154. [Google Scholar] [CrossRef]
- Li, W.H.; Zhang, X.Z. A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers. Smart Mater. Strucut. 2010, 19, 035002. [Google Scholar] [CrossRef]
- Ghafoorianfar, N.; Wang, X.; Gordaninejad, F. Combined magnetic and mechanical sensing of magnetorheological elastomers. Smart Mater. Strucut. 2014, 5, 055010. [Google Scholar] [CrossRef]
Compound Elements | Weight (g) | wt % |
---|---|---|
Silicon Rubber | 4.7 | 47 |
Cobalt Powder | 5.3 | 53 |
Magnetic Flux Density (T) | Current (A) |
---|---|
0 T | 0 A |
0.8 T | 5 A |
Sample | MS, emu g−1 | Mr, emu g−1 | HC, Oe |
---|---|---|---|
Isotropic | 78.74 | 6.09 | 215.47 |
Anisotropic | 81.29 | 6.34 | 216.97 |
Element | Weight (%) |
---|---|
Si | 41.66 |
Co | 31.37 |
O | 26.97 |
Sample | MR Effect (%) |
---|---|
Isotropic | 27.77 |
Anisotropic | 71.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zainudin, A.A.; Yunus, N.A.; Mazlan, S.A.; Shabdin, M.K.; Abdul Aziz, S.A.; Nordin, N.A.; Nazmi, N.; Abdul Rahman, M.A. Rheological and Resistance Properties of Magnetorheological Elastomer with Cobalt for Sensor Application. Appl. Sci. 2020, 10, 1638. https://doi.org/10.3390/app10051638
Zainudin AA, Yunus NA, Mazlan SA, Shabdin MK, Abdul Aziz SA, Nordin NA, Nazmi N, Abdul Rahman MA. Rheological and Resistance Properties of Magnetorheological Elastomer with Cobalt for Sensor Application. Applied Sciences. 2020; 10(5):1638. https://doi.org/10.3390/app10051638
Chicago/Turabian StyleZainudin, Afiq Azri, Nurul Azhani Yunus, Saiful Amri Mazlan, Muhammad Kashfi Shabdin, Siti Aishah Abdul Aziz, Nur Azmah Nordin, Nurhazimah Nazmi, and Mohd Azizi Abdul Rahman. 2020. "Rheological and Resistance Properties of Magnetorheological Elastomer with Cobalt for Sensor Application" Applied Sciences 10, no. 5: 1638. https://doi.org/10.3390/app10051638
APA StyleZainudin, A. A., Yunus, N. A., Mazlan, S. A., Shabdin, M. K., Abdul Aziz, S. A., Nordin, N. A., Nazmi, N., & Abdul Rahman, M. A. (2020). Rheological and Resistance Properties of Magnetorheological Elastomer with Cobalt for Sensor Application. Applied Sciences, 10(5), 1638. https://doi.org/10.3390/app10051638