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Abstract: Within the framework of this study, the inductive analysis of voltage stability indices’
theoretical formulation, functionality, and overall performances are introduced. The prominence
is given to investigate and compare the original indices from three main dimensions (formulation,
assessment, and application) standpoints, which have been frequently used and recently attracted.
The generalizability of an exhaustive investigation on comparison of voltage stability indices seems
problematic due to the multiplicity of the indices, and more importantly, their variety in theoretical
foundation and performances. This study purports the first-ever framework for voltage stability
indices classification for power system analysis. The test results found that indices in the same category
are coherent to their theoretical foundation. The paper highlights the fact that each category of the
indices is functional for a particular application irrespective of the drawback ranking, and negated
the application of the Jacobian matrix-based indices for online application. Finally, the research
efforts put forward a novel classification of voltage stability indices within the main three aspects of
formulation, assessment, and behavior analysis in a synergistic manner as an exhaustive reference for
students, researchers, scholars, and practitioners related to voltage stability analysis. The simulation
tools used were MATLAB® and PowerWorld®.

Keywords: power system stability; stability analysis; stability criteria; power system reliability;
voltage stability indices

1. Introduction

Day-by-day, increase in electricity demand and liberalization policy of the electricity markets
persuade the power systems to operate close to their stability limits. Despite, voltage instability in a
system can swiftly lead the power system to the voltage collapse. A blackout can take place in the
entire power system or a part of a system due to voltage collapse that can appear abruptly. Instability
prediction and continuous monitoring of power system performance are therefore known as exigent.
Voltage stability involves both static and dynamic behaviors of a power system [1]. Regardless of the
differences, both types of voltage stability are correlative to analyze the system stability mechanism.
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Investigation of steady-state operation is a prerequisite for initiating transient stability analysis.
Therefore, the steady-state equilibrium is a necessary condition for stable transient operation [2–4].
The static voltage stability indices employ a measure of the distance from the current operating point
to the voltage collapse point [5]. The static indices can either contribute to identifying the critical bus
and stability of connected lines in the system along with evaluating the stability margin concerning the
system loadability. Power system operation and voltage stability assessment are correlative to each
other to ensure reliable and cost-effective operation. It is impelling to employ voltage stability indices
to cognize the system performance behavior that show how close the system is to voltage collapse,
loadability and security limits, and overall performance of the system.

Over recent decades, valuable researches have been conducted with the concept of the comparative
analysis and classification of voltage stability indices. From different standpoints, Masahiro Furukakoi
et al. [6] proposed a new voltage stability index (critical boundary index-CBI) based on active and
reactive power deviations. The effectiveness of the proposed index is compared with the most
worldwide accepted indices. However, the proposed index is time consuming. Still, it counted a novel
index due to its high accuracy of prediction. Ratra et al. [7] examined some line voltage stability indices
using IEEE 30-bus and 118-bus test systems under various operating conditions. This study pointed out
a systematic methodology of applying parameters for the appropriate use of indices. Chuang et al. [8]
proposed a new integrated transmission line transfer index (ITLTI) based on the radial topology that is
known as suitable for power transferring situations including leading, lagging, or unity power factor.
In [9], the authors introduced an improved voltage stability index using linear algebra techniques
to predict a power system operating condition beyond the collapse point. The effectiveness of the
proposed algorithm and the index performances are verified by comparing the existing indices in the
literature. In other related studies [10–12], authors compared customary indices and recognized the
most appropriate indices in terms of load shedding and optimum storage allocation in a critical situation.
Massucco et al. [13] compared three voltage stability indices by testing on a real power system of the
Italian HV transmission grid with a focus on the functionality of the indices. Sinha and Hazarika [14]
proposed an index (Ii) based on active and reactive power deviation at the operating point and no-load
values. The authors have compared the effectiveness of the proposed index by changing the line
parameters and load power factor. To have an effectiveness comparison amongst the indices, Reis and
Barbosa [15] investigated some original static voltage stability indices. Despite the promising works
in the literature, still, there is a lack of a broad precise classification and comparison analysis of the
voltage stability indices. However, Suganyadevia and Babulalb [15] performed a wrathful comparative
analysis of line and nodal indices. Sun et al. [16] inexact static indices based on the load flow model,
applied the small signal and dynamic analysis to evaluate the accuracy of the indices based on the
power law model. Cupelli et al. [17] investigated four original voltage stability indices, which include
various categories based on different formulation and techniques. This study is performed in light of
the indices’ performance with respect to the load factor change under different operating situations.
The RTDS® a (Real-Time Digital Simulator) is used to estimate the real-time behavior of the indices.
Finally, the authors found that the voltage collapse point indicators (VCPIs) have the best performance
of the studied indices. In [18], the authors compared the suitability of the two indices (Lmn and VCPI)
to find the most suitable index for the control application. In [19], the mathematical terminologies
and application are reviewed, which mostly relies on quasi-steady state and dynamic analysis such
as voltage sensitivity factor (VSF), singular values, eigenvalue decomposition, second-order, voltage
instability proximity index (VIPI), loading margin, direct methods, P and Q angles, test functions,
etc. Nizam et al. [20] compared the power transfer stability index (PTSI) derived by considering the
two-bus Thevenin equivalent system with line index (L index is known as a traditional index for
voltage stability) and VCPI. In [21], a quantitative measure based on the operating point of load flow
for an online application is proposed with a range of 0 (no load) and 1.0 (voltage collapse point).
This index is formulated by using two-bus system power flow equations. Then, the index is generalized
for a multi-bus system in the view of PQ and PV categories. In [22], the L index is denoted as a
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nonabsolute indicator of voltage stability in the system. In 2013, Wang et al. [23] extended this index
based on an alternative generator equivalent model (GEM) instead of an ideal constant voltage source.
The generalizability of previous research efforts in this context implies that the efforts do not cover all
aspects or have been limited. Most studies in voltage stability indices comparison and classification
have only been carried out in a small domain or focused on dynamic analysis.

It is manifested that the adequate picture of voltage stability indices’ classification is still ambiguous
due to behavioral similarity and intervention of their behavior in the system, as well as the variety in an
application. Nevertheless, this study aims to define comprehensively and compare the performance of
the original indices, which are proposed and applied globally. With the embrace of literature, a detailed
classification of these indices (mainly based on the formulation) is transpired.

Meanwhile, we take the distinguish between merit and demerit of the proposed indices as an
essence, because these indices scale the power system behavior with respect to the system parameters
changes, in the form of voltage variations. This study reveals an extensive-unified perspective from
various classes as the most outstanding indices from each category.

The rest of the paper is organized as follows; in Section 2, the proposed classification method and
classification of the voltage stability indices are presented. Section 3 describes a broad classification of
voltage stability indices along with proposing a novel method. The theoretical analysis of indices of
different categories is defined in Section 4. In Section 5, the simulation results and verifications are
discussed. Finally, Section 6 concludes the preference of the study through originality, significance,
and practical value of the topic by summarizing the advantages and disadvantages of the indices in
each category.

2. The Proposed Classification Scheme

Since the 1920s, the voltage stability phenomenon has been known as an essential factor for a
secure and reliable system [24]. Some recent attracted techniques for voltage stability indices are
introduced, namely modal analysis [25,26], singular value decomposition [4], energy function [27],
continues power flow [28], sensitivity analysis methods [29], bifurcations theory [30], minimum
eigenvalue [26], integrated transmission line transfer index (ITLTI) [8], etc. With the embrace of the
literature research on voltage stability indices, this study aims to present an exhaustive framework for
voltage stability indices classification and their behavior as follows:

2.1. From Formulation Perspective

The system variable and the Jacobian matrix basis voltage stability indices are often derived from
the two-bus system, which is based on power flow analysis and Jacobian matrix [18,31]. These indices
are classified into two classes; bus and line indices. Jacobian matrix-based voltage stability indices can
be used to determine the voltage collapse point; in other words, Jacobian matrix-based voltage stability
indices demonstrate maximum loadability and determine voltage stability margin. An interconnected
power system’s Jacobian matrix in an online operation seems complicated. Jacobian matrix computation
is more time consuming. Therefore, it is not viable for a voltage stability online assessment.

The system variable-based voltage stability indices deal with power system elements such as weak
bus or area assessment, line loadability limit considering admittance matrix. It can be demonstrated
with inefficiency of application to estimate roughly the voltage stability margin. Usually, these indices
apply for online assessment of the crucial element of a power system [32]. PMU technology is
another category that has been used for monitoring the voltage stability indices rather than instability
prediction. Nowadays, the PMU hardware technology is known as an accurate and advanced
time-synchronized technology for voltage instability monitoring for tracking system dynamics in
real time [33]. The PMU-based voltage monitoring techniques are classified into two major classes,
which are based on local measurements and relied on Thevenin impedance calculations, and wide-area
monitoring (global) measurements [33]. However, the Thevenin method has its deficiency due to the
parameter’s variation during the two measurements.
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2.2. From Assessment Perspective

Fundamentally, most of the voltage stability indices are distinguished into two categories. Based
on the measurement objectives such as proximity to voltage collapse point that predicts how a system
operates close to voltage instability. Additionally, the voltage instability mechanism identifies the
most sensitive and voltage-weak areas [31,34,35]. In addition to the categories mentioned above,
the third category is PMU technology. However, the PMU indices apply voltage stability monitoring
for online application.

2.3. From Application Perspective

From an application standpoint, some indices are used to measure proximity to voltage collapse
point in offline and online applications [36]. The bus indices constitute a lion’s share of this category.
Irrespective of some specially indicated indices which are formulated based on both Jacobian and
system parameter variables, the classification tends to introduce all the proposed indices into three
categories: Jacobian matrix-based, system variable-based, and PMU indices [37].

Due to the increasing application of voltage stability indices, as well as day-by-day increase in
the number of these indices, this study establishes a relationship among these indices from different
aspects such as formulation, assessment, and application that is exigence. Figure 1 introduces the
voltage stability indices relationship based on the indices formulation methodology that has not been
discussed in the literature before.
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3. Theoretical Analysis of Voltage Stability Indices

Based on the original voltage stability indices as they are proposed, the merit and demerit of
several indices are discussed from a high degree of accuracy in identification of the critical bus,
and line stability in the power system perspectives. Meanwhile, cursorily has glanced at application,
model complexity, and perception explicitly of the proposed indices as discussed in the next sections.
Considering the breadth of the subject (41 indices), it can be seen that the theoretical analysis of each
index is missed as shown in Table 1 [38].
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Table 1. An exhaustive representation and classification of voltage stability indices [38].

Type Index Abbreviation Calculation Stability Threshold Reference

System parameters
(variables)-based

For Bus

L Index L L =
MAX
j ∈ αL

∣∣∣∣∣∣1− ∑
i∈αG

F jiVi

V j

∣∣∣∣∣∣ L < 1 [21]

Power Stability Index PSI PSI =
4ri j(PL−PG)

[|Vi | cos(θ−δ)]2
PSI ≤ 1 [39]

Voltage Deviation Index VDI VDI j =
∣∣∣1−V j

∣∣∣ Details are given in
the reference [40]

Stability Index SI

SI(m2)

=
{∣∣∣V(m1)

∣∣∣4
−4.0

{
P(m2)x( j j) −Q(m2)r( j j)

}}2

−4.0
{
P(m2)r( j j)

+Q(m2)x( j j)
}∣∣∣V(m1)

∣∣∣2
The smallest

magnitude is the most
sensitive to voltage

collapse

[41]

Voltage Collapse Prediction
Index VCPIkth bus

VCPIkth bus = 1−

∑N

m = 1
m , k

|V′m|

Vk

VCPIkth bus < 1 [42]

Sensitivity Analysis SA ∆Vi/∆Qi
∆Vi/∆Pi

Details are given in
the reference [43]

Bus Participation Factor BPF Details are given in [44] Using a power system
simulation tool [44]

Voltage Stability Index VSI VSIi =
[
1 +

(
Ii
Vi

)(
∆Vi
∆Ii

)]α
VSIi ≥ 0 [45]

Equivalent Node Voltage
Collapse Index ENVCI ENVCI = 2(eken + fk fn) −

(
e2

k + e2
k

)
ENVCI > 0 [46]

Voltage Collapse Index VCI VCIi =
[
1 +

(
Ii∆Vi
Vi∆Ii

)]α
VCIi ≥ 0 [45]

Improved Voltage Stability
Index IVSI

−4
∑n

j=0(Gi j−Bi j)(Pi+Qi)(IVSI≤1)[∑n
j=1|V j|[Gi j(cos δi j+sin δi j)−Bi j(cos δi j+sin δi j)]

]2 [40]

Voltage Stability Factor VSF VSFtotal =
k−1∑
m=1

(2Vm+1 −Vm)
The greatest

magnitude is more
stable

[25]

Voltage Instability
Proximity Index VIPI VIPI = θ = cos−1 YT

s Y(a)
‖Ys‖ ‖Y(a)‖

Value is between the
operating and critical

load conditions
[47]

For Line

Lmn Index Lmn Lmn = 4Qrx
[|Vs | sin(θ−δ)]2

Lmn < 1 [48]

Line Voltage Factor LQP LQP = 4
(

X
V2

i

)(
X
V2

i
P2

i + Q j

)
LQP < 1 [49]

Line Index L L = 4
[(

xegPleg − regQleg
)2
+ xegQL + regPleg

]
L < 1 [50]
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Table 1. Cont.

Type Index Abbreviation Calculation Stability Threshold Reference

For Line

Voltage Collapse Proximity
Indicator VCPI

VCPI(1) = Pr
Pr(max)

VCPI(2) = Qr
Qr(max)

VCPI(3) = Pl
Pl(max)

VCPI(4) = Ql
Ql(max)

VCPI < 1 [51]

Novel Line Stability Index NLSI NLSIi j =
Ri jP j+Xi jQ j

0.25V2
i

NLSIi j < 1 [52]

Fast Voltage Stability Index FVSI FVSIi j =
4Z2Q j

V2
i x

FVSIi j < 1 [35]

Critical Voltage Vcr Vcr =
E

2 cosθ
The critical voltage

value [16]

Power Transfer Stability
Index PTSI PTSI = 2SLZThev(1+cos(β−α))

E2
Thev

PTSI < 1 [20]

Line Voltage Stability Index LVSI LVSI = 4rPr

Vs cos(θ−δ)2 LVSI ≤ 1 [1]

Critical Boundary Index CBI CBIik =
√

∆P2
ik + ∆Q2

ik
CBI > 1 [6]

Line Voltage Stability Index LVSI LVSI = max
(
LVSI j

)
∀ j = 1, 2, 3, . . . l LVSI > 1 [7]

Integrated Transmission
Line Transfer Index ITLTI PR = −

AV2
R

B cos(β− α) + VSVR
B cos(β− α)

Details are given in
the reference [8]

Jacobian matrix-based

Impedance Ratio Indicator Zii
Zi

Zii
Zi
≤ 1 [1]

Minimum Eigenvalue and
Right eigenvector method RE ∆V =

∑
i
ξi ηi
λi

∆Q
All eigenvalues

should be positive [28]

Minimum Singular value
[

∆θ
∆V

]
= V

∑
−1 UT

[
∆F
∆G

]
Details are given in

the reference [4]

Predicting Voltage Collapse V
V0

The smallest index
value [1]

Test Function tcc =
∣∣∣eT

c JJ−1
cc ec

∣∣∣ Details are given in
the reference [45]

Tangent Vector Index TVI TVIi =
∣∣∣∣ dVi

dλ

∣∣∣∣−1 Depends on load
increase [46]

Second-Order Index i i = 1
i0

σmax
dσmax/dλtotal

i > 0 [48]
Integral Steady-State

Margin ISSM ISSM =
∣∣∣∣ Jc

Jo

∣∣∣∣ Between 0 and 1 [47]
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Table 1. Cont.

Type Index Abbreviation Calculation Stability Threshold Reference

Phasor Measurement
Units (PMU)-based

Local
Measurement-

based

Recursive Least Square RLS

xk = xk−1 + Gk
(
yk −HT

k xk−1

)
Gk = Pk−1Hk

(
λI + HT

k Pk−1Hk
)−1

Pk =
1
λ

(
I −GkHT

k

)
Pk−1

Details are given in
the reference [51]

Voltage Instability Predictor VIP ∆S =
(Vk−ZThIk)

2

4ZTh

Details are given in
the reference [50]

Voltage Stability Load Bus
Index VSLBI VSLBIk =

|Vi(k)|
|∆Vi(k)|

Details are given in
the reference [9]

Approximate Approach VLi = Eeq,i −ZeqILi
Zeq = ZLLii

Details are given in
the reference [52]

Simplified Voltage Stability
Index SVSI SVSIi =

∆Vi
βVi

SVSIi < 1 [24]

Observability-
based

Voltage Collapse Proximity
Indicator VCPI VCPIkth bus =

∣∣∣∣∣∣∣∣∣∣∣∣∣
1−

∑N

m = 1
m , k

V′m

Vk

∣∣∣∣∣∣∣∣∣∣∣∣∣
VCPIkth bus < 1 [53]

Margin Voltage Stability
Index MVSI

VSI = min(
Pmargine

Pmax

Qmargine

Qmax

Smargine

Smax

) Details are given in
the reference [35]

Sensitivity Related
Eigenvalue SQgq = −gT

q

(
gT

x

)−1
∆xQg

Details are given in
the reference [41]
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4. Classification of Voltage Stability Indices

Due to the importance of voltage stability as a prediction and preventing tool in power systems,
the indicators of instability phenomenon become more prominent in power system operation and
analysis. A literature survey of voltage stability indices indicated a lack of an organized, detailed,
and complete classification of voltage stability indices. This persuaded the authors to perform an
in-depth investigation of these indices. The exact classification of voltage stability indices seems
perplexing. From the foundation and performance analysis viewpoints, some proposed indices have
typical proximity, but vice versa, their performance behaviors and accuracies are different. As the
first-ever effort, more than 40 voltage stability indices are categorized and evaluated in Table 1. A few
numbers of the indices may not exactly fit the classified categories because they are considered from
the standpoint of their most characteristics tendency to each category.

Some scholars and researchers have argued that the voltage stability indices in use are quite
different and for convenience, they classified these indices into two categories: Given state-based,
and large deviation-based indices [37,43,54]. Despite the existing variety of indices in view of various
aspects, there are two common characteristics among all these classes [29,34]:

• Proximity to the collapse point.
• Instability mechanism and the key contributing factor.

5. Simulation and Verification

Simulation is carried out on WSCC 9 and IEEE 14, and 30-bus test systems [10,55] to expose the
merit and demerit of the voltage stability indices, which are mostly proposed and applied globally
because of their simplicity in the formulation and broad application. Since the simulation of all
36 indices are not viable in a single study due to the requirement of specific hardware and software
simulation tools (for real-time online application), the theoretical formulation of the rest of the indices
is reviewed, and based on the indices formulation methodology, a precise classification is proposed.

As a result, an exhaustive-coherent framework is proposed to qualify the merit and demerit of
the indices. Moreover, it establishes a consistent relationship among indices in view of the index
performance to identify the critical bus and line stability (or proximate the tended buses to collapse) in
a power system.

The idea of this study is to assess the indices theoretical formulation, functionality, applicability,
and overall performances in each category through addressing the indices shortcomings. The study
methodology is carried out in a systematic approach as follows: (a) The indices are studied in two
categories, node and line indices, (b) such that, each simulated test system in a category is assessed
separately with respect to the ranking of the three top sensitive critical lines, and three top critical
buses identification in the system by means of each index, (c) then, the overall test systems results
are concluded. All the analyzed indices in this section depend on two categories (from two classes,
variable-based and Jacobian matrix-based), nodal and line indices. The critical buses and lines are
sorted in descending order in Tables 2 and 3; that are named 1 to 3.

From Table 2, it is noticed that the proposed line indices are comparatively agreed on the
identification of the top three critical branches in the system. However, the WSCC 9-bus system
results indicate that the L index appears different in ranking of the second and third critical feeders
compared to the rest of indices. At the 14-bus system, almost all indices are in agreement at the first
and second ranking orders; except, Vcr and LVSI. Whereas, the indices are varied in the third critical
branch identification. Altogether, the 30-bus systems ranking results imply that except for the first
three indices, all are enormously diverse. So far, a quick conclusion can be drawn that line indices are
affected by the system configuration in an interconnected system. Table 3 illustrates the response for
ranking of the three top critical weak buses by each index. Excluding from VSF and PSI, almost all the
proposed bus indices have the same recognition ranking with dissimilarity in identification of the third
critical bus at the 14-bus system and first and second weak buses recognition at the 30-bus system.
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Table 2. The obtained three top critical branch ranking by each index.

Test
System

Feeder
Index

NLSI
VCPI

FVSI Lmn LQP L Vcr LVSI
From To P Q

WSCC
9-bus

system

7 5 1 1 1 1 1 1 1 - 1

9 6 2 2 2 2 2 2 3 - 2

7 8 3 3 3 3 3 3 2 - 3

5 4 - - - - - - - 1 -

6 4 - - - - - - - 2 -

8 9 - - - - - - - 3 -

IEEE
14-bus
system

4 9 1 1 1 1 1 1 1 1 -

2 3 2 2 2 2 2 2 2 - 1

3 4 - 3 3 - - - - - 2

12 13 - - - 3 3 - - - -

5 6 - - - - - 3 - 2 -

1 5 - - - - - - - - 3

4 7 - - - - - - - 3 -

13 14 3 - - - - - - - -

IEEE
30-bus
system

2 5 1 1 1 1 3 1 2 - 1

27 30 2 2 2 - - - 3 - 2

29 30 3 3 3 - - - - 3 3

4 12 - - - 3 - 2 - - -

6 8 - - - - - - 1 - -

6 10 - - - - 1 - - 1 -

9 10 - - - - 2 - - 2 -

23 24 - - - 2 - 3 - - -

Table 3. The obtained weak bus ranking by each index.

Test
System Bus

Feeder Index

From To VSF PSI Vj/Vo BPF RE S

IEEE
14-bus
system

14
9 14 - -

1 1 1 113 14 - -
10 9 10 - - 2 2 2 2

9
4 9 3 3 - 3 3 -
7 9 - 2

7 4 7 2 1 - - - 3
13 6 13 - - 3 - - -
4 3 4 1 - - - - -

IEEE
30-bus
system

26 25 26 2 1 2 3 3 3
29 27 29 3 2 3 2 2 2
30 29 30 1 3 1 1 1 1

In order to facilitate the calculation and preserve accuracy, the following are assumed: The angles
ratio of the V and Vo in the V/Vo index calculation are neglected, due to their close prices and negligible
impact on the index magnitude. To avoid ambiguity in the indices calculation, for some cases the
magnitude of line parameters such as resistance (r), and reactance (x) are supposed as 0.000001, instead
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of the given zero values. The critical buses ranking by VSF, PSI, and V/Vo node indices at the 30-bus
system are chosen by an analogy of the other indices, since many of the buses had a stability index of
zero. The obtained numerical consequences were the result of using power systems simulation tools
such as PowerWorld® Simulator, and MATPOWER a package of MATLAB®.

6. Result and Discussion

The generalizability of an exhaustive investigation on a comparison of voltage stability indices
seems problematic due to the multiplicity of indices, and more importantly their variety in theoretical
foundations and performances. However, this study discussed all the first two categories indices in
Table 1. One of the main drawbacks of the remained indices in Table 1 is their high computation cost
due to indices complexity and dedicated tools and system parameters requirement (the PMU-based
indices simulation are relinquished). Since the investigation of all indices under this study is not
applicable; therefore, a few world-wide accepted indices from each category are simulated. Whereas,
those indices, which contain individual, different behavior with the rest of the indices in a class, are well
detailed in Section 4.

The comparison study shows that virtually the performance of the proposed indices has a high
degree of accuracy for assessing the critical node and line as the results are almost close to an agreement.
By relying on the theoretical formulation of both line and node indices, considering the simulation
results and performances in Tables 2 and 3, as well the merits and demerits in Table 4, some findings
can be noted as follows:

• Almost all indices in a category are in agreement with identifying the weak buses and critical
lines in the system. Generally, indices in a category pursue the same manner.

• Despite the indices in the same category having the same theoretical foundation mechanism,
the performance of some indices is in disagreement with the rest of the indices. For instance,
the Vcr index in the line indices category, and VSF and PSI in the node indices category do not draw
the same result as other indices. The Vcr from the formulation point view implies that the model
analysis-based indices formulation with respect to the Jacobian matrix singularity assumption is
not wholly accurate, especially at the collapse point. On the other hand, some studies without
considering the generalization directly applied the quantitative results of the customary two-bus
model. While for a complex system with multiple generators and control elements, it is not an
adequate solution. These indices are L index, novel line stability index (NLSI), stability index (SI),
voltage collapse index (VCI), voltage stability factor (VSF), line index (L), fast voltage stability
index (FVSI), critical voltage (Vcr), and power transfer stability index (PTSI).

• There are some indices, which are fundamentally the same, but from the driven point of
view, they are different. In other works, their results are the complement of each other in a
common concord.

• All indices in a class are coherent to their typical theoretical bases and pursue the same performance.
The range of stability for most of the indices is between 0 and 1.0. Someway, it indicates that the
indices discernment characteristics of performances are in accord.

• Reis and Barbosa [44] have argued that the line indices can also determine the weakest bus in the
system. While, the comparison of the line and node indices in Tables 2 and 3 have negated this
argument. Since mostly the line indices are driven without taking into account that the reactive
power generation limits can cause misidentification.

• An index with a bad ranking in compliance with other indices does not imply that the index is
useless, whereas, each index is functional for a specific application. In the literature, the demerit
of the sensitivity indices are pointed out as these indices alone will not be sufficient to identify
a critical node, especially in an interconnected system. However, when the system is suffering
from a heavy load in a stressed situation, the ∆Vi/∆Qi and ∆Vi/∆Pi sensitivities indicators play a
significant role in voltage collapse prediction [53].
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• Those indices which are initiated from the load flow Jacobian matrix, are not suitable for online
application due to their prediction insufficiency of voltage collapse, nonlinearity properties at the
collapse point, and a high computation requirement.

• Sensitivity analysis applies to weak bus identification. The sensitivity index alone will not be
sufficient to identify weak buses especially in an interconnected system [56].

Table 4. Comparative analysis of Jacobian matrix-based and system variable-based indices.

Characteristic
Voltage Stability Indices

Jacobian Matrix-Based System Variable-Based

Time More time consuming. Less time consuming.

Application
Power system voltage stability margin estimation.

Power system elements’ crucial
state recognition (weak bus or

stressed area and line
identification).

Measure of the distance from current operating point
to the voltage collapse point.

Constraints that caused voltage
instability phenomenon.

Merit

It is very sensitive near the steady state boundary. Response to the overall system
load change.

Assess the whole system and could count a
centralized measurement.

Better performance in radial systems than
interconnected systems.

Variety in application in power systems such as
recognition of the optimum placement of FACTS

(flexible AC transmission system) and distributed
generator in the system.

Demerit

Mostly reactive power limits on generators are not
considered during index formulation.

Often extracted based on two-bus
system model.

Due to the nonlinearity of the system, this method is
not an accurate close vicinity of the actual voltage.
Some indices are based on the computation of path
matrix or RED (related electrical distance) method,

which are computationally expensive.
Some indices under this category show a nonlinear

profile due to change in loading parameters.
It does not accurately predict the collapse point

because of its nonlinear behavior when it nears the
collapse point.

Formulation
Concept

Collapse point. Stability margin.
Eigenvalue approach. Maximum power capability.

Stability margin. Reactive power margin.
PV-PQ voltage.

Beyond the other methods, sensitivity analysis plays an important role in prediction of critical
nodes in the system. It is important to investigate how this critical point is affected by changing system
conditions [54].

• From the literature, it is found that for solving the instability phenomenon, there are dynamic
factors involved that cause a high dimensional and multi-parameter system [57]. Therefore, it may
be wise to consider the static or semi-dynamic behavior. Most indices that measure the stable
margin from operating point to the voltage instability are based on static analysis using the power
flow model [16].

• As in the indices’ classification section mentioned, there is a partial argument between the
scholars, and the terms of the static and dynamic indices are customarily used in the literature.
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While partially for the purpose of voltage stability indices formulation, the dynamic model was
considered by the steady state operation based on the stable equilibrium operating point of the
power system [32] that from reference [57] is called semi-dynamic analysis. Therefore, it is arduous
to refer to static or dynamic classes.

This study embraces the most used indices in the literature in order to identify the critical bus and
line stability in a power system. However, in order to avoid the bulk of the work under the framework
of the study, the following aspects of indices are required for further researches; the loadability margin
estimation when the system is loaded up from the base case to reach the collapse experiences different
operation behaviors along this path, the assessment for different x/r ratios of the transmission system,
with keeping the power factor constant, especially for line indices; and finally, classification of voltage
stability indices based on the application and assessment.

The merit and demerit distinguish of the proposed indices is another aspect of this study. Since
they play a role in estimating the power system state with respect to the system parameters changes,
in the form of voltage variation. The aformentioned analysis results are given in Table 4, as a comparison
between Jacobian matrix-based and system variable-based on VSIs [18,19]. The PMU-based indices
are not comparable with the variable-based and Jacobian-based indices, due to different applications
(used for voltage stability monitoring vs. state or margin estimation). It is enough to consider the
general characteristics of the Jacobian matrix-based and system variable-based categories, regardless
of attending the trivial points related to each index separately. The general details have been described
in Table 4.

The study also reveals that the indices ranking with respect to the worst node or area identification
does not imply that an index drawback or bad ranking is in compliance with other indices, and it
is useless. It is worth saying that each index is functional for a specific application. The simulation
results negate the application of line indices for recognition of the critical bus in a power system.

Deploying the Jacobian matrix-based indices are not recommended for online application. Due to
their nonlinearity properties at the collapse point, as well as high computation time requirement.
Comparative analysis of the voltage stability indices in a manifestation study can pave the ground for
utilizing the indices in various applications of power systems such as optimal placement of distributed
generators, reactive power dispatch, and power management. Subsequently, the classification section
is addressed as it is difficult to categorize the voltage stability indices to static or dynamic classes.

7. Conclusions

An overall objective of this study is to shape a novel framework for voltage stability indices
considering analysis of multi-dimensions as formulation, assessment, and application. The obtained
finding makes the consistency of the studied indices evident with the distinction in their consistency in
voltage stability analysis. The results show that all indices in a category are coherent to their ideal
theoretical bases, and pursue the same performance. Moreover, results indicate that indices from one
category can be applied alternatively. Meanwhile, this concept is not applicable to all indices in the
same category. Some voltage stability indices do not pursue the same behavior, likewise, the rest of the
same category indices. The voltage stability assessment range is between 0 and 1 for most indices.
Therefore, most of voltage stability indices formulation are in accord, as well as their behaviors are
almost aligned.

The article explores 36 voltage stability indices in terms of multidimensional analysis (formulation,
assessment, application) in a systematic manner that can be counted as a practical reference for students,
researchers, scholars, and practitioners in the field of power system analysis.

The authors are willing to put forward a series of related research efforts in detail within different
approaches in the future from various aspects such as frequency, computational time, and accuracy at
the collapse point.
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