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Abstract: Variational mode decomposition (VMD) with a non-recursive and narrow-band filtering
nature is a promising time-frequency analysis tool, which can deal effectively with a non-stationary and
complicated compound signal. Nevertheless, the factitious parameter setting in VMD is closely related
to its decomposability. Moreover, VMD has a certain endpoint effect phenomenon. Hence, to overcome
these drawbacks, this paper presents a novel time-frequency analysis algorithm termed as improved
adaptive variational mode decomposition (IAVMD) for rotor fault diagnosis. First, a waveform
matching extension is employed to preprocess the left and right boundaries of the raw compound
signal instead of mirroring the extreme extension. Then, a grey wolf optimization (GWO) algorithm is
employed to determine the inside parameters (α̂, K) of VMD, where the minimization of the mean of
weighted sparseness kurtosis (WSK) is regarded as the optimized target. Meanwhile, VMD with the
optimized parameters is used to decompose the preprocessed signal into several mono-component
signals. Finally, a Teager energy operator (TEO) with a favorable demodulation performance is
conducted to efficiently estimate the instantaneous characteristics of each mono-component signal,
which is aimed at obtaining the ultimate time-frequency representation (TFR). The efficacy of the
presented approach is verified by applying the simulated data and experimental rotor vibration
data. The results indicate that our approach can provide a precise diagnosis result, and it exhibits
the patterns of time-varying frequency more explicitly than some existing congeneric methods
do (e.g., local mean decomposition (LMD), empirical mode decomposition (EMD) and wavelet
transform (WT) ).

Keywords: variational mode decomposition; waveform matching extension; grey wolf optimization;
rotor fault diagnosis

1. Introduction

As everyone knows, most mechanical fault signals have the characteristics of being nonlinear
and non-stationary; it is difficult to accurately reveal the fault feature frequency applying directly fast
Fourier transform (FFT) in data processing [1]. Hence, a host of studies have focused on how to improve
the ability of fault information excavation, mainly classified as three types, namely the time domain,
frequency domain, and time-frequency domain [2–4]. Among these approaches, the time-frequency
analysis (TFA) tool has gained increasing interest for capturing intrinsic feature information from
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nonlinear and non-stationary signals due to the fact that it is capable of excavating time-frequency
information at the same time. Short-time Fourier transform (STFT), Wigner-Ville distribution (WVD),
and wavelet transform (WT) are recognized as several classic representations of algorithms of this
class [5]. To our disappointment, the aforesaid algorithms contain some inevitable disadvantages when
they are used to analyze complex and irregular signals. For example, it is difficult to acquire a clear
frequency trajectory and high resolution by using STFT with a moving window [6]. The inevitable
cross term will appear if we apply WVD to process the actual non-stationary compound signal [7].
Although WT is equipped with a rigorous mathematical basis, it lacks self-adaptability due to the
wavelet basis which need to be selected in advance [8]. Inspired by foregoing correlation work,
several self-adaption TFA tools possessing a recursive property are smoothly proposed and formulated
in analyzing the non-stationary compound signal, such as empirical mode decomposition (EMD),
local mean decomposition (LMD), intrinsic time-scale decomposition (ITD), local characteristic-scale
decomposition (LCD), and intrinsic characteristic-scale decomposition (ICD). Hitherto, many efforts
have been made to enlarge the application of these methods in mechanical fault detection and
prognostics [9]. Unfortunately, the prevalent self-adaption TFA algorithms still contain some adverse
issues. As an example, some drawbacks (e.g., an end point and aliasing effect) still remain to be
addressed in EMD and LMD [10]. Besides, to obtain accurate decomposition results, one needs to
set a suitable step length for the moving average in LMD [11]. Due to ITD adopting the principle
of linear transformation to obtain sub-signals, it is provided with the disadvantages of waveform
burr [12]. As the modified tool of ITD, LCD and ICD can alleviate the mode mixing and suppress
the end effect problem efficiently, but the physical meaning of the sub-signal obtained still cannot be
explained exactly [13]. Hence, it is valuable to develop a novel TFA tool for fault detection.

More recently, Dragomiretskiy and Zosso [14] presented an alternative TFA tool termed variational
mode decomposition (VMD), which can decompose a complex and irregular compound signal into
several sub-signals named intrinsic mode function (IMF). At present, this new tool has appeared in
various fields, including speech recognition [15], image processing [16], seismic analysis [17], fault
diagnosis, and forecasting [18–20]. For instance, Upadhyay and Pachori [21,22] applied VMD to
detect the instantaneous voice/non-voice of the speech signal and to achieve speech enhancement.
An et al. [23] adopted VMD to detect the fault patterns of hydropower units. Wang et al. [24] utilized
VMD to identify the rubbing fault of rotor systems and researched its narrow-band filtering nature.
Yang et al. [25] investigated the decomposition performance of VMD through a series of comparison
analyses. Yao et al. [26] used VMD to achieve the noise reduction of diesel engines. The results show
that more interference noises can be eliminated by his approach. Additionally, Zhang et al. [27] and
Liu et al. [28] applied VMD to identify fault types of bearing and obtained favorable diagnosis results.
Unfortunately, two appropriate parameters (i.e., the penalty factor α̂ and mode number K) need to be
selected in advance when we apply VMD in fault detection. That is, the improper parameter setting
may induce non-ideal and inaccuracy decomposition results, which further influence the subsequent
feature extraction. To solve this problem, a lot of work has been carried out to optimize preferentially
the important parameters of VMD. For instance, Isham et al. [29] proposed a signal difference average
(SDA) to determine the mode number of VMD based on the similarity criterion between the sum of
the sub-signals and the original input signal. Yang et al. [30] adopted a cross correlation coefficient
to estimate adaptively the mode number of VMD. Liu et al. [31] used a simple criterion based on
a detrended fluctuation analysis to select the mode number of VMD. Jiang et al. [32] proposed an
improved VMD strategy with an empirical mode decomposition to determine the mode number K of
VMD. Zhang et al. [33] adopted a mode-mixing judgment method for completing the optimization of
the mode number of VMD. Li et al. [34] proposed an independence-oriented VMD method, which
can effectively select the mode number based on peak searching and a similarity criterion. Zhao
and Feng [35] designed the central frequency iteration rule to determine the mode number of VMD.
Wang et al. [36] presented the permutation entropy optimization method to determine the mode
number K of VMD. Lian et al. [37] proposed a neoteric method termed as adaptive variational mode
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decomposition, which can choose the mode number K of VMD based on the characteristic of the mode
components. However, all parameter selection criteria presented in the above ref. [29–37] ignored
the influence of the penalty factor α̂ on the decomposition ability. Thus, on this basis, Shan et al. [38]
applied the minimization criterion of the root mean square error (RMSE) to adaptively search for
two VMD parameters. Isham et al. [39] adopted a differential evolution algorithm to select the
optimized VMD parameter, where the statistical parameter ratio is utilized to construct the objective
function. Zhu et al. [40] used an artificial fish swarm algorithm to choose adaptively the combination
parameters of VMD, where the kurtosis is used as the optimization index. Yi et al. [41] applied particle
swarm optimization to optimize the two parameters of VMD, where the ratio between the mean
and variance of the cross-correlation coefficient is regarded as the objective function. Yan et al. [42]
adopted a cuckoo search algorithm containing envelope entropy to optimize two key parameters
(α̂, K) of VMD. Wang et al. [43] adopted multi-objective particle swarm optimization with symbol
dynamic entropy to select automatically the two parameters of VMD. Zhou et al. [44] applied the
immunized fruit fly optimization algorithm containing the objective function named permutation
entropy to determine the combined parameters of VMD. Wei et al. [45] proposed a whale optimization
algorithm-based optimal VMD where envelope entropy is regarded as the objective function to find two
optimal parameters of VMD. Miao et al. [46] presented an improved parameter-adaptive VMD, which
can efficiently obtain two key parameters of VMD by using a grasshopper optimization algorithm
containing the ensemble kurtosis. Although the objective function adopted in the above research
separately investigates the impact properties of signals and the correlation between signals, it does so
without considering simultaneously the impacting characteristics and correlation of signals, which
indicates that the decomposition results of VMD may not be optimal.

Grey wolf optimization (GWO), proposed recently by Mirjalili et al. [47], is a novel heuristic swarm
intelligence optimization method, which integrates the predatory behavior of grey wolves with the
characteristics of the leadership hierarchy. Compared with other popular heuristic methods (e.g., genetic
algorithm [48], particle swarm optimization [49], differential evolution [50], and gravitational search
algorithm [51]), GWO supports the distributed parallel computing and has the merit of fewer
control variables, a stronger global search capability, and an excellent multi-parameter optimization
performance. These merits have been applied in solving complex parameter optimization problems
by many scholars [52]. Given this, we introduce GWO to search the optimal parameters (α̂, K) in
VMD, which ensures the self-adaptability and flexibility of VMD. Moreover, note that mirroring
extreme extension in the preparation of VMD is adopted, which is equal to the function of boundary
pretreatment. Nevertheless, mirroring extreme extension utilizes merely the extreme value point of
both ends of the initial signal to accomplish the extension procedure, which cannot reflect exactly the
natural trend of raw data. The waveform matching extension method presented by Hu et al. [53]
is effective in suppressing the end effect, and the extension waveform obtained by this method can
conform to the changing trend of the raw data as much as possible. Hence, we adopt waveform
matching extension to replace mirroring extreme extension in the original VMD, which will ensure
that VMD has a good boundary processing performance. As everybody knows, the demodulation of
IMF after signal decomposition is the key step of the TFA tool. Hilbert transform (HT) is an effective
demodulation method, but it will generate an edge error because of dewindowing and easily make
the negative frequency appear. Compared with HT, the Teager energy operator (TEO) with simple
computation can overcome the demodulation error of HT [54]. Hence, in this paper, TEO is selected as
the assisted tool to estimate the straightly instantaneous amplitude (IA) and instantaneous frequency
(IF) of the decomposition contents obtained by the parameter optimization VMD, for the purpose of
obtaining a good time-frequency trajectory.

Novelties and attractions in the article are that a novel TFA technique, named the improved
adaptive variational mode decomposition (IAVMD), is designed for rotor fault diagnosis, which
can automatically separate a non-stationary compound signal into several IMF ingredients and
achieve directly time-frequency contents. In the preparation phase of the method, we first present
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the waveform matching extension to obtain the extended signal. After that, GWO is introduced to
determine adaptively the inside parameters of VMD. Moreover, we employ the parameter-optimized
VMD to divide the extended signal into several IMF ingredients and truncate the extended segment to
obtain the final decomposition results. Finally, TEO demodulation for all IMFs is conducted to achieve
the corresponding instantaneous frequency (IF), and the IF of all IMFs is painted together to obtain our
desired time-frequency representation (TFR). One obvious merit of the proposed IAVMD is that it does
not depend on any parameterization, which makes this method more adaptive to actual situations.
Crucially, the study of simulated and actual laboratory data validates the effectiveness of our approach.

The remainder of this paper is as follows. Section 2 reviews the basic theory of VMD. Section 3
introduces the theory of the waveform matching extension method and shows the parameter
optimization process of VMD based on GWO. Meanwhile, the overall realization process of the
proposed IAVMD is illustrated in Section 3. Sections 4 and 5 prove the effectiveness of the presented
approach through a simulation analysis and experimental examples, respectively. Section 6 draws
some conclusions and provides some future works.

2. VMD

Briefly speaking, the main idea of VMD is to availably solve the constrained variational issue
(see Equation (1)): 

min
{uk},{ωk}

{∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e− jωkt

‖
2

2

}
s.t.

∑
k

uk = f
(1)

where uk indicates the k-th mode, and ωk means the mid-frequency corresponding to the k-th mode.
First, the penalty factor α̂ and Lagrangian multiplier λ(t) are added into Equation (1), so the variational
problem (i.e., the augmented Lagrangian) is rewritten as [55]:

L({uk}, {ωk},λ) = α̂
∑

k

‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e− jωkt

‖

2

2

+ ‖ f (t) −
∑

k

uk(t)‖
2

2

+

〈
λ(t), f (t) −

∑
k

uk(t)
〉

(2)

Second, several sub-signals (see Equation (3)) can be obtained by utilizing the alternate direction
method of multipliers:

ûn+1
k (ω) =

f̂ (ω) −
∑

i,k ûi(ω) +
λ̂(ω)

2

1 + 2α̂(ω−ωk)
2 (3)

where the center-frequencies ωk of each mode are updated by:

ωn+1
k =

∫
∞

0 ω
∣∣∣ûk(ω)

∣∣∣2dω∫
∞

0

∣∣∣ûk(ω)
∣∣∣2dω

(4)

At last, determine if the stop conditions (see Equation (5)) are met, and if it meets the conditions,
stop VMD running and output the entire decomposition results:∑

k

‖ûn+1
k − ûn

k ‖
2
2
/‖ûn

k ‖
2
2 < ε (5)

According to Ref. [55], the threshold ε is usually set as 10−6. Additional details of VMD can be
found in the original article [14].
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3. The Proposed IAVMD Method

3.1. Waveform Matching Extension

In the waveform matching extension, we first look for all available similar waveforms, then pick
out the best matching waveform within them. Last, we connect the waveband before/after the best
matching waveform to both left and right ends of the raw waveform to finish the task of boundary
processing. Figure 1 shows the flowchart of the waveform matching extension. For one compound
waveform x(t), the waveform matching extension procedure is described below [56].

(1) Find all extreme points and boundary points of the original signal x(t) through the peak
searching method, and determine the characteristic waveform. Take Figure 2 for an example,
Mi(i = 1, 2, 3, · · · ) is the maximum value of x(t), corresponding to the time tmi, Ni is the minimum value
of x(t), corresponding to the time tni, and S1 is the left boundary point of the signal x(t). We regard the
triangular waveform S1 −M1 −N1 of the original signal x(t) as the characteristic waveform to search
the optimum matching waveform.

(2) Seek for all matching waveforms resembling the characteristic waveform S1 −M1 −N1 on the
basis of the time tsi corresponding to the starting value Si of the matching waveforms, where the time
tsi of the horizontal axis is achieved by the linear interpolation, which is expressed as:

tsi =
tm1 × tni − tn1 × tmi

tm1 − tn1
(6)

(3) Estimate the matching error generated in searching all similar waveforms according to the
following Equation (7):

Ei = |Si − S1|+ |Ni −N1|+ |Mi −M1|+
∣∣∣Mi+1 −M2

∣∣∣ (7)

where
∣∣∣Mi+1 −M2

∣∣∣ represents the trend term of the similar waveforms, which can reveal the relative
extremum position of all similar waveforms.

(4) Compare the matching error, determine the smallest error, and consider the similar waveform
S1 −M1 −N1 containing the smallest error as the best matching waveform.

(5) Use the data before the best matching waveform to extend the left ends of the raw waveform x(t).
(6) Apply the same way to extend the right ends of the raw waveform x(t), and finally obtain the

extended waveform. This indicates that the waveform matching extension procedure of the original
signal x(t) is finished in this stage. That is, the left and right boundaries of the original signal x(t) have
been processed thoroughly.

Here, two representative examples for a signal with an abrupt change are utilized to describe
intuitively the procedure of waveform matching extension. Without loss of generality, the number
of data points extended in both left and right ends are selected as 100 points. Figure 3a,b shows the
processing results achieved when applying the waveform matching extension for a cycle shock pulse
signal and a modulated compound signal, respectively. Obviously, the waveform extended in both
the left and right ends is in line with the variation trend of the raw signal, which indicates that the
waveform matching extension is feasible in analyzing the modulated compound signal.
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Figure 3. Intuitive examples of the waveform matching extension: (a) a cycle shock pulse signal and
(b) a modulated compound signal.
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3.2. Parameter Optimization of VMD Using GWO

Two important variables (i.e., the penalty factor α̂ and mode number K) are required to define
in advance when we employ VMD to a process complex compound signal. Some previous studies
have shown that the two variables (α̂ and K) have a great influence on the decomposition performance
of VMD. On the one hand, the bigger α̂ represents the smaller bandwidth of modes. Otherwise, the
smaller α̂ represents the greater bandwidth of modes. On the other hand, if the mode number K is too
big, it easily leads to the over decomposition phenomenon (i.e., information redundancy), while this
will cause the under-decomposition phenomenon (i.e., information loss) when the mode number K is
too small. Hence, how to pick out the appropriate variables (α̂, K), is a challenge when applying VMD
to deal with complex compound signals. To address this issue, a new nature-inspired algorithm called
GWO is introduced to determine and select automatically the combination parameters (α̂, K) of VMD in
this subsection due to its excellent global optimization performance. Obviously, the objective function
should be constructed when we use GWO to optimize the parameters of VMD. At present, there are
many indicators (e.g., smoothness index, entropy, sparseness, kurtosis, and correlation coefficient) in
the analysis of the mechanical vibration signal, but it is not optimal to use any of their single indicators
to measure vibration signal characteristics. This indicates that the combination of two or more of
their single indicators is valuable for practical vibration detection. Zhang et al. [57] presented a new
combination index named weighted kurtosis (WK) as the objective function of their method to optimize
the key parameters of VMD, but the proposed weighted kurtosis does not consider some abnormal
impacts (i.e., the outlier) with disperse distributions. Hence, to solve this problem, a comprehensive
evaluation indicator named weighted sparseness kurtosis (WSK) is formulated in this paper to work
as the objective function of the parameter optimization process of VMD, which is defined by:

WSK = S ·Kur ·
∣∣∣ρ∣∣∣ (8)

S =

√
1
N
∑N

n=1 x(n)2

1
N
∑N

n=1

∣∣∣x(n)∣∣∣ (9)

Kur =
1
N
∑N−1

n=0 x4(n)(
1
N
∑N−1

n=1 x2(n)
)2 (10)

ρ =
E[(x− x)(y− y)]

E[(x− x)2]E[(y− y)2]
(11)

where S is the sparseness of the signal x(n), N is the length of the signal x(n), ρ represents the Pearson
correlation coefficient between two signals (i.e., x and y) and satisfies

∣∣∣ρ∣∣∣ ≤ 1, and E[·] denotes the
expectation operator. This indicates that the correlation coefficient ρ amounts to the weight of the
sparseness kurtosis indicator. That is, Equation (8) is reputed essentially as the weighted sparseness
kurtosis indicator in this paper. Note that in Equation (8) the sparseness is a statistical indicator
reflecting the amplitude distribution of the signal, especially for an abnormal impact amplitude with
discrete distribution, while kurtosis is very sensitive to the periodic impulse series of vibration signals.
Besides, the correlation coefficient can measure the similarity between two vibration signals.

To prove the efficacy of the presented WSK indicator, comparisons between four indicators
(i.e., kurtosis, entropy, WK, and WSK) are conducted by analyzing a simulation signal. The simulation
signal shown in Figure 4a is composed of the periodic impulse, harmonic signal, and random noise.
Figure 4b,c shows the simulation signal containing a single outlier and multiple outlier, respectively.
Table 1 gives the comparison results of different indicators for the simulation signal. From the chart
we know that the proposed WSK indicator has the smallest change when the outlier of the signal
increases gradually. This implies that the proposed WSK indicator is more reliable and robust to the
outlier of the signal compared with the single indicator and WK. Hence, through the combination of
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three indicators (i.e., the sparseness, kurtosis, and correlation coefficient), the WSK indicator is more
comprehensive and has more advantages in measuring vibration features.
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Figure 4. The time domain waveform of the simulation signal: (a) No outlier, (b) single outlier, and (c)
multiple outlier.

Table 1. The comparisons among different indicators.

Signal Kurtosis Entropy WK WSK

No outlier 3.19 6.89 3.19 9.18
Single outlier 7.82 6.58 6.35 9.35

Multiple outlier 16.41 6.32 2.87 9.29

Obviously, a larger WSK implies a richer impact feature and a better signal sparseness and
decomposition results. Here, to further ensure a global optimal solution, we deem the mean of the WSK
of modes acquired by VMD as an objective function of the optimization procedure. Concretely, the
goal of the parameter optimization process of VMD using GWO is visually interpreted as an effective
search for the minimum value of the opposite of the objective function, as shown in Equation (12): f itness = min

γ=(K,α̂)
{−mean(WSKi)}

s.t. K = 2, 3, · · · , 8 and α̂ = [100, 2000]
(12)

where K denotes the mode number, α̂ denotes the penalty factor, mean(WSKi) is the mean value of
WSK, and WSKi is the WSK corresponding to the i-th mode. GWO has a strict population hierarchy,
which is mainly divided into four layers (see Figure 5), where the first layer is α (i.e., leaders/the
optimal solution), the second layer is β (i.e., subordinate wolves-advisors/the suboptimal solution),
the third layer is δ (i.e., scouts, sentinels, elders, hunters, and caretakers/the third optimal solution),
and the last layer is ω (i.e., lowest ranking wolves-scapegoats/other solutions). Moreover, GWO is
applied for parameter optimization by implementing several steps (e.g., hunting, searching for prey,
encircling prey, and attacking prey). Figure 6 shows the flowchart of the parameter optimization of
VMD using the GWO method. The general procedure of VMD parameter optimization is elaborated in
detail below:

(1) Initialize the grey wolf population Xi(i = 1, 2, · · · , m), and set the fitness function and the
parameters of the GWO algorithm. Generally speaking, the higher the number of wolves and iterations
is, the better the optimization results are, but the longer the computation time is; thus, according to
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Ref. [42], we define the maximum number of wolves m = 30 and maximum iterations T = 10, which is
aimed at achieving a tradeoff between the optimization results and computational efficiency. Besides,
due to the pre-optimization, the objective only involves two variables (α̂, K), and thus each wolf is
expressed as Xi = (xK, xalpha), i = 1, 2, · · · , m, where xK and xalpha represent the penalty factor and
mode number, respectively. Due to fault feature information of the practical signal usually spread
over the first few high-frequency components obtained by VMD, the first two to eight components are
usually selected and analyzed. Besides, the feature information of the main components obtained by
VMD is distributed over an appropriate bandwidth, which means that the parameter α̂ is supposed to
stay within an empirical range and is neither too big nor too small compared to the default of VMD.
For all those reasons, here the search ranges of the two parameters α̂ and K are empirically set as [2, 8]
and [100, 2000], respectively.

(2) Calculate the fitness value mean(WSKi) of each wolf Xi(i = 1, 2, · · · , m), look for the minimum
fitness value (i.e., min

{
mean(WSKi)

}
) between the four agents (i.e., the fitness value of the individual

grey wolf α, β, δ, and ω) and record the current best wolves Xbest.
(3) Update the position of wolves in terms of the gray wolf movement pattern shown in

Equation (13):

Xi(t + 1) =
Xi,α(t) + Xi,β(t) + Xi,δ(t)

3
(13)

Xi,α(t + 1) = Xα(t) −A ·
∣∣∣C ·Xα(t) −Xi(t)

∣∣∣
Xi,β(t + 1) = Xβ(t) −A ·

∣∣∣C ·Xβ(t) −Xi(t)
∣∣∣

Xi,δ(t + 1) = Xδ(t) −A ·
∣∣∣C ·Xδ(t) −Xi(t)

∣∣∣ (14)

where A is the convergence factor and meets A = 2d · r1 − d, C is the swing factor and meets C = 2 · r2,
d is the range control parameter which linearly decays from 2 to 0 over the whole iteration, and r1 and
r2 are the random numbers between 0 and 1.

(4) Calculate the fitness value mean(WSKi
new) of new wolves, and record the best wolves Xnew

best
through the comparison of the fitness value. That is, if the fitness value mean(WSKi) of the updated
wolves overmatches that of the previous wolves, the updated wolves X(t+1)

i will take the place of the

previous wolves X(t)
i . Otherwise, retain the previous wolves X(t)

i .
(5) Determine whether the stopping condition is satisfied. Concretely, decide whether the current

iterations are lower than the maximum iterations (i.e., t ≤ T) or whether the opposite of the fitness
value mean(WSKi) is small enough. If that is the case, stop the iteration and output the best wolves
Xbest (i.e., the best parameters xbest

alpha and xbest
K of VMD). Otherwise, let t = t + 1, back to step (2) to

keep working.
In short, this section has two contributions. First, the WSK indicator is proposed and is more

reliable and robust to the outlier of the signal compared with the previous WK and three single
indicators (i.e., the sparseness, kurtosis, and correlation coefficient). Second, two key parameters (α̂, K)
of VMD can be determined automatically by using the GWO method, where the mean of the proposed
WSK for all modes is regarded as the objective function of the optimization procedure.
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3.3. Teager Energy Operator

For a given continuous-time signal with modulated information x(t) = a(t) cos(φ(t)), TEO is
defined as:

ψ[x(t)] = [
.
x(t)]2 − x(t)

..
x(t) (15)

where
.
x(t) and

..
x(t) mean the first and second order derivative functions of x(t), respectively. For a

discrete signal x(n), TEO is modified into ψ[x(n)] = x2(n)− x(n− 1)x(n + 1), where n means the length
of x(n). The instantaneous amplitudes IA and IF of x(n) are capable of being acquired using the discrete
energy separation method (see the DESA-2 function in MATLAB), as shown in Equations (16) and (17):

a(n) =
2ψ[x(n)]√

ψ[x(n + 1) − x(n− 1)]
(16)

f (n) =
1

4π
arccos

(
1−

ψ[x(n + 1) − x(n− 1)]
2ψ[x(n)]

)
(17)

where a(n) represents the instantaneous amplitude, and f (n) represents the instantaneous frequency.
One major advantage of TEO compared with HT is that the calculated IA and IF have fewer errors.

3.4. The Proposed IAVMD Method

As mentioned before, the advantages of waveform matching extension are utilized by this paper
for signal pretreatment. The inside parameters (i.e., α̂ and K) of VMD are determined beforehand by
GWO, which can make the algorithm adaptive and practicable. One advantage of TEO is that the
edge errors of HT can be avoided in the signal demodulation process. Hence, by merging together
several procedures, a novel TFA method called IAVMD is formulated in this paper. Figure 7 shows
the flowchart of the proposed method. For a multi-component signal, the realization process of the
proposed IAVMD method is as follows:

Step 1: Preparations of IAVMD. Use the waveform matching extension illustrated in Figure 1 to
stretch the left and right boundary points of the multi-component signal.
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Step 2: Parameter optimization automatically. Introduce GWO to adaptively search the optimal
inside parameters (α̂, K) of VMD according to steps (1) to (5) of Section 3.2.

Step 3: Signal decomposition. Apply the parameter optimization VMD method to decompose the
extended signal acquired by step 1 into several IMF components shown in Equation (3), and truncate
the extended data points of each IMF component to obtain the final decomposition results.

Step 4: Signal demodulation. Perform TEO to estimate the IF and IA of each IMF component, and
plot the IF of all IMF components together to get the ultimate time-frequency representations of the
original signal. Observe and identify the frequency contents displayed in TFR, and output the fault
diagnosis results.
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4. Simulation Validation

4.1. Case 1: Sinusoidal Superposition Signal

Considering that the real rotor vibration signal is generally expressed as multiple harmonic
superposition signals (e.g., the linear superposition of fundamental frequency, fractional frequency,
and ultraharmonics), to confirm the availability of the presented approach we here employ a numerical
signal y(t) consisting of four sine waves (their frequencies are, respectively, 30 Hz, 60 Hz, 100 Hz, and
150 Hz) to simulate the rotor fault signal, which is considered as follows:

y(t) = x1(t) + x2(t) + x3(t) + x4(t)
= sin(60πt) + sin(120πt) + sin(200πt) + sin(300πt)

(18)

where x1(t) is used to simulate the fundamental frequency component of the rotor fault signal, x2(t) is
used to simulate the double frequency component of the rotor fault signal, x3(t) is used to simulate
the fractional frequency component of the rotor fault signal, and x4(t) is used to simulate the higher
harmonic component of the rotor fault signal. For the simulation signal y(t), its sampling frequency
and sampling number are set as 3000 Hz and 1500, respectively. Figure 8 draws the numerical signal
x(t) and its FFT spectrum.

In the IAVMD method, the numerical signal y(t) is first preprocessed by waveform matching
extension, after which the optimal combined parameters (α̂, K) of VMD obtained using GWO are
(1986, 4). That is, VMD with α̂ = 1986 and K = 4 is applied to analyze the numerical signal y(t), and the
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ultimate decomposition results are shown in Figure 9. Note that, except for the input signal and two
key parameters (α̂, K), another four parameters (e.g., time-step of the dual ascent τ, DC part, uniform
initialization of omegas, and tolerance of the convergence criterion ε) of VMD have a fixed value, set
as 0, 0, 0, and 10−6, respectively. Seen from Figure 9, four frequency components of the numerical
signal y(t) are separated efficiently. Figure 10a,b plots the two-dimensional and three-dimensional
TFR based on IAVMD, respectively. One can clearly see that the time-frequency trajectory obtained by
IAVMD is very clear in Figure 10, which indicates that the proposed IAVMD can exactly decompose
the sinusoidal superposition signal containing multiple components.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 27 
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As a comparison, particle swarm optimization-based VMD (OVMD) and three other techniques
(i.e., LMD, EMD, and WT) are devoted to disposing the same signal y(t). The optimization range
of OVMD is the same as for the proposed method. Here, the optimized parameters of OVMD are
respectively determined as α̂ = 1120 and K = 4 by using the PSO algorithm. The decomposition results
acquired by OVMD, LMD, EMD, and WT are shown in Figure 11a–d, respectively. Besides, the acquired
TFR using four techniques (i.e., OVMD, LMD, EMD, and WT) are shown in Figure 12a–d, respectively.
Note that, in the comparison process, to ensure a fair comparison, the TFR of four methods (i.e., OVMD,
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LMD, EMD, and WT) are obtained by TEO, where WT adopts the ‘db1’ wavelet function containing
a good orthogonality and where three decomposition layers are performed (i.e., four reconstructed
wavelet coefficients can be obtained for implementing the time-frequency analysis). As shown in
Figure 12a, four sub-components are extracted effectively, but they suffer from certain boundary
fluctuations (see the red dotted line). From Figure 12b,c, one can observe that the first two IMFs
suffer from serious mode aliasing and that the signal representation in the time-frequency plane is
highly dispersed. That is, the IMFs derived from LMD and EMD cannot coincide well with the real
components. As can be seen from Figure 12d, many discrete points appear on the time-frequency
trajectory. That is, the time-frequency trajectory obtained by WT is very scattered and unfocused,
so it is difficult to effectively identify the frequency components. This means that the time-frequency
resolution of WT is not as good as those provided in Figure 10a. Consequently, through the comparison
of Figure 12a–d, it is obvious that the potential of our presented IAVMD approach in analyzing
non-stationary compound signals is preliminarily verified. Besides, the decomposition performance of
our presented IAVMD is superior to that of some classical algorithms mentioned in this case.
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Figure 12. The time-frequency representations obtained by different methods for simulation 1: (a) 
OVMD, (b) LMD, (c) EMD, and (d) WT. 

Figure 12. The time-frequency representations obtained by different methods for simulation 1:
(a) OVMD, (b) LMD, (c) EMD, and (d) WT.

4.2. Case 2: AM-FM Superposition Signal

To further prove the efficacy of the proposed IAVMD method, we analyze and investigate a
numerical signal z(t) shown in Equation (19), which is composed of three AM-FM signals and a
stochastic noise: 

z(t) = q1(t) + q2(t) + q3(t) + q4(t)
q1(t) = (0.8 + 0.8 sin(30πt)) cos(800πt + 0.6 sin(24πt))
q2(t) = (1 + sin(20πt)) cos(400πt + 0.6 sin(16πt))
q3(t) = (0.5 + 0.5 sin(10πt)) cos(200πt + 0.6 sin(8πt))

(19)

where three components q1(t), q2(t), and q3(t) are AM-FM signals containing the main frequency of
400 Hz, 200 Hz, and 100 Hz, respectively. The component q4(t) is a stochastic noise added in the
numerical signal z(t), and its value is generated by the randn() function in MATLAB. The sampling
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frequency and sampling number of the simulation signal z(t) are 3000 Hz and 3000, respectively.
Figure 13 shows the simulation signal z(t) and its corresponding FFT spectrum.
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Figure 13. The numerical signal z(t) and its FFT spectrum.

The proposed IAVMD method is adopted to analyze the simulation signal z(t). First, waveform
the matching extension is used to preprocess the simulation signal z(t), after which the GWO method
is employed to determine automatically the VMD parameters α̂ = 1023 and K = 3. Finally, VMD
containing the optimal parameters is adopted to analyze the simulation signal z(t), and the ultimate
decomposition results are displayed in Figure 14. The corresponding time-frequency representations
are shown in Figure 15. Figure 15a,b shows the two-dimensional and three-dimensional TFR based on
IAVMD, respectively. It can be clearly seen from Figures 14 and 15 that three components obtained
by the proposed method are very close to three real AM-FM components of the original signal,
which indicates that the IAVMD method is effective in analyzing multi-component signals with
modulation phenomena.
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As a contrast, four methods (i.e., OVMD, LMD, EMD, and WT) are employed to deal with the
same simulation signal z(t). Note that to consolidate the results of the proposed method two key
parameters of OVMD are optimized as α̂ = 751 and K = 3. Besides, the implementation of the TFR of
other three methods is the same as that of simulation 1. The TFR obtained by the four methods are
plotted in Figure 16a–d, respectively. Seen from Figure 16a, in the first two components obtained by
OVMD, there is some deviation from the true component. That is, the first two components have a
low resolution in TFR based on OVMD. As shown in Figure 16b,c, the time-frequency trajectory is
not clear in the TFR based on EMD and LMD, and their time-frequency aggregation is not as good
as in the proposed method. As shown in Figure 16d, the time-frequency trajectories are scattered,
and three frequency components of the original signal cannot be identified in TFR based on WT.
Therefore, the above comparison results further validate the effectiveness of the proposed method in
multi-component signal analysis.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 27 
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5.1. Experiment Platform and Data Description 

To further verify the presented IAVMD method, we process the experimental data collected 
from the rotor-bearing system in the vibration measurement laboratory at North China Electric 
Power University (NCEPU). The experimental device used in the testing is a Bently RK-4 test bench 
(see Figure 17), which mainly consists of a signal front adapter, speed-adjusting, and a bearing oil 
pump system. The specification of the data collection equipment is ZonicBook/618E. The eddy 
current sensor and key phasor transducer are mounted on both sides of the disk to collect the rotor 
experimental vibration signal and rotational speed signal, respectively. First, plastic rods near the 
revolving shaft were adopted to produce the slight local rub-impact fault under 1790 r/min (i.e., 
rotating frequency 1f  = 29.83 Hz). Second, the rotor oil-whirl and oil-whip fault were generated by 
adjusting the device such as the oil pump, preload scaffold, and motor speed controller when the 
rotation speed was respectively set at 2600 r/min (i.e., rotating frequency 2f  = 43.33 Hz) and 4500 
r/min (i.e., rotating frequency 3f  = 75 Hz). Note that the critical speed of oil-whip is about 1800 
r/min (i.e., oil-whip frequency wf  = 30 Hz). Specifically, in this experiment, the rotor system 
operates at above twice the critical speeds, resulting in rotor oil-whip. The sampling frequency and 
data length during testing were set at 1280 Hz and 1024 points, respectively. Generally speaking, 
when the rotor shows a rub-impact fault, the expected main fault feature frequencies in the 
frequency spectrum are the rotating frequency 1f , its harmonics (e.g., 2 1f , 3 1f , and 4 1f ) and 
sub-harmonics (e.g., 0.5 1f , 1.5 1f , and 2.5 1f ). Besides, as we know the rotor oil-whirl is also 
known as half-speed whirl. That is, the expected main fault frequencies in the frequency spectrum 
are half of the rotating frequency (0.5 2f ) and its related harmonics (e.g., 2f , 1.5 2f , 2 2f , 2.5 2f , 
and 3 2f ) when the rotor shows oil-whirl. Similarly, the expected main fault frequencies in the 
frequency spectrum are the oil-whip frequency wf , rotating frequency 3f , and their related 
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Figure 16. The time-frequency representations obtained by different methods for simulation 2:
(a) OVMD, (b) LMD, (c) EMD, and (d) WT.
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In short, the contribution of this section is that two simulation cases are adopted to verify the
effectiveness of our proposed IAVMD method. Besides, the superiority of the IAVMD method is
demonstrated via the comparisons of various similar methods (e.g., OVMD, LMD, EMD, and WT).

5. Experimental Validation

5.1. Experiment Platform and Data Description

To further verify the presented IAVMD method, we process the experimental data collected
from the rotor-bearing system in the vibration measurement laboratory at North China Electric
Power University (NCEPU). The experimental device used in the testing is a Bently RK-4 test bench
(see Figure 17), which mainly consists of a signal front adapter, speed-adjusting, and a bearing oil pump
system. The specification of the data collection equipment is ZonicBook/618E. The eddy current sensor
and key phasor transducer are mounted on both sides of the disk to collect the rotor experimental
vibration signal and rotational speed signal, respectively. First, plastic rods near the revolving shaft
were adopted to produce the slight local rub-impact fault under 1790 r/min (i.e., rotating frequency
f1 = 29.83 Hz). Second, the rotor oil-whirl and oil-whip fault were generated by adjusting the device
such as the oil pump, preload scaffold, and motor speed controller when the rotation speed was
respectively set at 2600 r/min (i.e., rotating frequency f2 = 43.33 Hz) and 4500 r/min (i.e., rotating
frequency f3 = 75 Hz). Note that the critical speed of oil-whip is about 1800 r/min (i.e., oil-whip
frequency fw = 30 Hz). Specifically, in this experiment, the rotor system operates at above twice the
critical speeds, resulting in rotor oil-whip. The sampling frequency and data length during testing
were set at 1280 Hz and 1024 points, respectively. Generally speaking, when the rotor shows a
rub-impact fault, the expected main fault feature frequencies in the frequency spectrum are the rotating
frequency f1, its harmonics (e.g., 2 f1, 3 f1, and 4 f1) and sub-harmonics (e.g., 0.5 f1, 1.5 f1, and 2.5 f1).
Besides, as we know the rotor oil-whirl is also known as half-speed whirl. That is, the expected main
fault frequencies in the frequency spectrum are half of the rotating frequency (0.5 f2) and its related
harmonics (e.g., f2, 1.5 f2, 2 f2, 2.5 f2, and 3 f2) when the rotor shows oil-whirl. Similarly, the expected
main fault frequencies in the frequency spectrum are the oil-whip frequency fw, rotating frequency
f3, and their related harmonics (e.g., 0.5, f3 − fw, f3 + fw, 2 fw, + 1.5 fw, and 2 f3) when the rotor
shows oil-whip.
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Figure 17. Schematic diagram of the rotor test bench.

5.2. Case 1: Rotor Rub-Impact Fault Detection

Figure 18a,b shows the waveform and FFT spectrum of the rotor early rub-impact signal,
respectively. As seen in Figure 18a,b, the rotor slight rub-impact signal is expressed approximatively
by a sine wave, the frequency component of 29.5 Hz (approximately equal to the rotating frequency f1)
is very clear in the FFT spectrum, but the amplitude at the harmonics is very small. That is to say, it is
not easy to judge whether rub-impact fault occurs when directly using the FFT spectrum.
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and (g) WT. 

5.3. Case 2: Rotor Oil-Whirl Fault Detection 

Figure 19a,b shows the waveform and FFT spectrum of the rotor oil-whirl signal, respectively. 
Figure 19a shows that the rotor oil-whirl signal is represented by a sum of sine waves, and that in the 
FFT spectrum there is a prominent amplitude at the rotating frequency 2f  of 43.33 Hz. Besides, the 
amplitude of the oil-whirl frequency of 21.5 Hz (equal to about 0.5 2f ) is greater than that of the 
rotating frequency, but the amplitude of the high frequency is not obvious. 

The oil-whirl signal is analyzed by five methods (i.e., IAVMD, OVMD, LMD, EMD, and WT), 
respectively. Figure 19c–g provides the TFR derived from the five methods, respectively. In IAVMD, 
the optimal parameters obtained by the GWO algorithm are α̂  = 1919 and K = 4, respectively. In 
OVMD, the optimal parameters are set as α̂  = 952 and K = 4. As shown in Figure 19c, the rotating 
frequency 43.33 Hz and its harmonics 86.67 Hz can be found. Besides, the oil-whirl frequency 21.5 
Hz and its related frequency 65 Hz (approximately equal to the sum of the oil-whirl frequency 21.5 
Hz and the rotating frequency 43.33 Hz) is also extracted clearly, which means that the rotor shows 
an oil-whirl fault. It can be seen from Figure 19d that only three frequency components (i.e., 21.5 Hz, 
43.33 Hz, and 86.67 Hz) are visible due to the overlap of frequency components, their related 
frequency 65 Hz cannot be found, and the end effect is obvious compared with the proposed 
method. In Figure 19e,f, the oil-whip frequency 21.5 Hz and rotating frequency 43.33 Hz can be seen, 
but they show the end effect and mode mixing problem. Furthermore, their time-frequency 
trajectory is not as good as those in Figure 19c. Likewise, as seen in Figure 19g, the fault feature 
information of the rotor oil-whirl is not obvious, and the points on the frequency components are 
discrete and remarkably decentralized. The contrastive analysis further confirms that the 
performance of the proposed IAVMD in detecting rotor oil-whirl is better than that of the other four 
methods (i.e., OVMD, LMD, EMD, and WT). 

0 0.2 0.4 0.6 0.8
-1000

0

1000

Time (s)

A
m

pl
itu

de
 (m

V
)

0 100 200 300 400 500
0

500

1000

Frequency (Hz)

A
m

pl
itu

de
 (m

V
)

 
(a)                                   (b) 

Figure 18. The analyzed results of the rotor rub-impact signal: (a) Temporal waveform, (b) FFT
spectrum, time-frequency representations obtained by (c) IAVMD, (d) OVMD, (e) LMD, (f) EMD, and
(g) WT.

Five approaches (i.e., IAVMD, OVMD, LMD, EMD, and WT) are applied to decompose the
rub-impact fault signal, respectively. Figure 18c–g respectively depicts the TFR resulting from the
five methods. The optimal inside parameters in IAVMD are selected as α̂ = 1177 and K = 4 through
using the GWO algorithm. The optimal parameters of OVMD are determined as α̂ = 536 and K = 4
through using the PSO algorithm. As seen in Figure 18c, the fundamental frequency of 29.5 Hz and its
various harmonics (59 Hz, 147.5 Hz, and 265.5 Hz) can be identified. In addition, the high frequency
is relatively ambiguous due to a resolution problem, but the spectral line is very clear in the low
frequency. This indicates that our presented IAVMD approach can detect early characteristics of rotor
rub-impact faults.

As shown in Figure 18d, we can easily find the frequency components of 29.5 Hz and its
second-harmonic (59 Hz), but the results have overlap and there is a serious end effect (see the parts
marked with a red line). In Figure 18e,f, the instantaneous frequencies of 29.5 Hz can be found, but their
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time-frequency trajectory is obscure. It is obvious from Figure 18g that the TFR obtained by WT can
dimly extract the rotating frequency of 29.5 Hz, but the frequency points are very scattered and their
time-frequency resolution is clearly worse. The contrastive analysis demonstrated that the efficacy of
IAVMD in rotor rub-impact fault detection is superior to that of the other four approaches (i.e., OVMD,
LMD, EMD, and WT).

5.3. Case 2: Rotor Oil-Whirl Fault Detection

Figure 19a,b shows the waveform and FFT spectrum of the rotor oil-whirl signal, respectively.
Figure 19a shows that the rotor oil-whirl signal is represented by a sum of sine waves, and that in
the FFT spectrum there is a prominent amplitude at the rotating frequency f2 of 43.33 Hz. Besides,
the amplitude of the oil-whirl frequency of 21.5 Hz (equal to about 0.5 f2) is greater than that of the
rotating frequency, but the amplitude of the high frequency is not obvious.
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Figure 19. The analyzed results of the rotor oil-whirl signal: (a) Temporal waveform, (b) FFT 
spectrum, time-frequency representations obtained by (c) IAVMD, (d) OVMD, (e) LMD, (f) EMD, 
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The oil-whirl signal is analyzed by five methods (i.e., IAVMD, OVMD, LMD, EMD, and WT),
respectively. Figure 19c–g provides the TFR derived from the five methods, respectively. In IAVMD,
the optimal parameters obtained by the GWO algorithm are α̂ = 1919 and K = 4, respectively. In OVMD,
the optimal parameters are set as α̂ = 952 and K = 4. As shown in Figure 19c, the rotating frequency
43.33 Hz and its harmonics 86.67 Hz can be found. Besides, the oil-whirl frequency 21.5 Hz and its
related frequency 65 Hz (approximately equal to the sum of the oil-whirl frequency 21.5 Hz and the
rotating frequency 43.33 Hz) is also extracted clearly, which means that the rotor shows an oil-whirl
fault. It can be seen from Figure 19d that only three frequency components (i.e., 21.5 Hz, 43.33 Hz,
and 86.67 Hz) are visible due to the overlap of frequency components, their related frequency 65 Hz
cannot be found, and the end effect is obvious compared with the proposed method. In Figure 19e,f,
the oil-whip frequency 21.5 Hz and rotating frequency 43.33 Hz can be seen, but they show the end
effect and mode mixing problem. Furthermore, their time-frequency trajectory is not as good as those
in Figure 19c. Likewise, as seen in Figure 19g, the fault feature information of the rotor oil-whirl is
not obvious, and the points on the frequency components are discrete and remarkably decentralized.
The contrastive analysis further confirms that the performance of the proposed IAVMD in detecting
rotor oil-whirl is better than that of the other four methods (i.e., OVMD, LMD, EMD, and WT).

5.4. Case 3: Rotor Oil-Whip Fault Detection

Figure 20a,b shows the waveform and FFT spectrum of the rotor oil-whip signal with a length of
1024, respectively. As depicted in Figure 20b, the oil-whip frequency fw of 30 Hz and rotating frequency
fw of 75 Hz can be clearly seen in the FFT spectrum, but the amplitudes at a high frequency are weak.
Besides, the FFT spectrum is short of time-varying frequency contents.

Analogously, five methods (i.e., IAVMD, OVMD, LMD, EMD, and WT) are utilized to deal with
the oil-whip signal. Figure 20c–g plots, respectively, the TFR obtained by the five methods. The inside
parameters (α̂ = 1987 and K = 4) of IAVMD are determined by using GWO. Two key parameters of
OVMD are determined as α̂ = 1175 and K = 4 by using PSO. As shown in Figure 20c, the oil-whip
frequency (i.e., fw = 30 Hz) and rotating frequency (i.e., f3 = 75 Hz) are very obvious. Moreover, the
associated frequency components 120 Hz (i.e., f3 + 1.5 fw) and 150 Hz (i.e., 2 f3) are also extracted,
and the aggregation along the time-frequency trajectory is very explicit. This indicates that the
oil-whip fault can be detected accurately by using the proposed method. As shown in Figure 20d,
only three frequencies (i.e., fw = 30 Hz, f3 = 75 Hz, and the relevant frequency 120 Hz) can be found,
but the harmonic frequency of 150 Hz is almost invisible due to the discrete distribution of high
frequency points. Besides, there is an end effect problem in Figure 20d. Seen from Figure 20e,f, the
TFR derived from LMD and EMD can also extract the oil-whip frequency fw = 30 Hz, but the mode
mixing phenomenon is very serious, and the time-frequency trajectory at higher frequency is discrete
and blurry. The oil-whip frequency fw = 30 Hz can be seen in Figure 20g, but the resolution of the
WT-based TFR is worse than that in our approach. Hence, according to the above comparison results,
compared with the other methods, our approach is more effective for detecting rotor oil-whip. In short,
we can know from Figures 18–20 that the proposed method is once again validated as being valuable
in analyzing multi-component signals.
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Figure 20. The analyzed results of the rotor oil-whip signal: (a) Temporal waveform, (b) FFT 
spectrum, time-frequency representations obtained by (c) IAVMD, (d) OVMD, (e) LMD, (f) EMD, 
and (g) WT. 
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5.5. Result and Discussion

As analyzed above, the presented approach is applicable to processing multi-component
signals and is more effective than the existing methods (i.e., OVMD, LMD, EMD, and WT) in
extracting time-frequency contents and fault features. The advantage of merging several procedures
(i.e., waveform matching extension, GWO, VMD, and TEO) is that it makes the resulting algorithm
more adaptive to the practical situation and that it can directly extract time-varying characteristics.
Besides, the presented approach can improve the precision of signal decomposition. However, the
above results are geared to qualitative analysis, which indicates that a quantitative analysis should
also be conducted to further show the performance of the proposed method. Here, three evaluation
indexes (i.e., the energy error θ, orthogonal index OI, and correlation coefficient shown in Equation
(11)) are adopted to compare, on a quantificational level, the decomposability of different methods.
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The energy error θ of one signal x(t) can be given by [58]:

θ =

∣∣∣∣∣∣∣
√

n+1∑
i=1

RMS2
i −RMSx

∣∣∣∣∣∣∣
RMSx

, RMSx =

√√√√√ N∑
i=1

x2(i)

N
(20)

where RMSx represents the root mean square of x(t), RMSi represents the root mean square of the i-th
modes, and n + 1 represents the mode number. According to Ref. [58], the smaller θ value represents a
higher decomposition accuracy and a lesser end effect.

The orthogonal index of one signal x(t) can be given by [59]:

OI =

∑NC
i=1

∑ j<i
j=1

∣∣∣∑N
k=1 Cik ×C jk

∣∣∣∑N
k=1 (xk − rk)

2 (21)

where NC represents the mode number, N means the data length of modes, Cik(t) and C jk(t) respectively
denote the i-th and j-th modes at the sifting step k, and xk and rk denote the raw signal and residual
term, respectively. Similarly, according to Ref. [59], the smaller the value of the orthogonal index is, the
better the decomposition performance is. Furthermore, it should be explained that we evaluate their
performance through calculating the correlation coefficient between the raw signal with the signals
reconstructed by different methods.

Tables 2–4 list the energy error θ, orthogonal index OI, and correlation coefficient of the
decomposition results obtained by different approaches for the simulation data and experimental
signal, respectively. It can be known from Tables 2 and 3 that two evaluation indexes (θ and OI) of our
proposed IAVMD approach are lower than those in four similar approaches (i.e., OVMD, LMD, EMD,
and WT), which implies that our approach is equipped with satisfactory a decomposition performance
in analyzing complicated compound signals compared with other similar methods (i.e., OVMD, LMD,
EMD, and WT). However, it should be pointed out that the computational load of our approach is
greater than those in other methods (i.e., OVMD, LMD, EMD, and WT) because of the waveform
matching and parameter optimization procedure. Besides, OVMD also has a high computation time
including the time cost of two stages (i.e., parameter optimization and signal decomposition). Hence,
with the help of the high-end computing platform and computer technology, the improvement of
the calculation efficiency of the proposed approach is regarded as our following work and research
direction. Besides, as shown in Table 4, the correlation coefficient of our presented approach is greater
than those in four similar approaches, which indicates that our presented approach is equipped with
a lesser reconstruction error and a better decomposition performance compared with some typical
techniques mentioned in the study.

To compare the decomposability of different methods more intuitively and quantify the
time/memory costs of different methods more precisely, we add the percentage differences of the
IAVMD method with respect to the others (OVMD, LMD, EMD, and WT). Tables 5 and 6 list the
percentage differences between the IAVMD and other approaches in the simulation and experiment
signal, respectively. It can be seen from Tables 5 and 6 that the index value (energy error θ and
orthogonal index OI) of the IAVMD method is reduced compared with the other approaches (OVMD,
LMD, EMD, and WT). The smallest percentage difference of IAVMD is about 0.1%, but the largest
percentage difference can reach 9%. This indicates that the proposed IAVMD method has a certain
degree of advantage in signal decomposition. However, at present, the significance of quantification
of this small degree is still undetermined, which is the focus of our future research. Table 7 lists the
memory cost and average time of different methods. Note that the memory cost of different methods
is measured based on the memory usage of the MATLAB file of different methods. As shown in
Table 7, the memory cost of IAVMD is the highest (above 8 Kbyte), the second biggest memory cost
is the OVMD method, and WT has the smallest memory cost (i.e., the average cost is 1.39 Kbyte).
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In addition, the average time costs of our method and OVMD are high (above 25 s), whereas the other
three methods (LMD, EMD, and WT)) have low time costs which are under 4 s.

Table 2. The quantitative comparisons among different approaches in the simulation signal.

Methods
Energy Error θ Orthogonal Index OI Computing Time (s)

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

IAVMD 0.0147 0.0151 0.0045 0.0048 56.7163 43.1932
OVMD 0.0231 0.0209 0.0113 0.0126 32.4437 26.9957
LMD 0.0409 0.0348 0.0304 0.0416 3.5421 3.8951
EMD 0.0992 0.1053 0.0612 0.0585 3.2879 3.0517
WT 0.0394 0.0572 0.0365 0.0403 2.3585 2.7138

Table 3. The quantitative comparisons among different approaches in the experiment signal.

Methods
Energy Error θ Orthogonal Index OI Computing Time (s)

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

IAVMD 0.0209 0.0174 0.0158 0.0034 0.0060 0.0054 32.0132 27.0215 24.9027
OVMD 0.0238 0.0221 0.0253 0.0213 0.0133 0.0228 20.1082 16.8875 15.5641
LMD 0.0273 0.0198 0.0169 0.0672 0.0195 0.0201 1.9617 2.8573 2.9322
EMD 0.0319 0.0295 0.0703 0.0948 0.0602 0.0430 1.7810 2.6301 2.7835
WT 0.0563 0.0702 0.0681 0.0513 0.0303 0.0448 1.3016 1.5158 1.6914

Table 4. The correlation coefficient among different approaches in the simulation and experiment signal.

Methods
Correlation Coefficient of Simulation Correlation Coefficient of Experiment

Case 1 Case 2 Case 1 Case 2 Case 3

IAVMD 1.0000 0.9989 1.0000 0.9999 0.9999
OVMD 0.9996 0.9925 0.9998 0.9992 0.9993
LMD 0.9968 0.9897 0.9838 0.9985 0.9976
EMD 0.9908 0.9888 0.9830 0.9878 0.9901
WT 0.7989 0.8751 0.7291 0.7656 0.8586

Table 5. The percentage differences of the IAVMD with respect to other approaches in the simulation signal.

Method Comparison
Energy Error θ Orthogonal Index OI

Case 1 Case 2 Case 1 Case 2

IAVMD vs. OVMD 0.84% ↓ 0.58% ↓ 0.68% ↓ 0.78% ↓
IAVMD vs. LMD 2.62% ↓ 1.97% ↓ 2.59% ↓ 3.68% ↓
IAVMD vs. EMD 8.45% ↓ 9.02% ↓ 5.67% ↓ 5.37% ↓
IAVMD vs. WT 2.47% ↓ 4.21% ↓ 3.20% ↓ 3.55% ↓

Where ↓ denotes the symbol of the reduced percentage.

Table 6. The percentage differences of the IAVMD with respect to other approaches in the experiment
signal.

Methods
Energy Error θ Orthogonal Index OI

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

IAVMD vs. OVMD 0.29% ↓ 0.47% ↓ 0.95% ↓ 1.79% ↓ 0.73% ↓ 1.74% ↓
IAVMD vs. LMD 0.64% ↓ 0.24% ↓ 0.11% ↓ 6.38% ↓ 1.35% ↓ 1.47% ↓
IAVMD vs. EMD 1.10% ↓ 1.21% ↓ 5.45% ↓ 9.14% ↓ 5.42% ↓ 3.76% ↓
IAVMD vs. WT 3.54% ↓ 5.28% ↓ 5.23% ↓ 4.79% ↓ 2.43% ↓ 3.94% ↓

Where ↓ denotes the symbol of the reduced percentage.
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Table 7. Assessment of the time and memory cost of different approaches.

Methods
Memory of Simulation (KByte) Memory of Experiment (KByte)

Average Time (s)
Case 1 Case 2 Case 1 Case 2 Case 3

IAVMD 8.85 8.87 8.91 8.92 8.91 36.76→High
OVMD 5.46 5.48 5.04 5.03 5.03 28.67→High
LMD 1.93 1.96 1.98 1.97 1.98 3.04→Low
EMD 1.71 1.73 1.75 1.76 1.76 2.27→Low
WT 1.35 1.38 1.41 1.41 1.42 1.92→Low

In a word, by observing the frequency components of the time-frequency representations, we can
find that the IAVMD method can excavate a better and more accurate frequency content compared
with other approaches (OVMD, LMD, EMD, and WT). Besides, through the above quantification,
we can draw the conclusion that the IAVMD method can improve the decomposition precision of the
signal to some extent, but that it also brings about an additional computational cost due to an increased
preparation stage. If one wants to extend the proposed IAVMD method to the practical engineering
application, its time cost needs to be decreased, which is also the focus of our future study.

6. Conclusions

In this article, to solve the shortcoming of the subjective parameter selection and end effect
phenomenon existing in the original VMD, a novel time-frequency analysis tool (i.e., IAVMD) consisting
of waveform matching extension, GWO-based parameter optimization, and TEO demodulation is
presented, which can automatically determine the inside parameters (α̂, K) of VMD and separate
a non-stationary compound signal into a superposition of modes. Several simulated data and
experimental examples are provided to validate the effectiveness of our approach. Studies confirm
that our approach can effectively identify fault features related to rotor early rub-impact, oil-whirl,
and oil-whip. Besides, our proposed method outperforms four available approaches (i.e., OVMD,
LMD, EMD, and WT) in analyzing the non-stationary compound signal with multi-frequency contents.
The novelties and attractions of this paper are as follows:

(1) The concept of waveform matching extension is introduced to alleviate the end effect problem
in the traditional VMD method.

(2) A novel time-frequency analysis algorithm termed as IAVMD is presented, which can avoid
the effective manual parameter selection and improve diagnostic accuracy.

(3) The efficacy of our method is demonstrated through the simulated and experimental data.
Our future direction will focus on extending the proposed method to analyze multi-component

signals in practical applications. Moreover, in our future work, fault diagnosis analyses under variable
speeds will also be investigated by using the presented approach. Finally, in the follow-up work,
the availability of our presented approach will be discussed in detail when strong noise and more
interference are appended to the analyzed vibration signal.
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