Cancer Stem Cell Target Labeling and Efficient Growth Inhibition of CD133 and PD-L1 Monoclonal Antibodies Double Conjugated with Luminescent Rare-Earth Tb3+ Nanorods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TbPO4·H2O@silica-NH2 Nanomaterials
2.3. Conjugation of TbPO4·H2O@silica-NH2 Nanomaterials with CD133 Monoclonal Antibody and PD-L1 Monoclonal Antibody (mAb)
2.4. Characterization of the Obtained Nanocomplex
2.5. Cell Culture
2.6. Observing and Imaging TMC-Nanocomplex-Labeled Cells
2.7. Detecting the TMC-Nanocomplex-Labeled Cells by Flow Cytometry
2.8. TMC Cytotoxicity Determination
2.9. Effective of TMC on the Growth of Tumor Spheroids Co-Cultured with Macrophages
2.10. Statistical Analysis
3. Results
3.1. Characteristics of the Synthesiszed Nanomaterials
3.2. Probing NTERA-2 and CCD-18Co Cells with TMC Nanocomplex
3.3. Effect of TMC on the Proliferation of NTERA-2 and CCD-18Co Cells
3.4. Effect of TMC on NTERA-2 Spheroids
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yu, Z.; Pestell, T.G.; Lisanti, M.P.; Pestell, R.G. Cancer stem cells. Int. J. Biochem. Cell Biol. 2012, 44, 2144–2151. [Google Scholar] [CrossRef] [Green Version]
- Clevers, H. The cancer stem cell: Premises, promises and challenges. Nat. Med. 2011, 17, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Glumac, P.M.; LeBeau, A.M. The role of CD133 in cancer: A concise review. Clin. Transl. Med. 2018, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Barzegar Behrooz, A.; Syahir, A.; Ahmad, S. CD133: Beyond a cancer stem cell biomarker. J. Drug Target. 2019, 27, 257–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruttel, V.S.; Wischhusen, J. Cancer stem cell immunology: Key to understanding tumorigenesis and tumor immune escape? Front. Immunol. 2014, 5, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Chen, W.; Xu, Z.P.; Gu, W. PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition. Front. Immunol. 2019, 10, 2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, K.H.; Chung, H.J.; Park, T.G. Nanomaterials for cancer therapy and imaging. Mol. Cells 2011, 31, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bünzli, J.-C.G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Lien, P.T.; Huong, N.T.; Huong, T.T.; Khuyen, H.T.; Anh, N.T.N.; Van, N.D.; Tuan, N.N.; Nghia, V.X.; Minh, L.Q. Optimization of Tb3+. J. Nanomater. 2019, 2019, 3858439. [Google Scholar]
- Feng, H.-L.; Liu, Y.-Q.; Yang, L.-J.; Bian, X.-C.; Yang, Z.-L.; Gu, B.; Zhang, H.; Wang, C.-J.; Su, X.-L.; Zhao, X.-M. Expression of CD133 correlates with differentiation of human colon cancer cells. Cancer Biol. Ther. 2010, 9, 216–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodi, D.; Ligabue, G.; Cavazzini, F.; Lupo, V.; Cappelli, G.; Magistroni, R. CD133 and CD24 expression in renal tissue of patients affected by autosomal dominant polcystic kidney disease. Stem Cell Discov. 2013, 3, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, P.; Wu, X.; Basu, M.; Rossi, C.; Sandler, A.D. PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease. PLoS Med. 2018, 15, e1002497. [Google Scholar] [CrossRef] [PubMed]
- Teo, R.D.; Termini, J.; Gray, H.B. Lanthanides: Applications in Cancer Diagnosis and Therapy: Miniperspective. J. Med. Chem. 2016, 59, 6012–6024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, Q.M.; Tran, T.H.; Nguyen, T.H.; Hoang, T.K.; Nguyen, T.B.; Do, K.T.; Tran, K.A.; Nguyen, D.H.; Le, T.L.; Nguyen, T.Q. Development of a fluorescent label tool based on lanthanide nanophosphors for viral biomedical application. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 035003. [Google Scholar] [CrossRef] [Green Version]
- Blank, C.; Gajewski, T.F.; Mackensen, A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: Implications for tumor immunotherapy. Cancer Immunol. Immunother. 2005, 54, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Hartley, G.P.; Chow, L.; Ammons, D.T.; Wheat, W.H.; Dow, S.W. Programmed cell death ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Cancer Immunol. Res. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Tan, S.; Chai, Y.; Chen, D.; Song, H.; Zhang, C.W.-H.; Shi, Y.; Liu, J.; Tan, W.; Lyu, J. Structural basis of anti-PD-L1 monoclonal antibody avelumab for tumor therapy. Cell Res. 2017, 27, 151–153. [Google Scholar] [CrossRef] [PubMed]
No. | Samples | Input mAb | Free mAb in Supernatant | CE |
---|---|---|---|---|
1 | TbPO4·H2O@silica-NH2 -CD133 mAb | 40 µg | 0 | 100% |
2 | TbPO4·H2O@silica-NH2-mAb^CD133-mAb^PD-L1 | 40 µg | 8–16 µg | 60–80% |
Samples | % Proliferation | |
---|---|---|
NTERA-2 | CCD-18Co | |
TM (TbPO4·H2O @silica-NH2) | 92.23 ± 3.68 | 93.41 ± 2.19 |
TMC (TbPO4·H2O @silica -NH2 -mAb^CD133-mAb^PD-L1) | 85.88 ± 5.76 | 89.67 ± 4.36 |
CD133-FITC (ThermoFisher) | 87.63 ± 7.08 | 90.33 ± 2.41 |
Negative control | 100 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, T.T.; Le, N.M.; Vo, T.N.; Nguyen, T.N.; Tran, T.H.; Phung, T.K.H. Cancer Stem Cell Target Labeling and Efficient Growth Inhibition of CD133 and PD-L1 Monoclonal Antibodies Double Conjugated with Luminescent Rare-Earth Tb3+ Nanorods. Appl. Sci. 2020, 10, 1710. https://doi.org/10.3390/app10051710
Do TT, Le NM, Vo TN, Nguyen TN, Tran TH, Phung TKH. Cancer Stem Cell Target Labeling and Efficient Growth Inhibition of CD133 and PD-L1 Monoclonal Antibodies Double Conjugated with Luminescent Rare-Earth Tb3+ Nanorods. Applied Sciences. 2020; 10(5):1710. https://doi.org/10.3390/app10051710
Chicago/Turabian StyleDo, Thi Thao, Nhat Minh Le, Trong Nhan Vo, Thi Nga Nguyen, Thu Huong Tran, and Thi Kim Hue Phung. 2020. "Cancer Stem Cell Target Labeling and Efficient Growth Inhibition of CD133 and PD-L1 Monoclonal Antibodies Double Conjugated with Luminescent Rare-Earth Tb3+ Nanorods" Applied Sciences 10, no. 5: 1710. https://doi.org/10.3390/app10051710
APA StyleDo, T. T., Le, N. M., Vo, T. N., Nguyen, T. N., Tran, T. H., & Phung, T. K. H. (2020). Cancer Stem Cell Target Labeling and Efficient Growth Inhibition of CD133 and PD-L1 Monoclonal Antibodies Double Conjugated with Luminescent Rare-Earth Tb3+ Nanorods. Applied Sciences, 10(5), 1710. https://doi.org/10.3390/app10051710