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Abstract: Unmanned Aerial Vehicle (UAV) spray has been used for efficient and adaptive pesticide
applications with its low costs. However, droplet drift is the main problem for UAV spray and will
induce pesticide waste and safety concerns. Droplet size and deposition distribution are both highly
related to droplet drift and spray effect, which are determined by the nozzle. Therefore, it is necessary
to propose an evaluating method for a specific UAV spray nozzles. In this paper, four machine learning
methods (REGRESS, least squares support vector machines (LS-SVM), extreme learning machine, and
radial basis function neural network (RBFNN)) were applied for quantitatively evaluating one type of
UAV spray nozzle (TEEJET XR110015VS), and the case of twin nozzles was investigated. The results
showed REGRESS and LS-SVM are good candidates for droplet size evaluation with the coefficient
of determination in the calibration set above 0.9 and root means square errors of the prediction set
around 2 µm. RBFNN achieved the best performance for the evaluation of deposition distribution
and showed its potential for determining the droplet size of overlapping area. Overall, this study
proved the accuracy and efficiency of using the machine learning method for UAV spray nozzle
evaluation. Additionally, the study demonstrated the feasibility of using machine learning model to
predict the droplet size in the overlapping area of twin nozzles.

Keywords: UAV spray nozzle; spray characteristics; machine learning; quantitative modeling

1. Introduction

Comparing with other pesticide applicators, unmanned aerial vehicles (UAV) can achieve accurate
and specific management with its low costs, high efficiency, and mobility [1,2]. UAV crop protection
has the characteristics of strong field adaptability and controllable flight parameters, which can be
suitable for different crop planting areas [3]. However, UAV spray will produce droplet drift when
downwind movement of airborne spray occurs, and a fraction of the dosage does not reach the target
area [4,5]. Safety questions and pesticide waste induced by spray drift are the main problems in the
UAV spray field [6]. When pesticides drift out of the operation area, it will cause people nearby to
have diseases like cancers and allergies [7].

Droplet size is one of the most important characteristic parameters for spray and highly related
to spray drift, especially the percentage of fine droplets [4]. The pest control efficiency, on-target
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deposition, and spray losses are all influenced by droplet size [8]. It is also very important to
quantitatively analyze the droplet size distribution for studying the trajectory of the droplet and
interaction between droplet and plant target interface [9]. Volume medium diameter (VMD) is one
of the most commonly used parameters of the collection of droplets. The volume of all droplets
are accumulated from small to large during spraying, VMD corresponds to droplet diameter when
the droplet volume equals 50% of the total droplet [10]. Droplet deposition uniformity is also an
important aspect of spray characterization [11]. In order to achieve effective diseases and pests control,
researchers used many methods to measure the deposition during UAV spraying [12].

The nozzle is the most critical component of pesticide spray technology, which determines the
droplet size and deposition distribution [13]. Zhou et al. [14] found that choosing the right nozzle to
atomize the droplets with the right size can significantly reduce the drift. Creech et al. [15] found
that nozzle type had the most evident effect on the droplet size of the herbicide spray compared with
orifice size, herbicide active ingredient, pressure, and carrier volume. Guler et al. [16] studied the
droplet deposition uniformity of different nozzles and found the condition of achieving the same spray
characteristics of air induction nozzles with a conventional nozzle. Thus, it is of great significance to
analyze and evaluate the droplet size and deposition distribution of nozzles.

In recent years, researchers have carried out the analysis and modeling of the nozzle’s droplet size
and deposition distribution. Oh et al. [17] developed a three-dimensional Lagrangian model to simulate
the deposition patterns produced by twin-nozzle electrospray. Kang et al. [18] established droplet
size models for two brands of nozzles, and the two models showed a high degree of confidence after
validated by the actual test method. Wang et al. [19] studied the droplets deposition distribution by UAV
spraying in the wind tunnel and obtained a prediction model. Hong et al. [20] developed an integrated
computational fluid dynamics (CFD) model to predict deposition from air-assisted sprayer onto the
tree canopies and demonstrated the ability of this model to evaluate spray application performance.

Machine learning is a branch of artificial intelligence, which can reduce the burden of computing
and accelerate the modeling process. It reduces the complexity and improves the performance compared
with the physical model [21]. Machine learning methods have been widely used in agriculture, energy
engineering, biomedicine, and other fields [22–24]. As one kind of machine learning model, artificial
neural network model can be well trained and proved to be an alternative numerical simulation
technology of CFD under the spray cooling condition [25]. Junior et al. [26] proposed a new approach
based on machine learning of the deposition prediction in real time and proved its feasibility. Taghavifar
et al. [27] established a prediction model of diesel engine spray characteristics based on artificial neural
network and artificial neural network-genetic algorithm; artificial neural network-genetic algorithm
showed a better result for modeling.

As far as we know, machine learning methods haven’t been widely investigated in quantitative
modeling of the atomization performance of nozzle used for UAV spray. Furthermore, the mean
diameter of the multi-nozzle will increase after droplet collision, and the shape of size distribution will
also be changed [28]. Thus, the droplet size and deposition distribution in the overlapping area of
multi-nozzle spray should be investigated. TEEJET XR 110,015 pressure flat fan-shaped nozzle has
been widely used in aerial spray [29–31]. In this study, we took TEEJET XR110015VS nozzle as the
object and aimed to explore the reliability of using the machine learning method to quantitatively
evaluate droplet size and deposition distribution for TEEJET XR110015VS nozzle and twin nozzles
condition. The specific objectives were as follows: (1) to establish evaluation model of VMD for
TEEJET XR110015VS nozzle using machine learning method; (2) to establish evaluation models of VMD
and deposition distribution for twin nozzles condition; (3) explore the feasibility of using machine
learning to predict VMD in the overlapping area of twin nozzles by VMD evaluation model of TEEJET
XR110015VS nozzle. Overall, this study was the first time to apply machine learning methods to the
quantitative evaluation of the droplet size of the UAV spray nozzle, and the reliability of these methods
was proved. Additionally, it was also the first time to investigate atomization performance under
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twin nozzles condition and predict the droplet size in the overlapping area of twin nozzles by using
machine learning methods.

2. Materials and Methods

2.1. Spray System

Two spray systems for the experiment were designed as shown in Figure 1.
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Figure 1. Two spray systems for the experiment. (a) The spray system for TEEJET XR110015VS nozzle; 
(b) The spray system for the twin nozzles. Arduino (1), electronic speed control (2), three-phase pump 
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Two spraying systems consisted of the spray part and the electronic part. The spray part was 
made up of a three-phase back-flow diaphragm with brushless water pump (Effort tech, Hefei, China, 
brushless water pump), extended range pressure flat fan-shaped nozzle (TEEJET, USA, XR110015VS), 
spray tank (10 L), pressure gauge (Chenyi Instrument, Shanghai, China, Shockproof pressure gauge) 
and support frame. Arduino (Arduino UNO R3), electronic speed control (15 A, 3 S), and battery (12 
V, 3 S) formed the electronic part. 

The pressure range of the water pump was 0–0.48 MPa, which can definitely meet the needs of 
this experiment (0.2 MPa) and easily controlled by the electronic part. The nozzle selected in this 
experiment (TEEJET XR110015VS) was most commonly used in UAV spraying, it had excellent spray 
distribution over a wide range of pressures. As shown in Figure 2, The nozzle was mainly composed 
of the tip insert and tip insert holder. The nozzle could achieve fan-shaped mist spray with a 110° 
spray angle; it had well spray coverage in high pressure and could be used to reduce the drift in low 
pressure. A pressure gauge was used to determine that the pressure of spray system was at the set 
value (0.2 MPa) through experiment. The function of the support frame was to change the spray 
height of nozzles from 1 m to 2 m and supporting the whole system. 

 
Figure 2. Cross section view and top view of TEEJET XR110015VS nozzle. 

Arduino can provide pulse width modulation (PWM) signal from Pin3 for the experiment with 
stable and reliable performance when the experiment was operated in two different settings. The 
Timer2 function of Arduino was used to set the PWM signal and defined the output pin. Electronic 
speed control could receive the PWM signal from the Arduino and controlled the voltage of the 
brushless pump, providing 5 V power for Arduino. Battery supplied the required voltage (12 V) 
needed for these two systems. 

Figure 1. Two spray systems for the experiment. (a) The spray system for TEEJET XR110015VS nozzle;
(b) The spray system for the twin nozzles. Arduino (1), electronic speed control (2), three-phase pump
(3), pressure gauge (4), spray tank (5), nozzle (6), support frame (7), battery (8)

Two spraying systems consisted of the spray part and the electronic part. The spray part was
made up of a three-phase back-flow diaphragm with brushless water pump (Effort tech, Hefei, China,
brushless water pump), extended range pressure flat fan-shaped nozzle (TEEJET, USA, XR110015VS),
spray tank (10 L), pressure gauge (Chenyi Instrument, Shanghai, China, Shockproof pressure gauge)
and support frame. Arduino (Arduino UNO R3), electronic speed control (15 A, 3 S), and battery (12 V,
3 S) formed the electronic part.

The pressure range of the water pump was 0–0.48 MPa, which can definitely meet the needs of
this experiment (0.2 MPa) and easily controlled by the electronic part. The nozzle selected in this
experiment (TEEJET XR110015VS) was most commonly used in UAV spraying, it had excellent spray
distribution over a wide range of pressures. As shown in Figure 2, The nozzle was mainly composed
of the tip insert and tip insert holder. The nozzle could achieve fan-shaped mist spray with a 110◦

spray angle; it had well spray coverage in high pressure and could be used to reduce the drift in low
pressure. A pressure gauge was used to determine that the pressure of spray system was at the set
value (0.2 MPa) through experiment. The function of the support frame was to change the spray height
of nozzles from 1 m to 2 m and supporting the whole system.
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Arduino can provide pulse width modulation (PWM) signal from Pin3 for the experiment with
stable and reliable performance when the experiment was operated in two different settings. The
Timer2 function of Arduino was used to set the PWM signal and defined the output pin. Electronic
speed control could receive the PWM signal from the Arduino and controlled the voltage of the
brushless pump, providing 5 V power for Arduino. Battery supplied the required voltage (12 V)
needed for these two systems.

2.2. Equipment and Data Collection Methods

The particle size of the droplets produced by the nozzle and the deposition distribution were
two main parameters in this study, the water was used instead of pesticide. The experiment was
conducted under the pressure of 0.2 MPa with the environmental temperature at 25 ± 2 ◦C and the
relative humidity of 55 ± 5%. Spray particle size analyzer (NKT Analysis Instrument, Shandong,
China, PW180-B) was used to measure the droplet size, the measurement range was 1–1000 µm and
the repeatability error was kept within 1%. According to the commonly used UAV spraying flight
attitude, spray heights were set to 1 m, 1.5 m, and 2 m.

As shown in Figure 3, the deposition was measured by several 100 mL measuring cylinders, the
center of the upper surface of each measuring cylinder was the position of each measuring point. The
experiment put measuring cylinders along the centerline, the time for collecting was 5 min, and the
collection repeated for three times. Since the external diameter of the100 mL measuring cylinder was
65 mm (the distance between the centers of two adjacent measuring cylinders is the same as the value
of external diameter), we set the distance between each measuring point at the same spray height as
65 mm. the inner diameter of measuring cylinder was 27 mm, and we can get the area of spray for
each measuring cylinder, the conversion formula of measured volume and deposition was obtained
as follows:

βdep =
V

0.25πd2 (1)

where βdep is the deposition (mL/cm2), V is the measured volume (mL), d is the inner diameter of the
measuring cylinder (cm).
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Figure 3. Schematic diagram of droplet size and deposition distribution measuring x, vertical axis; y,
horizontal position; h, spray height.

The droplet size was measured by passing the laser of particle size analyzer through the measuring
point accordingly, and vertically, each experiment collected 60 data of the same measuring point as a
group and every test repeated for three times, 60 data were averaged as one measuring value for one
measuring point.

The 50% effective deposition determination method was used to determine the spray span of
TEEJET XR110015VS nozzle [32]. According to the ASAE standard S341.3, the two-point distance
between half of the maximum deposition on both sides was defined as the effective spray span. The
deposition was measured in 29 horizontal positions (14 different measuring point on both sizes and
one center point) at each height, the measuring cylinders were placed along the center line just as
shown in Figure 3, every test was repeated for three times. After this experiment, the spray spans were
determined for each height, 1040 mm for 1 m, 1300 mm for 1.5 m, and 1430 mm for 2 m accordingly.
The spray span showed symmetry along the spray height direction (axis x).



Appl. Sci. 2020, 10, 1759 5 of 16

According to preliminary experiment, the spray height remained the sets before (1 m, 1.5 m
and 2 m), the measuring points were set along the horizontal line and the interval is 65 mm, the
maximum horizontal position were set to ±520 mm, ±650 mm and ±715 mm for each spray height.
Additionally, we selected three most commonly used spacing of nozzles in UAV spraying for twin
nozzles experiment (0.5 m, 0.6 m, and 0.7 m).

The distribution diagram of measuring points was shown in Figure 4, the VMD values and
deposition values obtained from these measuring points were shown in Table 1. As shown in Figure 4a,
the first experiment was to measure the droplet size at each measuring point of the single nozzle, the
study took the center of the nozzle as the zero point of the y-axis and collected data of all measuring
points within the maximum horizontal position on both sides, group A in Table 1 represents the VMD
values obtained by this experiment. In the second experiment (Figure 4b), different position and
nozzle spacing were tested in the second experiment, and the VMD values and deposition values were
obtained, the zero points of z-axis was at midpoint of the two nozzles, the measuring points were
mainly composed of the overlapping area points, points out of the overlapping area and between
the vertical lines of two nozzles (red measuring points) were also included, group B and group C in
Table 1 represented the VMD values and deposition values obtained by the second experiment. The
measuring points of overlapping area were shown in Figure 4c, group D in Table 1 represented the
VMD values obtained in this area. Group A, B, C, and D represented the data in Sections 3.1–3.4.
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Figure 4. Distribution diagram of measuring points (a) experiment for single nozzle (x, spray height,
mm; y, horizontal position, mm); (b) experiment for twin nozzles (x, spray height, mm; y, nozzle
spacing, m; z, horizontal position, mm); (c) measuring points of overlapping area for twin nozzles
condition (x, spray height, mm; y, nozzle spacing, m; z, horizontal position, mm).

Table 2 shows the result of the mean values, standard deviation, and significant difference for
VMD values and deposition values under different spray heights and nozzle spacing. From the saliency
analysis, the VMD values in group A showed a significant difference under different spray height. For
group B, C and D, the VMD values and deposition values showed significant difference under different
nozzle spacing and spray height. On the whole, different experimental conditions in this study can
change the droplet size and deposition of the UAV spray nozzle (TEEJET XR110015VS).
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Table 1. Measured values of volume medium diameter (VMD) and deposition.

Calibration Set Prediction Set
Groups Sum Range Mean S.D. Sum Range Mean S.D.

A 46 151.26–182.19 165.25 8.13 15 150.53–172.00 163.09 5.64
B 72 154.20–183.00 170.99 7.08 24 156.23–182.30 170.79 7.06
C 72 1.0829–3.2137 1.9144 0.4711 24 1.1818–3.1031 1.8962 0.4609
D 66 154.20–183.82 171.15 7.49 22 156.23–182.74 170.95 7.44

Group A means the group for measured volume medium diameter (VMD) values of the single nozzle (µm); Group B
represents all measured volume medium diameter (VMD) values of twin nozzles (µm); Group C represents measured
deposition values of twin nozzles (mL/cm2); Group D represents overlapping measured volume medium diameter
(VMD) values of twin nozzles (µm). “S.D.” means standard deviation.

Table 2. The mean values, standard deviation, and significant difference for all groups under different
experimental conditions.

Groups
Spray Height

Nozzle Spacing 1 m 1.5 m 2 m

A \ 158.21 ± 5.30 µm c 162.58 ± 5.24 µm b 171.48 ± 5.65 µm a

B
0.5 m 161.15 ± 4.96 µm d 171.33 ± 6.85 µm c 173.12 ± 7.02 µm b

0.6 m 163.03 ± 4.92 µm d 172.98 ± 3.97 µm b 178.55 ± 2.97 µm a

0.7 m 167.87 ± 4.00 µm c 168.71 ± 3.96 µm c 178.48 ± 3.99 µm a

C
0.5 m 2.8265 ± 0.2591 mL/cm2 a 1.9069 ± 0.1819 mL/cm2 c 1.6924 ± 0.2573 mL/cm2 d

0.6 m 2.6962 ± 0.3879 mL/cm2 a 1.8879 ± 0.2492 mL/cm2 d 1.5997 ± 0.2267 mL/cm2 d

0.7 m 2.1961 ± 0.2630 mL/cm2 b 1.6391 ± 0.1728 mL/cm2 d 1.5222 ± 0.1721 mL/cm2 d

D
0.5 m 161.15 ± 4.96 µm d 171.33 ± 6.85 µm c 172.17 ± 6.40 µm b

0.6 m 161.72 ± 4.76 µm d 172.98 ± 3.97 µm b 178.56 ± 2.97 µm a

0.7 m 165.59 ± 3.91 µm d 167.72 ± 3.63 µm c 178.37 ± 3.46 µm a

The data type is mean values ± standard deviation; the same letter note indicates no significant difference at the
p = 0.05 significant level, different letters indicate significant differences at p = 0.05 significant level.

2.3. Machine Learning Methods

Regress function achieved by MATLAB is an orthogonal least squares method for multiple linear
regression; it has been applied in the fields of meteorology, economics [33–35]. The least-square
algorithm is used in the REGRESS function. Furthermore, REGRESS divides the residuals of observed
values of y by an estimate of their standard deviation. The obtained values present t-distributions
under a certain degree of freedom. The intervals returned in this function are shifts of the confidence
intervals of these t-distributions and centered at the residuals [36]. The F statistic is used to evaluate
the significance of the model, the significance level is set to 0.05, and the confidence interval of the
coefficient estimation value is set to 95% in this study.

Support vector machine (SVM) is a widely used modeling method, but problems like large
workload and long training time occur when this method being used in large size sample. Least
squares support vector machines (LS-SVM) can solve these problems with its high efficiency [37]. It is
a support vector machine version that involves equality constraints and works with a least-squares
cost function [38]. LS-SVM regression used in this study is highly related to regularization
networks, Gaussian processes, and reproducing kernel Hilbert spaces, emphasizing the primal-dual
interpretations of constrained optimization problems [39]. LS-SVM can solve small-sample, nonlinear,
and high-dimensional problems, and the selection of kernel function will affect the final result [40].
Kernel functions are important in SVM with its ability to transform original data from low dimension
space to high dimension space. We used the LS-SVM method and chose the radial basis function (RBF)
as the kernel function in this study. The penalty coefficient and bandwidth of the RBF (γ) kernel must
be determined for better performance.

Extreme learning machine (ELM) is a feedforward neural network and has an extremely fast
learning speed with a single hidden layer; it can be easily used to many applications by only setting
the number of neurons in the hidden layer. It shows the advantage of generalization comparing with
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most gradient-based learning methods and simpler than neural networks learning algorithms in most
cases [41]. ELM was extended from the SLFNs (single-hidden layer feedforward neural networks)
with additive or RBF hidden nodes to SLFNs with a wide variety of hidden nodes [42]. It includes
an input layer, hidden layer, and output layer, input weights link the input layer to the hidden layer,
and output weights link the hidden layer to the output layer. Input weights and hidden biases are
randomly chosen, Moore-Penrose generalized inverse is used to determine the output weights [43].
ELM shows faster learning speed than SVM and tends to be more suitable in applications request speed
and capability, it also can be applied to nonlinear modeling with its strong nonlinear learning ability.

Radial basis function neural network (RBFNN) is a three-layer feedforward neural network that
includes an input layer, a hidden layer and an output layer, taking radial basis function (RBF) as
the kernel function. Because of its fast training speed and strong generalization ability, it has been
widely used in discrimination and regression analysis [44]. The input layer connected with the external
environment and consists of several perception neurons. Due to the output characteristics, there is
only one hidden layer in the RBFNN, the hidden layer comprises some hidden nodes. The output
layer comprises of some output nodes and acts as a responder for the input layer [45]. RBFNN
creates complex decision regions by utilizing overlapping localized regions comprise of simple kernel
functions [46]. There are two steps to accomplish the learning procedure of RBFNN, training of the
kernel functions centers by using a clustering procedure, and calculating output weights by solving a
system of linear equations [47]. The RBF kernels used in this study directly rely on the computation of
the relevant distances and reduce the complexity of training. For operating RBFNN on MATLAB, we
must determine the best spread coefficient.

2.4. Performance Evaluation

The performance of quantitative models for droplet size and deposition distribution was evaluated
by the coefficient of determination (R2), root means square error (RMSE). R2 is also called the multiple
correlation coefficient and defined as the proportion of variance explained by the regression model.
This definition makes it a measure of success of predicting the dependent variable from the independent
variables [48]. Rc2 and Rp2 are coefficients of determination in calibration set and prediction set,
respectively, indicating the accuracy of the calibration and prediction models. The error was measured
by RMSE, which included root mean square error of validation (RMSEV) and root mean square error of
prediction (RMSEP). Smaller RMSE represents a better performance and higher accuracy of the model.
The calculation process of these parameters is written below:

R2 =


∑N

i=1

(
ŷi − ŷ

)
(yi − y)√∑N

i=1

(
ŷi − ŷ

)2
(yi − y)2


2

(2)

RMSE =

√∑N
i=1(yi − ŷi)

2

N − 1
(3)

where yi and ŷi are the reference and prediction values of measuring point i, y and ŷ are the average of
reference and prediction values, N is the number of measuring points.

3. Results

3.1. Evaluation of Droplet Size for TEEJET XR110015VS Nozzle

The volume medium diameter (VMD) distribution was shown in Figure 5; standard deviations
were labeled as error bars; the VMD values of XR110015VS nozzle were increased with the horizontal
position and spray height. For the same spray height, when the absolute value of the horizontal
position was greater than 26, the tendency of increase for droplet size along the direction became
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more obvious. The influence of height on droplet size is less than that of horizontal position. This
distribution indicated that the proportion of small droplets decreases with the increasing distance of
measuring point and nozzle.
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According to the Jet theory in the cross-flow environment, the droplet sector spreading with the
increase of spray height, more and more small droplets drift away from the spray fan with the velocity
of droplet and entrainment air flow attenuates, resulting in the overall increase of VMD. Because of the
porous media structure of droplet sector, the entrainment of airflow and the velocity distribution of
small droplets, transverse airstream will invade the two flanks of the droplet sector, producing forces
on small droplets and blow the droplets off the spray fan, leading to the increase of VMD at the edge of
horizontal position.

Quantitative evaluation models based on REGRESS, LS-SVM, ELM, and RBFNN were built to
quantify the relationship between spray height, horizontal position, and the droplet size of the nozzle.
The number of the calibration set and prediction set was 46 and 15, respectively, with a scale of 3:1. The
results of the different models are shown in Table 3. Models based on REGRESS, LS-SVM, and RBFNN
all had good modeling performance, with Rc2 values above 0.92 and RMSEP within 2 µm, indicating
these models were capable of predicting VMD values. At the significant level α = 0.05, the F value of
70.2383 was greater than its corresponding critical value, showing the accuracy and robustness of the
model based on REGRESS. However, ELM performed bad; the results of the calibration and prediction
were worse than the other three models. In the study, we used the model obtained by the REGRESS
method to express the VMD distribution. The formula was as follows:

z = 147.3650 + 15.5766x + 0.0661y− 17.0732x2
− 0.0776x·y + 0.0073y2 + 7.001x3 + 0.0222x2

·y− 0.0022x·y2 (4)

where x stands for spray height (m), y stands for the horizontal position (cm), and z stands for VMD
(µm) (four decimal places are reserved for each coefficient).

Table 3. Results of VMD modeling for TEEJET XR110015VS nozzle.

Model Parameter [a]
Accuracy of Calibration Set Accuracy of Prediction Set

RC
2 RMSEC (µm) RP

2 RMSEP(µm)

REGRESS 3 0.9382 2.2011 0.9201 1.9761
LS-SVM (24.169, 2.445 × 104) 0.9378 2.2026 0.9201 1.8939

ELM 9 0.7413 4.1362 0.6795 3.8519
RBFNN 763 0.9395 1.9960 0.9253 1.9183

Parameters of different models: the highest degree of the polynomial for REGRESS, the bandwidth of kernel function
(sig2), and the trade-off between minimum model complexity and minimum training error(gam) for LS-SVM, the
number of hidden nodes for ELM, the spreading coefficient for RBFNN.



Appl. Sci. 2020, 10, 1759 9 of 16

3.2. Evaluation of Droplet Size for Twin Nozzles Condition

The REGRESS, LS-SVM, ELM, and RBFNN models were built using spray heights, nozzle spacing,
and horizontal positions for quantitatively evaluating the VMD distribution of twin nozzles. The
numbers of calibration sets and prediction sets were 72 and 24, respectively with a scale of 3:1. Table 4
shows the results of quantitative models based on four different methods. The scatter plot of measured
values vs. predicted values of twin nozzles are shown in Figure 6. The result of REGRESS model
was almost the same as the LS-SVM model and showed the best performance, with Rc2 and Rp2 both
above 0.9. The F value of 36.8578 was greater than its corresponding critical value, indicating the
effectiveness of REGRESS. ELM performed with a Rc2 value of 0.8727, and RMSEP of 3.5839 µm,
RBFNN with an Rc2 value of 0.8667 and RMSEP of 3.3721 µm, both worse than models based on
REGRESS and LS-SVM, indicating these two methods were not suitable for VMD prediction. As for the
REGRESS model, the study also found that increasing the order of polynomials can improve the Rc2

but significantly reduced the accuracy of prediction set; a better result could be obtained by Quartic
polynomial regressing with fewer terms and coefficients. LS-SVM had better performance with Rc2

and relatively small RMSEP, while quartic polynomial based on the REGRESS model was the best to
express the relationship between the independent variable and dependent variable in a simpler way
with formula and cured surface graphs.

Table 4. Results of VMD modeling for the twin nozzle condition.

Model Parameter [a]
Accuracy of Calibration Set Accuracy of Prediction Set

RC
2 RMSEC (µm) Rp

2 RMSEP(µm)

REGRESS 4 0.9206 1.9949 0.9204 2.0602
LS-SVM (7.159, 1.490 × 106) 0.9382 1.7634 0.9154 2.2450

ELM 36 0.8727 2.5271 0.7602 3.5839
RBFNN 130 0.8667 2.5843 0.7850 3.3721

Parameters of different models: the highest degree of the polynomial for REGRESS, the bandwidth of kernel function
(sig2), and the trade-off between minimum model complexity and minimum training error(gam) for LS-SVM, the
number of hidden nodes for ELM, the spreading coefficient for RBFNN.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 16 

Table 3. Results of VMD modeling for TEEJET XR110015VS nozzle. 

Model Parameter [a] 
Accuracy of Calibration 

Set Accuracy of Prediction Set 

RC2 RMSEC (μm) RP2 RMSEP(μm) 
REGRESS 3 0.9382 2.2011 0.9201 1.9761 
LS-SVM (24.169, 2.445 × 104) 0.9378 2.2026 0.9201 1.8939 

ELM 9 0.7413 4.1362 0.6795 3.8519 
RBFNN 763 0.9395 1.9960 0.9253 1.9183 
Parameters of different models: the highest degree of the polynomial for REGRESS, the bandwidth of 
kernel function (sig2), and the trade-off between minimum model complexity and minimum training 
error(gam) for LS-SVM, the number of hidden nodes for ELM, the spreading coefficient for RBFNN. 

3.2. Evaluation of Droplet Size for Twin Nozzles Condition 

The REGRESS, LS-SVM, ELM, and RBFNN models were built using spray heights, nozzle 
spacing, and horizontal positions for quantitatively evaluating the VMD distribution of twin nozzles. 
The numbers of calibration sets and prediction sets were 72 and 24, respectively with a scale of 3:1. 
Table 4 shows the results of quantitative models based on four different methods. The scatter plot of 
measured values vs. predicted values of twin nozzles are shown in Figure 6. The result of REGRESS 
model was almost the same as the LS-SVM model and showed the best performance, with Rc2 and 
Rp2 both above 0.9. The F value of 36.8578 was greater than its corresponding critical value, indicating 
the effectiveness of REGRESS. ELM performed with a Rc2 value of 0.8727, and RMSEP of 3.5839 µm, 
RBFNN with an Rc2 value of 0.8667 and RMSEP of 3.3721 µm, both worse than models based on 
REGRESS and LS-SVM, indicating these two methods were not suitable for VMD prediction. As for 
the REGRESS model, the study also found that increasing the order of polynomials can improve the 
Rc2 but significantly reduced the accuracy of prediction set; a better result could be obtained by 
Quartic polynomial regressing with fewer terms and coefficients. LS-SVM had better performance 
with Rc2 and relatively small RMSEP, while quartic polynomial based on the REGRESS model was 
the best to express the relationship between the independent variable and dependent variable in a 
simpler way with formula and cured surface graphs. 

Table 4. Results of VMD modeling for the twin nozzle condition. 

Model Parameter [a] 
Accuracy of Calibration Set Accuracy of Prediction Set 

RC2 RMSEC (μm) Rp2 RMSEP(μm) 
REGRESS 4 0.9206 1.9949 0.9204 2.0602 
LS-SVM (7.159, 1.490 × 106) 0.9382 1.7634 0.9154 2.2450 

ELM 36 0.8727 2.5271 0.7602 3.5839 
RBFNN 130 0.8667 2.5843 0.7850 3.3721 

Parameters of different models: the highest degree of the polynomial for REGRESS, the bandwidth of 
kernel function (sig2), and the trade-off between minimum model complexity and minimum training 
error(gam) for LS-SVM, the number of hidden nodes for ELM, the spreading coefficient for RBFNN. 

 
(a) 

 
(b) 

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 16 

 
(c) 

 
(d) 

Figure 6. Scatter plot of the measured VMD values vs. the predicted VMD values of twin nozzles. (a) 
REGRESS; (b) LS-SVM; (c) ELM; (d) RBFNN. 

We used the quantitative evaluation model based on the regress function to express the formula 
and visualize the VMD distribution of the twin nozzle, the formula was as follows: y = 127.4970 − 5.6276xଵସ + ଶସݔ154.6896 − 1.0552 ൈ 10ିହݔଷସ − +ଷݔଶݔଵݔ0.1914 ଷݔଶݔ4.1692 − ଷݔଵݔ0.8158 + ଶݔଵݔ57.0344 − −ଶଶݔଵݔ450.9652 ଷଶݔଵݔ0.0019 − ଷଶݔଶݔ0.0438 + ଵଶݔଶݔ163.9057 + −ଵଶݔଷݔ0.2832 ଶଶݔଷݔ3.5307 − ଵଶݔ22.5764 + ଶଶݔ191.8288 + ଷଶݔ0.0505 −  ଷݔ0.4886

(5)

x1 stands for spray height (m), x2 stands for nozzle spacing (m), x3 stands for horizontal position (cm) and y 
stands for VMD (µm). (four decimal places are reserved for each coefficient). 

As shown in Figure 7, the quantitatively modeling result of VMD for the twin nozzles condition 
using REGRESS was presented visually. In Figure 7a–c, referring to the relationships between 
horizontal position, nozzle spacing, and VMD, VMD gradually increased when the measuring point 
is approaching the bottom of the two nozzles (the edge of two spray fans), presenting symmetrical 
distribution at the same height. Furthermore, VMD of measuring points near the middle of two 
nozzles increased evidently with the nozzle spacing. Figure 7d–f showed the relationships between 
horizontal position, spray height, and VMD. VMD increased with the relative horizontal position and 
the spray height. The divergence of VMD values along the horizontal direction decreased with the 
nozzle spacing. These results indicated the difference of droplet size distribution for a single nozzle 
would cause uneven droplet size distribution after the spray fans were overlapped. 

 
(a) 

 
(b) 

Figure 6. Scatter plot of the measured VMD values vs. the predicted VMD values of twin nozzles.
(a) REGRESS; (b) LS-SVM; (c) ELM; (d) RBFNN.



Appl. Sci. 2020, 10, 1759 10 of 16

We used the quantitative evaluation model based on the regress function to express the formula
and visualize the VMD distribution of the twin nozzle, the formula was as follows:

y = 127.4970−5.6276x1
4 + 154.6896x2

4
− 1.0552× 10−5x3

4
− 0.1914x1x2x3

+4.1692x2x3 − 0.8158x1x3 + 57.0344x1x2 − 450.9652x1x2
2

−0.0019x1x3
2
− 0.0438x2x3

2 + 163.9057x2x1
2 + 0.2832x3x1

2

−3.5307x3x2
2
− 22.5764x1

2 + 191.8288x2
2 + 0.0505x3

2
− 0.4886x3

(5)

x1 stands for spray height (m), x2 stands for nozzle spacing (m), x3 stands for horizontal position
(cm) and y stands for VMD (µm). (four decimal places are reserved for each coefficient).

As shown in Figure 7, the quantitatively modeling result of VMD for the twin nozzles condition
using REGRESS was presented visually. In Figure 7a–c, referring to the relationships between horizontal
position, nozzle spacing, and VMD, VMD gradually increased when the measuring point is approaching
the bottom of the two nozzles (the edge of two spray fans), presenting symmetrical distribution at
the same height. Furthermore, VMD of measuring points near the middle of two nozzles increased
evidently with the nozzle spacing. Figure 7d–f showed the relationships between horizontal position,
spray height, and VMD. VMD increased with the relative horizontal position and the spray height. The
divergence of VMD values along the horizontal direction decreased with the nozzle spacing. These
results indicated the difference of droplet size distribution for a single nozzle would cause uneven
droplet size distribution after the spray fans were overlapped.

3.3. Evaluation of Deposition Distribution for Twin Nozzles Condition

For quantitatively evaluating the deposition distribution of twin nozzles, the REGRESS, LS-SVM,
ELM, and RBFNN models were built using spray heights, nozzle spacing, and horizontal positions.
Numbers of the calibration sets and prediction sets were 72 and 24, respectively with a scale of 3:1.
The results of the quantitative models are shown in Table 5, and the scatter plot of measured values
vs. predicted values of deposition distribution for twin nozzles condition are shown in Figure 8.
Performances obtained by LS-SVM and RBFNN methods were both better than models based on
REGRESS and ELM, achieving relatively higher accuracy of prediction set. The RMSEP value of
RBFNN was smaller than LS-SVM, indicating RBFNN was the best method for deposition distribution
quantitative modeling. REGRESS with a Rc2 value of 0.8923 and RMSEP of 0.2525 mL/cm2 showed the
feasibility of the deposition distribution prediction. The overfitting and terms of uncertainty problems
also occurred when the order of the polynomial regression based on REGRESS was increasing. ELM
models did not achieve expected performance with an Rc2 value of 0.7830 and RMSEP of 0.2919 mL/cm2

compared with other methods. The results showed that the deposition distribution could be accurately
evaluated by nozzle spacing and spatial position of the nozzle using machine learning methods.

Table 5. Results of deposition modeling for twin nozzles condition.

Model Parameter [a]
Accuracy of Calibration Set Accuracy of Prediction Set

RC
2 RMSEC (mL/cm2) Rp

2 RMSEP (mL/cm2)

REGRESS 3 0.8923 0.1546 0.7319 0.2525
LS-SVM (2.664, 314.218) 0.8926 0.1547 0.7646 0.2291

ELM 18 0.7830 0.2194 0.6131 0.2919
RBFNN 358 0.8806 0.1628 0.7994 0.2183

Parameters of different models: the highest degree of the polynomial for REGRESS, the bandwidth of kernel function
(sig2), and the trade-off between minimum model complexity and minimum training error(gam) for LS-SVM, the
number of hidden nodes for ELM, the spreading coefficient for RBFNN.
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3.4. Droplet Size Prediction of Overlapping Area for Twin Nozzles Condition

In order to predict the droplet size of the overlapping area for twin nozzles condition, we
established a quantitative model based on different machine learning models. As shown in Figure 9,
‘a’ and ‘b’ represents the VMD value of nozzle A and B for the same measuring point, which were
obtained by the REGRESS model of TEEJET XR110015VS nozzle. ‘c’ represents the actual VMD value
of twin nozzle measured in the corresponding measuring point of ‘a’ and ‘b’. In order to achieve a
better fitting effect of two independent variables and dependent variables with more options, we used
Levenberg-Marquardt + Universal Global Optimization (LM-UGO) instead of REGRESS. Software
package 1stOpt was used to realize LM-OGO. Quantitative models based on LM-UGO, LS-SVM,
ELM, and RBFNN were built to quantify the relationship between ‘a’, ‘b’ and ‘c’. The numbers of the
calibration set and prediction set were 66 and 22, respectively with a scale of 3:1.
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Table 6 shows the results of four models. The scatter plot of measured values vs. Predicted
values of twin nozzle VMD are shown in Figure 10. For VMD, the prediction of overlapping area,
RBFNN achieved the best performance with an Rc2 value of 0.9567 and RMSEP of 3.2595 µm, indicating
the good potential of this machine learning method. The results obtained by LS-SVM and ELM
methods showed expected performance, LS-SVM with an Rc2 value of 0.9116, RMSEP of 3.5471 µm,
and ELM with an Rc2 value of 0.8120, RMSEP of 3.8389 µm. The large RMSE values and the scatter
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points deviated from the fitting line indicated the LM-UGO was not a good candidate for quantitative
modeling of VMD relationship. The results indicated that the regression model of a single nozzle could
be used to predict the droplet size of the overlapping area for twin nozzles condition.

Table 6. Results of VMD modeling for the overlapping areas of the twin nozzles condition.

Model Parameter [a]
Accuracy of Calibration Set Accuracy of Prediction Set

RC
2 RMSEC (µm) Rp

2 RMSEP(µm)

LM-UGO / 0.7430 3.7959 0.6838 4.1984
LS-SVM (0.599, 22.789) 0.9116 2.1398 0.7714 3.5471

ELM 36 0.8120 3.2470 0.7415 3.8389
RBFNN 35 0.9567 1.5578 0.8616 3.2595

Parameters of different models: the bandwidth of kernel function (sig2), and the trade-off between minimum model
complexity and minimum training error(gam) for LS-SVM, the number of hidden nodes for ELM, the spreading
coefficient for RBFNN.
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4. Conclusions

In this study, machine learning methods were applied to accomplish droplet size and deposition
distribution quantitative evaluation for TEEJET XR110015VS nozzle. REGRESS and LS-SVM achieved
good performance for droplet size quantitative evaluating of single and twin nozzles, with Rc2 and Rp2

values both above 0.9. The droplet size distribution of twin nozzles was visualized by formula obtained
from REGRESS, the principles leading to the droplet size distribution of single and twin nozzles
were also explained. Additionally, RBFNN showed great effectiveness for deposition distribution
quantitative evaluation for twin nozzles condition with the best Rp2 value of 0.7994 and RMSEP value
of 0.2183 mL/cm2. The results of Models for deposition distribution were inferior to models for droplet
size distribution but still promising. Finally, the model of a single nozzle based on REGRESS was
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used to predict the droplet size in the overlapping area of twin nozzles; RBFNN showed the best
performance for quantitatively predicting, with an Rc2 value of 0.9567 and RMSEP of 3.2595 µm.

This study provided a novel and precise method for effective quantitative evaluation of droplet
size and deposition distribution for UAV spray nozzle. The quantitative determination of droplet
size distribution for UAV spray nozzle can help to control the spray drift and provide a basis for
realizing uniform deposition and efficacy of UAV spraying. Furthermore, the study showed the
feasibility to predict droplet size of the overlapping area by using the model based on machine learning
methods, providing a basis for studying the droplet size distribution of a multi-nozzle spray. In future
studies, more types of UAV spray nozzles and more measuring points will be studied under different
conditions, the effect of the wind field and the interaction between droplets and crop leaves also need
to be investigated in the future experimental design.
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