Tribological and Thermal Transport of Ag-Vegetable Nanofluids Prepared by Laser Ablation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanofluids Preparation
2.2. Morphology by SEM
2.3. Thermal Conductivity Characterization
2.4. Tribological Experimentation
3. Results
3.1. ICP-OES/Elemental Composition Analysis
3.2. DLS Analysis/Average Size Determination by DLS
4. Results and Discussion
4.1. Thermal Performance
4.2. Tribological Performance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taha-Tijerina, J.; Aviña, K.; Diabb, J.M. Tribological and Thermal Transport Performance of SiO2-Based Natural Lubricants. Lubricants 2019, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Belluco, W.; De Chiffre, L. Surface integrity and part accuracy in reaming and tapping stainless steel with new vegetable based cutting oils. Tribol. Int. 2002, 35, 865–870. [Google Scholar] [CrossRef]
- Das, A.; Patel, S.K.; Das, S.R. Performance comparison of vegetable oil based nanofluids towards machinability improvement in hard turning of HSLA steel using minimum quantity lubrication. Mech. Ind. 2019, 20, 506. [Google Scholar] [CrossRef]
- Zubir, B.; Abdul, M.Z.; Abd, A.F.; Said, M.S. The effect of cutting fluid condition on surface roughness in turning of alloy steel. In Advanced Engineering for Processes and Technologies; Ismail, A., Abu Bakar, M., Öchsner, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 297–305. [Google Scholar]
- Taha-Tijerina, J.J. Thermal transport and Challenges on Nanofluids Performance. In Microfluidics and Nanofluidics; Kandelousi, M.S., Ed.; InTech: Rijeka, Croatia, 2018; pp. 215–256. [Google Scholar]
- Altavilla, C.; Sarno, M.; Ciambelli, P.; Senatore, A.; Petrone, V. New “chimie douce” approach to the synthesis of hybrid nanosheets of MoS2 on CNT and their anti-friction and anti-wear properties. Nanotechnology 2013, 24, 125601. [Google Scholar] [CrossRef]
- Shashidhara, Y.M.; Jayaram, S.R. Vegetable oils as a potential cutting fluid-An evolution. Tribol. Int. 2010, 43, 1073–1081. [Google Scholar] [CrossRef]
- Koh, M.Y.; Ghazi, T.I.M.; Idris, A. Synthesis of palm based biolubricant in an oscillatory flow reactor (OFR). Ind. Crops Prod. 2014, 52, 567–574. [Google Scholar] [CrossRef]
- Heikal, E.K.; Elmelawy, M.S.; Khalil, S.A.; Elbasuny, N.M. Manufacturing of environment friendly biolubricants from vegetable oils. Egypt. J. Pet. 2017, 26, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Krolczyk, G.M.; Maruda, R.W.; Krolczyk, J.B.; Wojciechowski, S.; Mia, M.; Nieslony, P.; Budzik, G. Ecological trends in machining as a key factor in sustainable production—A review. Clean. Prod. 2019, 218, 601–615. [Google Scholar] [CrossRef]
- Xavior, M.A.; Adithan, M. Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. J. Mater. Process. Technol. 2009, 209, 900–909. [Google Scholar] [CrossRef]
- Benedicto, E.; Carou, D.; Rubio, E.M. Technical, Economic and Environmental Review of the Lubrication/Cooling Systems used in Machining Processes. Procedia Eng. 2017, 184, 99–116. [Google Scholar] [CrossRef]
- Peña-Parás, L.; Maldonado-Cortés, D.; Taha-Tijerina, J. Eco-Friendly Nanoparticle Additives for Lubricants and Their Tribological Characterization. In Handbook of Ecomaterials; Torres Martínez, L.M., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–21. [Google Scholar]
- Taha-Tijerina, J.; Narayanan, T.N.; Avali, S.; Ajayan, P.M. 2D Structures-based Energy Management Nanofluids. In Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition IMECE, Houston, TX, USA, 9–15 November 2012. IMECE 2012-87890. [Google Scholar]
- Nagendramma, P.; Kumar, P. Eco-Friendly Multipurpose Lubricating Greases from Vegetable Residual Oils. Lubricants 2015, 3, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, G.; Ghosh, P.; Sharma, B. Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Sharma, B.K.; Erhan, S.Z.; Biswas, A.; Wang, R.; Schuman, T.P. Oxidation and low temperature stability of polymerized soybean oil-based lubricants. Thermochim. Acta 2015, 601, 9–16. [Google Scholar] [CrossRef]
- Quinchia, L.A.; Delgado, M.A.; Franco, J.M.; Spikes, H.A.; Gallegos, C. Low-temperature flow behaviour of vegetable oil-based lubricants. Ind. Crops Prod. 2012, 37, 383–388. [Google Scholar] [CrossRef]
- Erhan, S.Z.; Sharma, B.K.; Perez, J.M. Oxidation and low temperature stability of vegetable oil-based lubricants. Ind. Crops Prod. 2006, 24, 292–299. [Google Scholar] [CrossRef]
- Reeves, C.J.; Siddaiah, A.; Menezes, P.L. A Review on the Science and Technology of Natural and Synthetic Biolubricants. J. Bio- Tribo-Corrosion 2017, 3, 11. [Google Scholar] [CrossRef]
- Somashekaraiah, R.; Gnanadhas, D.P.; Kailas, S.V.; Chakravortty, D. Eco-Friendly, Non-Toxic Cutting Fluid for Sustainable Manufacturing and Machining Processes. Tribol. Online 2016, 11, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N. Oxidative stability of biodiesel: Causes, effects and prevention. Fuel 2017, 190, 328–350. [Google Scholar] [CrossRef]
- Fox, N.J.; Stachowiak, G.W. Vegetable oil-based lubricants-A review of oxidation. Tribol. Int. 2007, 40, 1035–1046. [Google Scholar] [CrossRef]
- Syahrullail, S.; Kamitani, S.; Shakirin, A. Performance of vegetable oil as lubricant in extreme pressure condition. Procedia Eng. 2013, 68, 172–177. [Google Scholar] [CrossRef]
- Tripathi, A.; Vinu, R. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils. Lubricants 2015, 3, 54–79. [Google Scholar] [CrossRef] [Green Version]
- Zainal, N.A.; Zulkifli, N.W.M.; Gulzar, M.; Masjuki, H.H. A review on the chemistry, production, and technological potential of bio-based lubricants. Renew. Sustain. Energy Rev. 2018, 82, 80–102. [Google Scholar] [CrossRef]
- Debnath, S.; Reddy, M.M.; Yi, Q.S. Environmental friendly cutting fluids and cooling techniques in machining: A review. J. Clean. Prod. 2014, 83, 33–47. [Google Scholar] [CrossRef]
- Sarno, M.; Senatore, A.; Spina, D.; Mustafa, W.A.A. A Tribochemical Boost for Cu Based Lubricant Nano-Additive. Key Eng. Mater. 2019, 813, 292–297. [Google Scholar] [CrossRef]
- Kumar, K.; Ravi, M. Past and Current Status of Eco-Friendly Vegetable Oil Based Metal Cutting Fluids. Mater. Today Proc. 2017, 4, 3786–3795. [Google Scholar] [CrossRef]
- Rapeti, P.; Pasam, V.K.; Rao, K.M.; Revuru, R.S. Performance evaluation of vegetable oil based nano cutting fluids in machining using grey relational analysis-A step towards sustainable manufacturing. J. Clean. Prod. 2018, 172, 2862–2875. [Google Scholar] [CrossRef]
- Wagner, H.; Luther, R.; Mang, T. Lubricant base fluids based on renewable raw materials: Their catalytic manufacture and modification. Appl. Catal. A Gen. 2001, 221, 429–442. [Google Scholar] [CrossRef]
- Abdalla, H.S.; Patel, S. The performance and oxidation stability of sustainable metalworking fluid derived from vegetable extracts. Proc. Inst. Mech Eng. Part. B J. Eng. Manuf. 2006, 220, 2027–2040. [Google Scholar] [CrossRef]
- Mannekote, J.K.; Kailas, S.V. The Effect of Oxidation on the Tribological Performance of Few Vegetable Oils. J. Mater. Res. Technol. 2012, 1, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Barcikowski, S.; Amendola, V.; Marzun, G.; Rehbock, C.; Reichenberger, S.; Zhang, D.; Gökce, B. Handbook of Laser Synthesis of Colloids; Universität Duisburg-Essen: Duisburg, Germany, 2016; 150p. [Google Scholar]
- Yang, G. Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials; Pan Standford Publishing: Singapore, 2012. [Google Scholar]
- Zhang, D.; Gökce, B.; Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, J.; Li, P.; Tian, Z.; Liang, C. Recent Advances in Surfactant-Free, Surface-Charged, and Defect- Rich Catalysts Developed by Laser Ablation and Processing in Liquids. ChemNanoMat 2017, 3, 512–533. [Google Scholar] [CrossRef]
- Johny, J.; Sepulveda, G.S.; Krishnan, B.; Avellaneda, D.; Shaji, S. Nanostructured SnS2 Thin Films from Laser Ablated Nanocolloids: Structure, Morphology, Optoelectronic and Electrochemical Properties. ChemPhysChem 2018, 19, 2902–2914. [Google Scholar] [CrossRef] [PubMed]
- Kozuka, H.; Yamano, A.; Fujita, M.; Uchiyama, H. Aqueous dip-coating route to dense and porous silica thin films using silica nanocolloids with an aid of polyvinylpyrrolidone. J. Sol-Gel Sci. Technol. 2012, 61, 381–389. [Google Scholar] [CrossRef]
- Zuñiga-Ibarra, V.A.; Shaji, S.; Krishnan, B.; Johny, J.; Sharma, K.S.; Avellaneda, D.A.; Martinez, J.A.A.; Roy, T.K.D.; Ramos-Delgado, N.A. Synthesis and characterization of black TiO2 nanoparticles by pulsed laser irradiation in liquid. Appl. Surf. Sci. 2019, 483, 156–164. [Google Scholar] [CrossRef]
- Shaji, S.; Vinayakumar, V.; Krishnan, B.; Johny, J.; Sharma, K.S.; Flores, J.M.; Sepulveda, S.; Avellaneda, D.A.; Castillo, G.A.; Aguilar, J.A. Copper antimony sulfide nanoparticles by pulsed laser ablation in liquid and their thin film for photovoltaic application. Appl. Surf. Sci. 2019, 476, 94–106. [Google Scholar] [CrossRef]
- Rodriguez-Vela, D.L.; Krishnan, B.; Aguilar-Martinez, J.A.; Loredo, S.L.; Shaji, S. AgSb(SxSe1-x)2 thin films by rapid thermal processing of Sb2 S3-Ag-Se thin films for photovoltaic applications. Phys. Status Solidi 2016, 13, 47–52. [Google Scholar]
- Ganguly, S.; Das, P.; Bose, M.; Das, T.K.; Mondal, S.; Das, A.K.; Das, N.C. Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application. Ultrason. Sonochem. 2017, 39, 577–588. [Google Scholar] [CrossRef]
- Lokhande, A.C.; Babar, P.T.; Karade, V.C.; Jang, J.S.; Lokhande, V.C.; Lee, D.J.; Kim, I.C.; Patole, S.P.; Qattan, I.A.; Lokhande, C.D.; et al. A viable green route to produce Ag nanoparticles for antibacterial and electrochemical supercapacitor applications. Mater. Today Chem. 2019, 14, 100181. [Google Scholar] [CrossRef]
- Szczerek, M.; Tuszynski, W. A method for testing lubricants under conditions of scuffing. Part, I. Presentation of the method. Tribotest 2002, 8, 273–284. [Google Scholar] [CrossRef]
- Peña-Parás, L.; Taha-Tijerina, J.; García, A.; Maldonado, D.; Nájera, A.; Cantú, P.; Ortiz, D. Thermal transport and tribological properties of nanogreases for metal-mechanic applications. Wear 2015, 332–333, 1322–1326. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.; Peña-Paras, L.; Narayanan, T.N.; Garza, L.; Lapray, C.; Gonzalez, J.; Palacios, E.; Molina, D.; García, A.; Maldonado, D.; et al. Multifunctional nanofluids with 2D nanosheets for thermal and tribological management. Wear 2013, 302, 1241–1248. [Google Scholar] [CrossRef]
- Peña-Parás, L.; Taha-Tijerina, J.; García, A.; Maldonado, D.; González, J.A.; Molina, D.; Palacios, E.; Cantú, P. Antiwear and Extreme Pressure Properties of Nanofluids for Industrial Applications. Tribol. Trans. 2014, 57, 1072–1076. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.; Castaños-Guitrón, B.; Peña-Parás, L.; Tovar-Padilla, M.; Alvarez-Quintana, J.; Maldonado-Cortés, D. Impact of silicate contaminants on tribological and thermal transport performance of greases. Wear 2019, 426–427, 862–867. [Google Scholar] [CrossRef]
- Kanakkillam, S.S.; Shaji, S.; Krishnan, B.; Vazquez-Rodriguez, S.; Martinez, J.A.A.; Palma, M.I.M.; Avellaneda, D.A. Nanoflakes of zinc oxide:cobalt oxide composites by pulsed laser fragmentation for visible light photocatalysis. Appl. Surf. Sci. 2020, 501, 144223. [Google Scholar] [CrossRef]
- LotfizadehDehkordi, B.; Kazi, S.N.; Hamdi, M.; Ghadimi, A.; Sadeghinezhad, E.; Metselaar, H.S.C. Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf. 2013, 49, 1109–1115. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.J.; Narayanan, T.N.; Tiwary, C.S.; Lozano, K.; Chipara, M.; Ajayan, P.M. Nanodiamond-based thermal fluids. ACS Appl. Mater. Interfaces 2014, 6, 4778–4785. [Google Scholar] [CrossRef] [PubMed]
- Taha-Tijerina, J.; Narayanan, T.N.; Gao, G.; Rohde, M.; Tsentalovich, D.A.; Pasquali, M.; Ajayan, P.M. Electrically insulating thermal nano-oils using 2D fillers. ACS Nano 2012, 6, 1214–1220. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.U.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 2004, 84, 4316. [Google Scholar] [CrossRef]
- Azmi, W.H.; Sharma, K.V.; Mamat, R.; Najafi, G.; Mohamad, M.S. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids—A review. Renew. Sust. Energ. Rev. 2016, 53, 1046–1058. [Google Scholar] [CrossRef]
- Dai, W.; Kheireddin, B.; Gao, H.; Liang, H. Roles of nanoparticles in oil lubrication. Tribol. Int. 2016, 102, 88–98. [Google Scholar] [CrossRef]
- Chen, Y.; Renner, P.; Liang, H. Dispersion of Nanoparticles in Lubricating Oil: A Critical Review. Lubricants 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
Materials | Properties | ||||
---|---|---|---|---|---|
Vegetable Fluids | Density @ 20 °C (g/cm3) | Viscosity @ 24 °C (m Pa s) | Viscosity @ 40 °C (m Pa s) | Viscosity @ 100 °C (m Pa s) | Refractive Index |
Soybean Oil | 0.9604 | 54.3 | 32.93 | 6.79 | 1.47 |
Corn Oil | 0.9100 | 52.3 | 30.8 | 6.57 | 1.40 |
Sunflower Oil | 0.9197 | 68.0 | 40.05 | 8.65 | 1.70 |
Parameters | ITEePib Polish Method |
---|---|
Time | 18 s |
Temperature (°C) | 24 ± 1 |
Velocity (RPM) | 500 |
Applied Force (N) | 0–7200 (linear increment) |
Pure | Ag | ||
---|---|---|---|
5 min | 10 min | ||
COF-µ | |||
Soybean Oil | 0.0385 ± 0.0009 | 0.0365 ± 0.0004 | 0.0345 ± 0.0004 |
Corn Oil | 0.0485 ± 0.0006 | 0.0467 ± 0.0004 | 0.0445 ± 0.0003 |
Sunflower Oil | 0.0437 ± 0.0005 | 0.0402 ± 0.0003 | 0.0372 ± 0.0003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha-Tijerina, J.; Shaji, S.; Sharma Kanakkillam, S.; Mendivil Palma, M.I.; Aviña, K. Tribological and Thermal Transport of Ag-Vegetable Nanofluids Prepared by Laser Ablation. Appl. Sci. 2020, 10, 1779. https://doi.org/10.3390/app10051779
Taha-Tijerina J, Shaji S, Sharma Kanakkillam S, Mendivil Palma MI, Aviña K. Tribological and Thermal Transport of Ag-Vegetable Nanofluids Prepared by Laser Ablation. Applied Sciences. 2020; 10(5):1779. https://doi.org/10.3390/app10051779
Chicago/Turabian StyleTaha-Tijerina, Jaime, Sadasivan Shaji, Sreed Sharma Kanakkillam, Maria Isabel Mendivil Palma, and Karla Aviña. 2020. "Tribological and Thermal Transport of Ag-Vegetable Nanofluids Prepared by Laser Ablation" Applied Sciences 10, no. 5: 1779. https://doi.org/10.3390/app10051779
APA StyleTaha-Tijerina, J., Shaji, S., Sharma Kanakkillam, S., Mendivil Palma, M. I., & Aviña, K. (2020). Tribological and Thermal Transport of Ag-Vegetable Nanofluids Prepared by Laser Ablation. Applied Sciences, 10(5), 1779. https://doi.org/10.3390/app10051779