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Abstract: The self-centering tension-only brace (SC-TOB) is a new and innovative bracing system
that provides both a flag-shaped recentering hysteresis and load mitigation to structures. This paper
presents an extensive investigation of the nonlinear seismic response of multistory steel frames
built with SC-TOBs to internal force, drift, and energy dissipation. Pushover analysis subjected
to two lateral load distributions and nonlinear dynamic analysis under ground motion ensembles
corresponding to four hazard levels were conducted. The SC-TOBs can be designed to serve as
conventional tension-only braces (TOBs) only providing lateral stiffness during minor earthquakes,
to function with energy dissipation as intensity increases, and to fully recenter a structure even
after severe earthquakes. The findings show that with an increase in the earthquake intensity, both
the force response and drift response of the SC-TOB frames (SC-TOBFs) increased; however, the force
distribution and drift distribution shapes of the SC-TOBFs remained almost constant. The SC-TOBFs
generally experienced more energy dissipation in the lower parts of the building, while the upper
stories dissipated almost no energy under certain load conditions, suggesting that the bracings
on those stories could be replaced by conventional TOBs for economy. It is demonstrated that
the SC-TOBs have immense potential to effectively improve seismic resilience to structures such that
rehabilitation costs and operational disruptions after earthquakes are minimized.
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1. Introduction

Although conventional earthquake-resistant systems (e.g., ductile moment frames, braced frames,
or concrete shear walls) designed conforming to current seismic codes are confirmed to achieve life
safety and collapse prevention performances, there is wide consensus emerging within the structural
engineering community that preventing collapse is simply not sufficient for a more resilient structure.
Because those systems are prone to permanent, nonrecoverable deformations (residual deformations)
after a significant seismic event, leading to substantial losses associated with costs of rehabilitation and
operational disruption. For example, many structures that suffered damage in the 2011 Christchurch
Earthquake had to be demolished because of excessive residual deformations even though they had
not collapsed [1]. A study by McCormick et al. suggested that for buildings with residual drift greater
than 0.5%, it is more economical to demolish and reconstruct them than repair them [2].

To address this drawback with residual deformations, a novel category of seismic-resilient
structural system (SRSS) was developed. A typical SRSS generally employs a restoring force mechanism
to achieve self-centering (SC), in conjunction with an energy dissipation (ED) mechanism to protect
the primary structure. The main approaches to SC can be classified into four categories: rocking systems,

Appl. Sci. 2020, 10, 1819; doi:10.3390/app10051819 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1740-6483
http://www.mdpi.com/2076-3417/10/5/1819?type=check_update&version=1
http://dx.doi.org/10.3390/app10051819
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 1819 2 of 17

post-tensioned moment frames, shape memory alloy (SMA)-based components, and self-centering
braces (SCBs).

The key aspect of rocking systems, including rocking walls [3,4] and rocking braced frames [5,6],
is the gap-opening mechanism taking place between the structure and foundation, which softens
the structural lateral response without any residual deformations. The gap-opening mechanism can
also be applied to beam-column interface to form a post-tensioned moment frame in which the beam is
compressed to the side of a column by using post-tensioning (PT) technology [7,8]. However, both
rocking systems and post-tensioned frames may suffer from issues of installation complexity and
deformation incompatibility [5,9]. Superelastic SMAs, characterized by inherent hysteretic damping
and spontaneous recentering, have currently emerged as one class of smart materials for achieving
SRSS. Various types of SMA-based components, such as connections, dampers, and braces have been
proposed [10–12].

In the family of SRSSs, SCBs are a promising candidate because of their satisfactory SC capability
and especially because SC can be developed within the brace elements such that deformation
incompatibility can be avoided, and conventional field techniques are sufficient for installation and
replacement. Christopoulos et al. [13] were among the pioneers to develop self-centering energy
dissipative (SCED) braces. Erochko et al. [14] conducted a shake table test to confirm the behavior
of SCED braces within structural systems. Wiebe and Christopoulos [15] adopted Bézier curves to
mitigate the sharp stiffness transition in the hysteresis. Karavasilis et al. [16] developed a new nonlinear
model for seismic analysis of structures with SCBs. To further improve the recentering capacity, two
types of SC-enhanced brace configurations incorporating multiple SC systems, that is, the dual-core
SCB [17–20] and the telescoping SCED brace [21,22], were developed independently. More recently,
pre-pressed disc springs have been utilized to develop SC, by which the limitations in deformability
can be improved further [23–25]. Comparative studies of SCB frames (SCBFs) and buckling-restrained
braced (BRB) frames, however, revealed that amplified seismic demands have emerged as a major
concern to SCBFs owing to moderate ED capacity depending on the flag-shaped hysteresis loop of
SCBs, which was not as full as that of BRBs [26].

Unlike those rigid SCBs, tension-only braces (TOBs) are flexible and can enable the full use of
tensile strength of high strength materials without compressive-flexural buckling, thereby reducing
the axial stiffness as well as the cross-sectional dimensions of the brace significantly [27,28]. As a result,
a mitigating seismic response can be obtained due to the elongated fundamental period of vibration
of the resulting structure. In addition, TOBs are lighter in weight, making them easier to install and
relatively simple to replace. In view of this, the authors developed a self-centering tension-only brace
(SC-TOB) system, in consideration of the load mitigation characteristics of TOBs, to reduce the seismic
demands of SCB structures [29]. Several response parameters were studied to compare the behavior of
the SC-TOBFs and BRB frames [30].

This study investigated how the SC-TOB can be implemented in multistory steel frames to
improve seismic performance in terms of internal force, drift, and energy dissipation. Pushover
analysis subjected to two lateral load distributions and nonlinear dynamic analysis under ground
motion ensembles scaled to four hazard levels were performed.

2. Analytical Model of SC-TOBFs

2.1. Mechanics of SC-TOB

Figure 1a illustrates the schematic of the SC-TOB system [27,28], which employs a set of PT
tendons (shown as a whole unit, for illustrative purposes) to provide a restoring force to achieve
self-centering, a frictional device to dissipate seismic input energy, and a high strength steel (HSS)
cable as the main bracing element. One end of the PT tendon is anchored to the blocking plate, and
the other end is passed around the pulley and connected with the frictional device after pre-tensioning
it. The pulley within the SC-TOB is adopted to reduce the strain by half on the PT tendons, if the same
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elongation occurs, leading to a double elongation capacity of the bracing system. The mechanics of
the SC-TOB system can be explained using an analytical model as presented in Figure 1b, wherein
kt, kf, and kc = the axial stiffnesses of the PT tendons, frictional device, and HSS cable, respectively;
F = the frictional resistance provided by the frictional device; and Tt,0 = the pre-tension of the PT
tendons. R represents the blocking plate to restrict the left movement of the frictional device.
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Figure 1. Self-centering tension-only brace (SC-TOB) system: (a) schematic; (b) analytical model; and
(c) hysteretic behavior [27,28].

Figure 1c depicts the flag-shaped hysteresis of the SC-TOB. When the load P is too small to
overcome the sum of Tt,0 and F, only the HSS cable works at stage o-a, hence the initial stiffness of
the SC-TOB, k1, is equal to kc. As P increases to reach the activation load Pa, given by Pa = Tt,0 + F,
the PT tendons start to stretch, and meanwhile the energy dissipation mechanism is activated. At
stage a-b, the axial stiffness of the SC-TOB decreases from k1 to the post-activation stiffness k2, given

by k2 =
(
k−1

t + k−1
f + k−1

c

)−1
. Upon unloading, the friction device is locked, with the friction value

varying from F at event b to −F at event c. During this stage, as the frictional device remains stationary,
the stiffness of the SC-TOB is recovered to k1. As P further unloads (stage c-d), the SC-TOB is pulled
back to its initial position under the influence of the tensioning tendons, and the stiffness is once again
reduced to k2. With continuous unloading during stage d-o, as the movement of the friction device is
restricted by the blocking plate, the stiffness of the system once again recovers to k1.

2.2. Modeling of an SC-TOBF

A typical steel frame equipped with SC-TOBs subjected to lateral loading, P, is illustrated in
Figure 2; the solid line indicates a taut HSS cable experiencing positive elongation, while the dotted line
indicates a slack, on stand-by for the load reversal. Note that the pulleys mounted on the beam near
the beam-column connections are used to guide the HSS cables, which serves a different purpose from
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those within the SC-TOBs. The analytical model is constructed using SAP2000 [31]. Key modeling
techniques are as follows:

(a) Beam and column modeling. The beams and columns are modeled using frame elements, which
concentrate their inelastic behaviors in nonlinear hinges (lumped plasticity).

(b) SC-TOB modeling. The multilinear elastic element (MEE) and the multilinear plastic element (MPE)
are used to model the nonlinear elastic behavior of PT tendons and the energy dissipation from
the frictional device, respectively. For both tendons and frictional device, only the second-stage
curves with a softened stiffness of the elements are required; hence, a negligible first-stage
deformation has to be specified. For the HSS cable modeling, however, the MEE with a sufficiently
long first-stage curve is adopted, because the cable is only permitted to behave in a linear
elastic way.

(c) Pulley modeling. The pulley is modeled using five hinged frame elements within the dotted circle,
in which nodes 1, 2, and 3 are located around the center point O. Because a pulley is almost a rigid
body in real structures, the axial stiffness of each frame element has to be assigned a sufficiently
large value.

(d) Models assembly. A “body constraint” is specified between nodes O, A, and B, and their vertical
projection O’, A’, and B’, respectively, to ensure that each pair of nodes moves together as a 3D
rigid body, except that the translational degree of freedom of node A is released to allow its
axial movement.
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design, because such connections have sufficient rotation capacity to accommodate a large drift 

Figure 2. Simulation of the SC-TOB frame (SC-TOBF): (a) SC-TOB arrangement; (b) multilinear elastic
element (MEE) hysteresis; (c) multilinear plastic element (MPE) hysteresis; and (d) SC-TOB hysteresis.

2.3. Prototype Building Design

As illustrated in Figure 3, the prototype building is a steel-framed office building with nine stories
and five bays, which can be considered as typical of intermediate structures. It has a constant story
height of 3.9 m totaling 35.1 m and a constant bay width of 9 m totaling 45 m. Column types 1 to 6 are
identified in Figure 3. Nonmoment-resisting beam-column connections are assumed in the design,
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because such connections have sufficient rotation capacity to accommodate a large drift demand
without damaging the connection region [32]. The building uses four perimeter-braced frames for
resisting seismic load in either earthquake direction.
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Figure 3. Layouts and load information of the prototype building. Gravity loads: Roof: Dead = 5.0 kPa;
Live = 2.0 kPa. Floor: Dead = 4.5 kPa; Live = 4.0 kPa. Exterior walls = 10 kN/m. Seismic load data:
Seismic precautionary intensity: 8. Site classification: III. Basic acceleration of ground motion: 0.20 g.

It is assumed that all the seismic energy is dissipated by the SC-TOBs, and the load-resisting
elements always remain elastic during an earthquake. The braced bays are designed to resist both
gravity loading and lateral seismic loading, whereas the unbraced bays only need to resist gravity
loading. The beams and columns are made of Q345 steel having a yield stress of 345 MPa, and
the cables are made of HSS strands, with an ultimate strength of 1670 MPa. Geometric nonlinearity is
incorporated to consider the P-Delta effects through large displacement analysis. Rayleigh damping is
used with inherent 4% critical damping at the first two modes of vibration. The geometric properties of
structural elements are selected according to design codes [33–35] as listed in Table 1. All the SC-TOBs
used in the prototype building are designed to activate at a story drift angle θa of 0.4%, which is
consistent with the code-prescribed elastic limit for steel structures [34]. The hysteresis of each type of
SC-TOB is depicted in Figure 4.

Table 1. Detailed properties of structural elements in the prototype building.

Story

Unbraced Bays Braced Bays

Beam
(mm)

Column
(mm)

Beam
(mm)

Column
(mm)

SC-TOB

Cable Diam
(mm)

PT Force
(kN)

Friction
(kN)

7–9
H650 × 300 × 12

× 20

2400 × 400 × 10
× 10

H800 × 300 × 14
× 26

2400 × 400 ×
10 × 10 ϕ = 70 564.30 537.42

4–6 2400 × 400 × 12
× 12

H850 × 300 × 17
× 31

2450 × 450 ×
14 × 14 ϕ = 80 737.04 701.94

1–3 2400 × 400 × 16
× 16

H900 × 300 × 16
× 28

2500 × 500 ×
18 × 18 ϕ = 90 932.83 888.38
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Figure 4. Hysteresis of each type of SC-TOB.

Since pinned beam-to-column connections are assumed in the design, and each column is
continuous and pinned at its base, lateral seismic resistance is provided and equally distributed by
the two braced frames, along the direction of the earthquake. In view of the symmetrical plan dimensions
of the prototype building, the torsion effect can be neglected, thereby allowing for a 2D analysis in lieu
of a 3D analysis for efficiency and simplicity (see Figure 5). In the 2D model, the link beams between
columns 4O and 1O are assumed to act as rigid diaphragms that transfer lateral deformations from
braced to unbraced frames. The 2D analytical model is validated to be feasible by the modal analysis
comparison as shown in Table 2, and it is therefore used in the following investigations.
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Table 2. Modal analysis comparison.

Model
1st Mode 2nd Mode 3rd Mode

Period (s) MPMR Period (s) MPMR Period (s) MPMR

3D 2.697 78% 0.920 14% 0.523 4%
2D 2.608 79% 0.903 13% 0.516 4%

MPMR: modal participating mass ratio.

3. Incremental Static (Pushover) Analysis

As illustrated in Figure 6, two suggested lateral load distributions [36], the parabolic distribution
(denoted as “LD-P”) and the uniform distribution (denoted as “LD-U”), are adopted for the incremental
static analysis. The procedure is performed until a target displacement represented by the roof drift
angle, θH, reaches 2%, where θH = ∆H/H, with ∆H being the roof displacement and H being
the building height.



Appl. Sci. 2020, 10, 1819 7 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 17 

Figure 4. Hysteresis of each type of SC-TOB. 

Since pinned beam-to-column connections are assumed in the design, and each column is 
continuous and pinned at its base, lateral seismic resistance is provided and equally distributed by 
the two braced frames, along the direction of the earthquake. In view of the symmetrical plan 
dimensions of the prototype building, the torsion effect can be neglected, thereby allowing for a 2D 
analysis in lieu of a 3D analysis for efficiency and simplicity (see Figure 5). In the 2D model, the link 
beams between columns ④ and ① are assumed to act as rigid diaphragms that transfer lateral 
deformations from braced to unbraced frames. The 2D analytical model is validated to be feasible by 
the modal analysis comparison as shown in Table 2, and it is therefore used in the following 
investigations. 

  
(a) (b) 

Figure 5. Analytical model of the SC-TOBFs: (a) 3D model and (b) 2D model. 

Table 2. Modal analysis comparison. 

Model 
1st Mode 2nd Mode 3rd Mode 

Period (s) MPMR Period (s) MPMR Period (s) MPMR 
3D 2.697 78% 0.920 14% 0.523 4% 
2D 2.608 79% 0.903 13% 0.516 4% 

MPMR: modal participating mass ratio. 

3. Incremental Static (Pushover) Analysis 

As illustrated in Figure 6, two suggested lateral load distributions [36], the parabolic distribution 
(denoted as “LD-P”) and the uniform distribution (denoted as “LD-U”), are adopted for the 
incremental static analysis. The procedure is performed until a target displacement represented by 
the roof drift angle, 𝜃ு, reaches 2%, where 𝜃ு  =  𝛥ு/𝐻, with 𝛥ு being the roof displacement and 𝐻 being the building height. 

 

 

(a) (b) 

Figure 6. Lateral load distributions: (a) parabolic distribution (LD-P) and (b) uniform distribution
(LD-U).

3.1. Force Response

As shown in Figure 7, the SC-TOBFs exhibit a bilinear base shear response with a significant
stiffness reduction when the yield-like activation is attained, similar to the softening behavior of
yielding systems, facilitating limiting the seismic forces induced in the structures. The activation
initiates at ∆H = 200 mm (corresponding to θH = 0.57%) and ∆H = 150 mm (corresponding to
θH = 0.43%) under LD-P and LD-U, respectively.
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Figure 7. Base shear response.

Figure 8 shows that the axial force in the cables keeps nonlinearly increasing with an increase in
∆H and decreasing with the building height and that each type of SC-TOB with hysteresis presented in
Figure 4 in every three stories shows a similar tendency. It can also be seen that the distribution of
the cable axial forces under LD-U is more uniform than that under LD-P.
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Figure 8. Cable axial force response under (a) LD-P and (b) LD-U.

3.2. Drift Response

As shown in Figure 9, the inter-story drift angle, θ, generally decreases with the building height
under both lateral load distributions except that the θ in the 4th story under LD-P is even larger than
those in the lowest three stories. This is mainly because the load increment in the middle stories under
LD-P is rather small, whereas the lateral stiffness decreases suddenly from the 3rd to the 4th story
owing to the changing of SC-TOB type.
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Figure 9. Inter-story drift response under (a) LD-P and (b) LD-U.

3.3. Energy Dissipation

For every single SC-TOB, the energy dissipation E = F∆, where F is the friction force selected
according to brace type from Table 1, and ∆ is the slip displacement, which equals to the corresponding
elongation of MPE. As shown in Figure 10, the seismic energy dissipated in each story stably increases
with increasing roof drift once the relevant SC-TOBs are activated with a θ equal to or slightly greater
than 0.4% as designed.
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Figure 10. Cumulative energy dissipation response under (a) LD-P and (b) LD-U.

Figure 11 counts the cumulative energy dissipated in each story under both load distributions.
The lower stories generally dissipate more seismic energy than the middle and higher stories do, with
almost no energy dissipation observed in the top story under LD-P and top three stories under LD-U,
suggesting that SC-TOBs on those stories could be replaced by conventional TOBs without influencing
the self-centering capability. Although the energy dissipation distributions are quite different, being
more uniform under LD-P, the cumulative dissipations are not significantly different: 664.15 kN·m for
LD-P is 88.47% of that for LD-U (750.71 kN·m).
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Figure 11. Cumulative energy dissipation in each story.

4. Nonlinear Dynamic Analysis

4.1. Ground Motion

One artificial and three real suites of ground motions (GMs), as listed in Table 3, were selected
corresponding to the site class (III, characteristic period 0.45 s) for the time history analysis. Each GM
is scaled to four hazard levels, with a peak ground acceleration of 0.07 g, 0.22 g, 0.41 g, and 0.52 g,
representing frequently occurred earthquake (FOE) with a return period of approximately 50 years,
design basis earthquake (DBE) with a return period of approximately 500 years, maximum considered
earthquake (MCE) with a return period of approximately 2500 years, and extremely rare earthquake
(ERE) with an intensity value of 0.5 greater than that of MCE, respectively.
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Table 3. Ground motion properties for nonlinear dynamic analysis (4 suites of 16 excitations).

Suite No. Earthquake Duration (s) Peak Ground Acceleration (g)

GM 1 El-Centro
1940

53.4
Origin TH1-1 TH1-2 TH1-3 TH1-4

0.35 0.07 0.22 0.41 0.52

GM 2 Taft
1952

54.2
Origin TH2-1 TH2-2 TH2-3 TH2-4

0.16 0.07 0.22 0.41 0.52

GM 3 Tianjin
1976

19.2
Origin TH3-1 TH3-2 TH3-3 TH3-4

0.15 0.07 0.22 0.41 0.52

GM 4 Artificial 30.0
Origin TH4-1 TH4-2 TH4-3 TH4-4

0.10 0.07 0.22 0.41 0.52

4.2. Force Response

Figure 12 shows the maximum response envelopes of the axial force of cable under each seismic
excitation. The envelop shapes under FOE conditions are dependent on the SC-TOBs activation to
“yield.” For example, TH2-1 and TH4-1 envelops are nearly linear, indicating that braces have not
been fully activated at that time. With an increase in the intensity from DBE to ERE, all the braces are
gradually activated; thus, the other three envelopes under each GM exhibit the same tendency. As
the SC-TOB type varies every three stories, the location where the maximum cable forces appear in
the lower, middle, and higher parts of the building are the 1st, 6th, and 7th stories, respectively, under
GMs 1-3, and the 1st, 4th, and 8th stories, respectively, under GM 4. A final strength check process
reflects that all the bracings remain elastic without damage even under MCE and ERE, as presented in
Table 4.
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(d) GM4.

Table 4. Maximum axial force of cables under GMs 1-4.

Story Suite No. MCE (kN) ERE (kN) Design Value (kN)

7–9

GM 1 1907 2010

3384
GM 2 1998 2245
GM 3 2922 3253
GM 4 1666 1825

4–6

GM 1 2419 2517

4421
GM 2 2294 2550
GM 3 3324 3643
GM 4 2519 2989

1–3

GM 1 3281 3661

5595
GM 2 2829 3315
GM 3 4022 4867
GM 4 4176 4614

4.3. Drift Response

Figure 13 shows the maximum response envelopes of inter-story drift angle θ along the height. As
shown, the drift angles are basically uniform within the code-prescribed elastic limit 0.4% under FOE
excitations, except that exceeding values appear on 6th, 7th, and 8th stories under TH3-1, indicating
that the SC-TOBs on those stories are working in advance than designed. Under DBE and MCE
excitations, all the SC-TOBs are functioning as expected as a result of θ > θa = 0.4%, dissipating
seismic energy and protecting the primary structure. The occurrence of maximum θ begins on the 7th
story for GMs 1–3, and on the 1st story for GM 4, respectively, neither of which is greater or just slightly
greater than the plastic limit of 2.0%. The drift mode continues to develop when subjected to the ERE
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excitations, but the maximum values in TH1-4 and TH2-4 are still within the plastic limit 2.0%, while
1.14 and 1.20 times the plastic limit in TH3-4 and TH4-4, respectively.
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Figure 13. Maximum response envelopes of inter-story drift under (a) GM 1; (b) GM 2; (c) GM 3; and
(d) GM4.

4.4. Energy Dissipation

The cumulative energy dissipation of each SC-TOB can be computed using the approach
presented in Section 3.3. However, a noteworthy difference is that the slip displacement ∆. is
the summation of differences between every two analysis steps when performing dynamic analysis,

i.e., ∆ =
n−1∑
m=0

∣∣∣∆m+1 − ∆m
∣∣∣, where ∆m represents the MLP elongation at the mth analysis step and can

be extracted from its elongation time history.
Figure 14 counts the cumulative energy dissipated by each type of SC-TOB adopted in the lower,

middle, and higher stories of the prototype building, respectively, under 16 seismic excitations. As
illustrated, no energy dissipation is observed under all FOE conditions, indicating that the SC-TOBs
are working as conventional TOBs only providing necessary lateral stiffness. With the increasing
intensity of ground motions from DBE, energy dissipation is initiated and enhanced continuously
without stagnating at certain stories of the structure, reflecting good interoperability of the SC-TOBs
along the building height. It is also revealed that the lower and middle stories dissipate much more
energy than the upper stories do. The total cumulative energy dissipation of the SC-TOBFs is given in
Figure 15.
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Figure 14. Energy dissipation distributions under (a) GM 1; (b) GM 2; (c) GM 3; and (d) GM 4.
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5. Conclusions

This work presents an extensive investigation of the nonlinear seismic response of multistory
steel frames built with self-centering tension-only braces (SC-TOBs) to internal force, drift, and
energy dissipation. Pushover analysis adopting two lateral load distributions and nonlinear dynamic
analysis under four suites of 16 ground motions corresponding to four hazard levels were conducted.
The conclusions from the investigation can be summarized as follows:

• As expected, the SC-TOBs serve as conventional TOBs only providing necessary lateral stiffness
when subjected to low level seismic hazard and begin to function with energy dissipation as
the intensity of ground motions increases. All structural elements, such as cables, always remain
elastic both in pushover analysis within 2% roof drift angle and in dynamic analysis under the severe
hazard level, displaying a full self-centering capability without any residual deformations.

• The SC-TOB frames (SC-TOBFs) exhibit a bilinear base shear response with a significant stiffness
reduction when the yield-like activation is attained, which facilitates the capping of seismic
forces induced in the structures similar to the softening behavior of yielding systems. Besides,
the internal force distributions of structural elements are observed to be nearly identical with
the increase of intensity as long as the SC-TOBs are triggered.

• Although drift is prone to be concentrated around the middle stories of the SC-TOBFs when
subjected to parabolic load distribution and at bottom stories under uniform load distribution, it is
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reliably limited within the code-prescribed limit of 2.0% under maximum considered earthquakes,
and the SC-TOBFs are confirmed to have full self-centering capacity even when the maximum
inter-story drift angle reaches twice the limit. In addition, the drifts develop as the intensity
increases, but their distribution remains nearly unchanged.

• With the intensity getting higher, the energy dissipation of the SC-TOBFs continuously increases
without stagnating at certain stories of the building, reflecting good structural interoperability of
the bracing members along the structure height. For the prototype building, the lower and middle
stories generally dissipate more seismic energy than the upper stories, and almost no energy is
dissipated in the upper stories under certain load conditions, suggesting that the SC-TOBs on
those stories could be replaced by conventional TOBs, thereby reducing costs while retaining fully
the self-centering capability.
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