Multimodal Ensemble-Based Segmentation of White Matter Lesions and Analysis of Their Differential Characteristics across Major Brain Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Image Preprocessing
2.3. Region Annotation
2.4. Feature Extraction and Classification Using Conventional Models
2.5. Regional Patch Extraction and Classification Using ResNet Model
2.6. Ensemble Learning
2.7. Post-processing
2.8. Regional Analysis of White Matter Lesions
3. Results
3.1. Segmentation Performance of Conventional Models
3.2. Segmentation Performance of Deep Learning Model
3.3. Segmentation Performance of Ensemble of Conventional and Deep Learning Models
3.4. Analysis of the Effect of Post-processing
3.5. Analysis of the Robustness of Ensemble Model
3.6. Analysis of Lesions in Different Brain Lobes
- Temporal and parietal lobes: These lesions showed highest signal strength, irregular shape, largest size, and were moderately heterogeneous.
- Frontal lobe: These lesions were characterized by moderate signal strength, irregular shape, medium size, and moderate heterogeneity.
- Occipital lobe: These lesions had moderate signal strength, moderate irregularity, medium size, and were highly heterogeneous.
- CC Fornix and Brain stem: These lesions were characterized by the least signal strength, high sphericity, smallest size, and had the least heterogeneity.
4. Discussion
4.1. Importance and Clinical Applicability of the Study
4.2. Analysis of Regional Characteristics
4.3. Validation of the Proposed Method across Different Datasets
4.4. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hopkins, R.O.; Beck, C.J.; Burnett, D.L.; Weaver, L.K.; Victoroff, J.; Bigler, E.D. Prevalence of white matter hyperintensities in a young healthy population. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2006, 16, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Sachdev, P.S. Extent and distribution of white matter hyperintensities in stroke patients: The Sydney Stroke Study. Stroke 2004, 35, 2813–2819. [Google Scholar] [CrossRef] [PubMed]
- Fazekas, F.; Chawluk, J.B.; Alavi, A.; Hurtig, H.I.; Zimmerman, R.A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Ajr. Am. J. Roentgenol. 1987, 149, 351–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, R.M.; Jernigan, T.L.; Butters, N.; Delis, D.; Hesselink, J.R.; Heindel, W.; Gillin, J.C. Subcortical abnormalities detected in bipolar affective disorder using magnetic resonance imaging. Clinical and neuropsychological significance. Arch. Gen. Psychiatry 1990, 47, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Habes, M.; Iftikhar, M.A.; Shacklett, A.; Davatzikos, C. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage 2017, 155, 530–548. [Google Scholar] [CrossRef] [PubMed]
- Bilello, M.; Doshi, J.; Nabavizadeh, S.A.; Toledo, J.B.; Erus, G.; Xie, S.X.; Trojanowski, J.Q.; Han, X.; Davatzikos, C. Correlating Cognitive Decline with White Matter Lesion and Brain Atrophy Magnetic Resonance Imaging Measurements in Alzheimer’s Disease. J. Alzheimer’s Dis. Jad 2015, 48, 987–994. [Google Scholar] [CrossRef] [Green Version]
- Chaddad, A.; Desrosiers, C.; Niazi, T. Deep Radiomic Analysis of MRI Related to Alzheimer’s Disease. IEEE Access 2018, 6, 58213–58221. [Google Scholar] [CrossRef]
- Chaddad, A.; Toews, M.; Desrosiers, C.; Niazi, T. Deep Radiomic Analysis Based on Modeling Information Flow in Convolutional Neural Networks. IEEE Access 2019, 7, 97242–97252. [Google Scholar] [CrossRef]
- Schmidt, P.; Pongratz, V.; Küster, P.; Meier, D.; Wuerfel, J.; Lukas, C.; Bellenberg, B.; Zipp, F.; Groppa, S.; Sämann, P.G.; et al. Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging. Neuroimage Clin. 2019, 23, 101849. [Google Scholar] [CrossRef]
- Danelakis, A.; Theoharis, T.; Verganelakis, D.A. Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Comput. Med Imaging Graph. Off. J. Comput. Med Imaging Soc. 2018, 70, 83–100. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; O’Brien, P.C.; Rettman, D.W.; Shiung, M.M.; Xu, Y.; Muthupillai, R.; Manduca, A.; Avula, R.; Erickson, B.J. FLAIR histogram segmentation for measurement of leukoaraiosis volume. J. Magn. Reson. Imaging Jmri 2001, 14, 668–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khayati, R.; Vafadust, M.; Towhidkhah, F.; Nabavi, M. Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Comput. Biol. Med. 2008, 38, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Admiraal-Behloul, F.; van den Heuvel, D.M.; Olofsen, H.; van Osch, M.J.; van der Grond, J.; van Buchem, M.A.; Reiber, J.H. Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. NeuroImage 2005, 28, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Anbeek, P.; Vincken, K.L.; van Osch, M.J.; Bisschops, R.H.; van der Grond, J. Automatic segmentation of different-sized white matter lesions by voxel probability estimation. Med. Image Anal. 2004, 8, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Maillard, P.; Delcroix, N.; Crivello, F.; Dufouil, C.; Gicquel, S.; Joliot, M.; Tzourio-Mazoyer, N.; Alperovitch, A.; Tzourio, C.; Mazoyer, B. An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases. Neuroradiology 2008, 50, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Herskovits, E.H.; Bryan, R.N.; Yang, F. Automated Bayesian segmentation of microvascular white-matter lesions in the ACCORD-MIND study. Adv. Med. Sci. 2008, 53, 182–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, B.I.; Lee, J.J.; Han, J.W.; Oh, S.Y.; Lee, E.Y.; MacFall, J.R.; Payne, M.E.; Kim, T.H.; Kim, J.H.; Kim, K.W. Application of variable threshold intensity to segmentation for white matter hyperintensities in fluid attenuated inversion recovery magnetic resonance images. Neuroradiology 2014, 56, 265–281. [Google Scholar] [CrossRef]
- Moeskops, P.; de Bresser, J.; Kuijf, H.J.; Mendrik, A.M.; Biessels, G.J.; Pluim, J.P.W.; Isgum, I. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI. Neuroimage Clin. 2018, 17, 251–262. [Google Scholar] [CrossRef]
- Rachmadi, M.F.; Valdes-Hernandez, M.D.C.; Agan, M.L.F.; Di Perri, C.; Komura, T. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 2018, 66, 28–43. [Google Scholar] [CrossRef] [Green Version]
- Rathore, S.; Iftikhar, M.A.; Hussain, M.; Jalil, A. A novel approach for ensemble clustering of colon biopsy images. In Proceedings of the 11th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 16–18 December 2013; pp. 25–30. [Google Scholar]
- Kuijf, H.J.; Casamitjana, A.; Collins, D.L.; Dadar, M.; Georgiou, A.; Ghafoorian, M.; Jin, D.; Khademi, A.; Knight, J.; Li, H.; et al. Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge. IEEE Trans. Med. Imaging 2019, 38, 2556–2568. [Google Scholar] [CrossRef] [Green Version]
- Iftikhar, M.A.; Jalil, A.; Rathore, S.; Ali, A.; Hussain, M. Brain MRI denoizing and segmentation based on improved adaptive nonlocal means. Int. J. Imaging Syst. Technol. 2013, 23, 235–248. [Google Scholar] [CrossRef]
- Iftikhar, M.A.; Jalil, A.; Rathore, S.; Hussain, M. Robust brain MRI denoising and segmentation using enhanced non-local means algorithm. Int. J. Imaging Syst. Technol. 2014, 24, 52–66. [Google Scholar] [CrossRef]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davatzikos, C.; Rathore, S.; Bakas, S.; Pati, S.; Bergman, M.; Kalarot, R.; Sridharan, P.; Gastounioti, A.; Jahani, N.; Cohen, E.; et al. Cancer Imaging Phenomics Toolkit: Quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging Spec. Sect. Quant. Imaging Methods Transl. Dev.–Honor. Mem. Dr. Larry Clarke 2018, 5, 011018. [Google Scholar] [CrossRef] [PubMed]
- Doshi, J.; Erus, G.; Ou, Y.; Resnick, S.; Gur, R.; Gur, R.; Satterthwaite, T.; Furth, S.; Davatzikos, C. MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. NeuroImage 2016, 127, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets. arXiv 2014, arXiv:1405.3531. [Google Scholar]
- Vedaldi, A.; Fulkerson, B. VLFeat: An Open and Portable Library of Computer Vision Algorithms; ACM: New York, NY, USA, 2010; pp. 1469–1472. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Sousa, A.V.; Mendonc̨a, A.M.; Sá-Miranda, M.C.; Campilho, A. Classification-Based Segmentation of the Region of Interest in Chromatographic Images. In International Conference Image Analysis and Recognition; Springer: Berlin, Heidelberg, 2011; pp. 68–78. [Google Scholar]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Rathore, S.; Akbari, H.; Rozycki, M.; Abdullah, K.G.; Nasrallah, M.P.; Binder, Z.A.; Davuluri, R.V.; Lustig, R.A.; Dahmane, N.; Bilello, M.; et al. Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci. Rep. 2018, 8, 5087. [Google Scholar] [CrossRef]
- McAleese, K.E.; Walker, L.; Graham, S.; Moya, E.L.J.; Johnson, M.; Erskine, D.; Colloby, S.J.; Dey, M.; Martin-Ruiz, C.; Taylor, J.P.; et al. Parietal white matter lesions in Alzheimer‘s disease are associated with cortical neurodegenerative pathology, but not with small vessel disease. Acta Neuropathol. 2017, 134, 459–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targosz-Gajniak, M.; Siuda, J.; Ochudlo, S.; Opala, G. Cerebral white matter lesions in patients with dementia—From MCI to severe Alzheimer’s disease. J. Neurol. Sci. 2009, 283, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Zinn, P.O.; Mahajan, B.; Sathyan, P.; Singh, S.K.; Majumder, S.; Jolesz, F.A.; Colen, R.R. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE 2011, 6, e25451. [Google Scholar] [CrossRef] [PubMed]
- Bilello, M.; Akbari, H.; Da, X.; Pisapia, J.M.; Mohan, S.; Wolf, R.L.; O’Rourke, D.M.; Martinez-Lage, M.; Davatzikos, C. Population-based MRI atlases of spatial distribution are specific to patient and tumor characteristics in glioblastoma. Neuroimage Clin. 2016, 12, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Datasets | Site (Institute) | Scanner | Training | Testing |
---|---|---|---|---|
Dataset-I | University Medical Center (UMC) Utrecht, Netherland | 3 T Philips Achieva | 20 | 30 |
Dataset-II | National University Health System (NUHS), Singapore | 3 T Siemens TrioTim | 20 | 30 |
Dataset-III | VU University Medical Centre (VU) Amsterdam, Netherland | 3 T GE Signa HDxt | 20 | 30 |
Performance Measures | Linear | RBF | Sigmoid | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Handcrafted Features | ||||||||||||
Scanner- Specific | Scanner- Agnostic | Scanner- Specific | Scanner- Agnostic | Scanner- Specific | Scanner- Agnostic | |||||||
I | II | III | Combined | I | II | III | Combined | I | II | III | Combined | |
Dice score | 80.23 | 81.43 | 79.12 | 78.98 | 81.34 | 82.65 | 81.23 | 78.98 | 79.23 | 80.43 | 80.54 | 77.34 |
Accuracy | 78.21 | 81.32 | 79.87 | 77.45 | 81.76 | 81.34 | 79.23 | 77.23 | 77.12 | 80.12 | 79.34 | 76.32 |
Sensitivity | 82.43 | 78.23 | 80.12 | 79.45 | 78.43 | 83.32 | 82.43 | 80.32 | 80.54 | 79.65 | 81.54 | 79.12 |
Specificity | 83.12 | 80.78 | 81.90 | 78.43 | 83.43 | 80.56 | 80.56 | 79.23 | 77.32 | 81.87 | 80.87 | 76.32 |
AUC | 0.810 | 0.801 | 0.805 | 0.771 | 0.811 | 0.807 | 0.799 | 0.771 | 0.721 | 0.791 | 0.786 | 0.789 |
Transfer learning Features | ||||||||||||
I | II | III | Combined | I | II | III | Combined | I | II | III | Combined | |
Dice score | 82.34 | 81.76 | 82.54 | 78.23 | 80.54 | 81.43 | 80.12 | 79.76 | 81.45 | 82.76 | 81.67 | 79.43 |
Accuracy | 83.32 | 82.65 | 81.65 | 79.56 | 81.56 | 80.23 | 80.54 | 76.23 | 82.43 | 81.67 | 80.43 | 76.45 |
Sensitivity | 81.42 | 81.76 | 80.78 | 80.23 | 79.56 | 79.43 | 79.67 | 79.43 | 80.54 | 79.32 | 80.76 | 79.43 |
Specificity | 81.65 | 82.87 | 81.23 | 77.43 | 78.43 | 81.45 | 81.98 | 78.12 | 81.98 | 81.65 | 81.78 | 77.43 |
AUC | 0.823 | 0.829 | 0.816 | 0.812 | 0.797 | 0.812 | 0.814 | 0.789 | 0.818 | 0.823 | 0.812 | 0.796 |
Performance Measures | Scanner-Specific | Scanner-Agnostic | ||
---|---|---|---|---|
I | II | III | Combined | |
Dice score | 81.93 | 81.65 | 82.65 | 82.65 |
Accuracy | 80.76 | 82.65 | 80.76 | 79.76 |
Sensitivity | 79.23 | 80.32 | 83.34 | 82.34 |
Specificity | 82.87 | 82.65 | 81.87 | 81.87 |
AUC | 0.816 | 0.815 | 0.809 | 0.813 |
Performance Measures | Scanner-Specific | Scanner-Agnostic | Across-Scanner | ||||
---|---|---|---|---|---|---|---|
I | II | III | Combined | I | II | III | |
Dice score | 90.54 | 92.75 | 91.03 | 92.02 | 90.34 | 91.36 | 90.25 |
Accuracy | 89.65 | 91.98 | 89.63 | 91.78 | 88.76 | 90.87 | 89.87 |
Sensitivity | 88.78 | 93.39 | 92.89 | 93.98 | 92.43 | 93.69 | 92.59 |
Specificity | 90.23 | 90.68 | 90.87 | 90.65 | 87.43 | 88.36 | 91.78 |
AUC | 0.916 | 0.917 | 0.899 | 0.907 | 0.891 | 0.907 | 0.799 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathore, S.; Niazi, T.; Iftikhar, M.A.; Singh, A.; Rathore, B.; Bilello, M.; Chaddad, A. Multimodal Ensemble-Based Segmentation of White Matter Lesions and Analysis of Their Differential Characteristics across Major Brain Regions. Appl. Sci. 2020, 10, 1903. https://doi.org/10.3390/app10061903
Rathore S, Niazi T, Iftikhar MA, Singh A, Rathore B, Bilello M, Chaddad A. Multimodal Ensemble-Based Segmentation of White Matter Lesions and Analysis of Their Differential Characteristics across Major Brain Regions. Applied Sciences. 2020; 10(6):1903. https://doi.org/10.3390/app10061903
Chicago/Turabian StyleRathore, Saima, Tamim Niazi, Muhammad Aksam Iftikhar, Ashish Singh, Batool Rathore, Michel Bilello, and Ahmad Chaddad. 2020. "Multimodal Ensemble-Based Segmentation of White Matter Lesions and Analysis of Their Differential Characteristics across Major Brain Regions" Applied Sciences 10, no. 6: 1903. https://doi.org/10.3390/app10061903
APA StyleRathore, S., Niazi, T., Iftikhar, M. A., Singh, A., Rathore, B., Bilello, M., & Chaddad, A. (2020). Multimodal Ensemble-Based Segmentation of White Matter Lesions and Analysis of Their Differential Characteristics across Major Brain Regions. Applied Sciences, 10(6), 1903. https://doi.org/10.3390/app10061903