Fault Diagnosis of Rotating Machine
1. Introduction
2. Content
3. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mikolajczyk, T.; Paczkowski, T.; Pimenov, D.; Mia, M.; Patra, K.; Krolczyk, G.; Munish, K.; Zdrojewski, J. Analysis of the deviation in a low-cost system for stepless digital control of conventional lathe spindle speeds. Appl. Sci. 2019, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Prakash, C.; Antil, P.; Singh, R.; Królczyk, G.; Pruncu, C. Dimensionless analysis for investigating the quality characteristics of Aluminium matrix composites prepared through fused deposition modelling assisted investment casting. Materials 2019, 12, 1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.; Fan, D.; Malekian, R.; Duan, Z.; Li, Z. An image recognition method for gear fault diagnosis in the manufacturing line of short filament fibres. Insight 2018, 60, 270–275. [Google Scholar] [CrossRef]
- Jin, S.; Lin, Q.; Yang, J.; Bie, Y.; Tian, M.; Li, Z. A novel information fusion method for vision perception and location of intelligent industrial robots. Elektron. Elektrotechnika 2019, 25, 4–10. [Google Scholar] [CrossRef]
- Kumar, R.; Chattopadhyaya, S.; Hloch, S.; Krolczyk, G.; Legutko, S. Wear characteristics and defects analysis of friction stir welded joint of Aluminum alloy 6061-t6. Eksploat. I Niezawodn. Maint. Reliab. 2016, 18, 128–135. [Google Scholar] [CrossRef]
- Jin, S.; Lin, Q.; Bie, Y.; Ma, Q.; Li, Z. A practical method for detecting fluff quality of fabric surface using optimal sensing. Elektron. Elektrotechnika 2020, 26, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, Z.; Królczyk, G.; Wu, D.; Tang, Q. Mathematical modeling and multi-attribute rule mining for energy efficient job-shop scheduling. J. Clean. Prod. 2019, 241, 118289. [Google Scholar] [CrossRef]
- Glowacz, A. Recognition of acoustic signals of induction motor using FFT, SMOFS-10 and LSVM. Eksploat. I Niezawodn. Maint. Reliab. 2015, 17, 569–574. [Google Scholar] [CrossRef]
- Glowacz, A. Recognition of acoustic signals of loaded synchronous motor using FFT, MSAF-5 and LSVM. Arch. Acoust. 2015, 40, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Glowacz, A.; Glowacz, Z. Recognition of rotor damages in a DC motor using acoustic signals. Bull. Pol. Acad. Sci. Technol. Sci. 2017, 65, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Glowacz, A.; Glowacz, W.; Kozik, J.; Piech, K.; Gutten, M.; Caesarendra, W.; Liu, H.; Brumercik, F.; Irfan, M.; Khan, Z.F. Detection of Deterioration of Three-phase Induction Motor using Vibration Signals. Meas. Sci. Rev. 2019, 19, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Glowacz, A. Acoustic fault analysis of three commutator motors. Mech. Syst. Signal Process. 2019, 133, 106226. [Google Scholar] [CrossRef]
- Iglesias-Martínez, M.; de Córdoba, P.; Antonino-Daviu, J.; Conejero, J. Detection of nonadjacent rotor faults in induction motors via spectral subtraction and autocorrelation of stray flux signals. IEEE T Ind. Appl. 2019, 55, 4585–4594. [Google Scholar] [CrossRef]
- Yun, J.; Park, S.; Yang, C.; Lee, S.; Antonino-Daviu, J.; Sasic, M.; Stone, G. Airgap search coil-based detection of damper bar failures in salient pole synchronous motors. IEEE T Ind. Appl. 2019, 55, 3640–3648. [Google Scholar] [CrossRef]
- Panagiotou, P.; Arvanitakis, I.; Lophitis, N.; Antonino-Daviu, J.; Gyftakis, K. A new approach for broken rotor bar detection in induction motors using frequency extraction in stray flux signals. IEEE T Ind. Appl. 2019, 55, 3501–3511. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.; Panagiotou, P.; Antonino-Daviu, J.; Gyftakis, K. Efficiency assessment of induction motors operating under different faulty conditions. IEEE T Ind. Electron. 2018, 66, 8072–8081. [Google Scholar] [CrossRef]
- Osornio-Rios, R.; Antonino-Daviu, J.; de Jesus Romero-Troncoso, R. Recent industrial applications of infrared thermography: A review. IEEE T Ind. Inform. 2018, 15, 615–625. [Google Scholar] [CrossRef]
- He, C.; Li, H.; Li, Z.; Zhao, X. An improved bistable stochastic resonance and its application on weak fault characteristic identification of centrifugal compressor blades. J. Sound Vib. 2019, 442, 677–697. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Y.; Guo, Q.; Hu, C.; Peng, Z. Multi-dimensional variational mode decomposition for bearing crack detection in wind turbines with large driving-speed variations. Renew. Energy 2018, 116, 55–73. [Google Scholar] [CrossRef]
- Li, Z.; Yan, X.; Wang, X.; Peng, Z. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors. J. Sound Vib. 2016, 371, 406–433. [Google Scholar] [CrossRef]
- Bie, Y.; Guo, X.; Song, P.; Yang, J.; Li, Z. A novel design of flow structure model for online viscosity measurement. Insight 2019, 61, 9–14. [Google Scholar] [CrossRef]
- Li, Z.; Goebel, K.; Wu, D. Degradation modeling and remaining useful life prediction of aircraft engines using ensemble learning. J. Eng. Gas Turb. Power 2019, 141, 041008. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wu, D.; Hu, C.; Terpenny, J. An ensemble learning-based prognostic approach with degradation dependent weights for remaining useful life prediction. Reliab. Eng. Syst. Saf. 2019, 184, 110–122. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Z.; Zhang, C.; Hu, C.; Peng, Z. On the bi-dimensional variational decomposition applied to nonstationary vibration signals for rolling bearing crack detection in coal cutters. Meas. Sci. Technol. 2016, 27, 065103. [Google Scholar] [CrossRef]
- Li, Z.; Peng, Z. Nonlinear dynamic response of a multi-degree of freedom gear system dynamic model coupled with tooth surface characters: A case study on coal cutters. Nonlinear Dynam. 2016, 84, 271–286. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, H.; Li, Z.; Peng, Z. The nonlinear dynamics response of cracked gear system in a coal cutter taking environmental multi-frequency excitation forces into consideration. Nonlinear Dynam. 2016, 84, 203–222. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Y.; Hu, C.; Peng, Z. Difference equation based empirical mode decomposition with application to separation enhancement of multi-fault vibration signals. J. Differ. Equ. Appl. 2017, 23, 457–467. [Google Scholar] [CrossRef]
- Yang, K.; Hu, B.; Malekian, R.; Li, Z. An improved control-limit-based principal component analysis method for condition monitoring of marine turbine generators. J. Mar. Eng. Technol. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Xi, W.; Li, Z.; Tian, Z.; Duan, Z. A feature extraction and visualization method for fault detection of marine diesel engines. Measurement 2018, 116, 429–437. [Google Scholar] [CrossRef]
- Yan, X.; Xu, X.; Sheng, C.; Yuan, C.; Li, Z. Intelligent wear mode identification system for marine diesel engines based on multi-level belief rule base methodology. Meas. Sci. Technol. 2017, 29, 015110. [Google Scholar] [CrossRef]
- Li, Z.; Peng, Z. A new nonlinear blind source separation method with chaos indicators for decoupling diagnosis of hybrid failures: A marine propulsion gearbox case with a large speed variation. Chaos Soliton. Fract. 2016, 89, 27–39. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Z.; Chen, S.; Li, Z.; Wang, J. A gearbox fault diagnosis method based on frequency-modulated empirical mode decomposition and support vector machine. P. I Mech. Eng. C-J. Mec. 2018, 232, 369–380. [Google Scholar] [CrossRef]
- Li, Z.; Guo, Z.; Hu, C.; Li, A. On-line indicated torque estimation for internal combustion engines using discrete observer. Comput. Electr. Eng. 2017, 60, 100–115. [Google Scholar]
- Zhang, X.; Li, Z.; Wang, J. Friction prediction of rolling-sliding contact in mixed EHL. Measurement 2017, 100, 262–269. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.; Hu, C.; Chen, S.; Wang, J.; Zhang, X. An optimized ensemble local mean decomposition method for fault detection of mechanical components. Meas. Sci. Technol. 2017, 28, 035102. [Google Scholar] [CrossRef]
- Krolczyk, J.; Krolczyk, G.; Legutko, S.; Napiorkowski, J.; Hloch, S.; Foltys, J.; Tama, E. Material flow optimization—A case study in automotive industry. Teh. Vjesn. Technol. Gaz. 2015, 22, 1447–1456. [Google Scholar]
- Li, Z.; Jiang, Y.; Hu, C.; Peng, Z. Recent progress on decoupling diagnosis of hybrid failures in gear transmission systems using vibration sensor signal: A review. Measurement 2016, 90, 4–19. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Sun, S.; Sarkodie-Gyan, T.; Li, W. Decoupling of multiple concurrent faults for diagnosing coal cutter gearboxes: An extensive experimental investigation with multichannel sensor measurements. J. Nondestruc. Eval. Diagn. Progn. Eng. Syst. 2019, 2, 041001. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, C.; Chen, Y.; Liu, P. Improving the accuracy of fault frequency by means of local mean decomposition and ratio correction method for rolling bearing failure. Appl. Sci. 2019, 9, 1888. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Du, J.; Yang, N.; Xu, Y.; Song, L. Compound faults feature extraction for rolling bearings based on parallel dual-Q-factors and the improved maximum correlated kurtosis deconvolution. Appl. Sci. 2019, 9, 1681. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Du, G.; Ding, R.; Zhu, Z. Time frequency representation enhancement via frequency matching linear transform for bearing condition monitoring under variable speeds. Appl. Sci. 2019, 9, 3828. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Lei, M.; Zheng, H.; Yang, Y.; Li, Y.; Xu, M. The Average coding length of Huffman coding based signal processing and its application in fault severity recognition. Appl. Sci. 2019, 9, 5051. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Yu, C.; Liu, C.; Qin, Y.; Cui, S. Fault diagnosis of rolling bearings in rail train based on exponential smoothing predictive segmentation and improved ensemble learning algorithm. Appl. Sci. 2019, 9, 3143. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Tang, J.; Shao, F.; Huang, S.; Wang, Y. Fault diagnosis of rolling bearing based on multiscale intrinsic mode function permutation entropy and a stacked sparse denoising autoencoder. Appl. Sci. 2019, 9, 2743. [Google Scholar] [CrossRef] [Green Version]
- Zan, T.; Wang, H.; Wang, M.; Liu, Z.; Gao, X. Application of multi-dimension input convolutional neural network in fault diagnosis of rolling bearings. Appl. Sci. 2019, 9, 2690. [Google Scholar] [CrossRef] [Green Version]
- Goh, Y.-J.; Kim, O. Linear method for diagnosis of inter-turn short circuits in 3-phase induction motors. Appl. Sci. 2019, 9, 4822. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, T.; Igarashi, N. Failure Diagnosis of demagnetization in interior permanent magnet synchronous motors using vibration characteristics. Appl. Sci. 2019, 9, 3111. [Google Scholar] [CrossRef] [Green Version]
- Glowacz, A. Recognition of acoustic signals of commutator motors. Appl. Sci. 2018, 8, 2630. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Pack, J.-H.; Lee, I.-S. Fault diagnosis of induction motor using convolutional neural network. Appl. Sci. 2019, 9, 2950. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Ko, T.K.; Choi, Y.; Lee, S. A novel fault diagnosis method for high-temperature superconducting field coil of superconducting rotating machine. Appl. Sci. 2020, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Dineva, A.; Mosavi, A.; Gyimesi, M.; Vajda, I.; Nabipour, N.; Rabczuk, T. Fault diagnosis of rotating electrical machines using multi-label classification. Appl. Sci. 2019, 9, 5086. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Wang, Y.; Yang, Z.; Pfeiffer, O. Nonlinear blind source separation and fault feature extraction method for mining machine diagnosis. Appl. Sci. 2019, 9, 1852. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Zhou, D.; Ma, L.; Tang, Y. Dependency model-based multiple fault diagnosis using knowledge of test result and fault prior probability. Appl. Sci. 2019, 9, 311. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zheng, Z.; Wang, H.; Xu, Z.; Liu, G.; Malekian, R.; Li, Z. Analysis of a main cabin ventilation system in a jack-up offshore platform part I: Numerical modelling. Appl. Sci. 2019, 9, 3185. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Chen, J.; Peng, Y.; Zi, Y. A new concept of instantaneous whirling speed for cracked rotor’s axis orbit. Appl. Sci. 2019, 9, 4120. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Królczyk, G.; Li, Z.; Antonino Daviu, J.A. Fault Diagnosis of Rotating Machine. Appl. Sci. 2020, 10, 1961. https://doi.org/10.3390/app10061961
Królczyk G, Li Z, Antonino Daviu JA. Fault Diagnosis of Rotating Machine. Applied Sciences. 2020; 10(6):1961. https://doi.org/10.3390/app10061961
Chicago/Turabian StyleKrólczyk, Grzegorz, Zhixiong Li, and Jose Alfonso Antonino Daviu. 2020. "Fault Diagnosis of Rotating Machine" Applied Sciences 10, no. 6: 1961. https://doi.org/10.3390/app10061961
APA StyleKrólczyk, G., Li, Z., & Antonino Daviu, J. A. (2020). Fault Diagnosis of Rotating Machine. Applied Sciences, 10(6), 1961. https://doi.org/10.3390/app10061961