Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network
Abstract
:1. Introduction
2. Methodology
2.1. Image Database
2.2. Image Pre-Processing and Data Augmentation
2.3. Network Architecture
2.4. Training Network
3. Results and Discussion
Comparison with State-of-the-Art-Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization—Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer. (accessed on 5 November 2019).
- Priya, V.V. An Efficient Segmentation Approach for Brain Tumor Detection in MRI. Indian J. Sci. Technol. 2016, 9, 1–6. [Google Scholar]
- Cancer Treatments Centers of America—Brain Cancer Types. Available online: https://www.cancercenter.com/cancer-types/brain-cancer/types (accessed on 30 November 2019).
- American Association of Neurological Surgeons—Classification of Brain Tumours. Available online: https://www.aans.org/en/Media/Classifications-of-Brain-Tumors (accessed on 30 November 2019).
- DeAngelis, L.M. Brain Tumors. New Engl. J. Med. 2001, 344, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, M.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [Green Version]
- Afshar, P.; Plataniotis, K.N.; Mohammadi, A. Capsule Networks for Brain Tumor Classification Based on MRI Images and Coarse Tumor Boundaries. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1368–1372. [Google Scholar]
- Byrne, J.; Dwivedi, R.; Minks, D. Tumours of the brain. In Nicholson T (ed) Recommendations Cross Sectional Imaging Cancer Management, 2nd ed.; Royal College of Radiologists: London, UK, 2014; pp. 1–20. Available online: https://www.rcr.ac.uk/publication/recommendations-cross-sectional-imaging-cancer-management-second-edition (accessed on 5 November 2019).
- Center for Biomedical Image Computing & Analytics (CBICA). Available online: http://braintumorsegmentation.org/ (accessed on 5 November 2019).
- Mlynarski, P.; Delingette, H.; Criminisi, A.; Ayache, N. Deep learning with mixed supervision for brain tumor segmentation. J. Med Imaging 2019, 6, 034002. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Yasmin, M.; Fernandes, S.L. Big data analysis for brain tumor detection: Deep convolutional neural networks. Futur. Gener. Comput. Syst. 2018, 87, 290–297. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Raza, M.; Yasmin, M. Detection of Brain Tumor based on Features Fusion and Machine Learning. J. Ambient. Intell. Humaniz. Comput. 2018, 1–17. [Google Scholar] [CrossRef]
- Usman, K.; Rajpoot, K. Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal. Appl. 2017, 20, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.; Meier, R.; Alves, V.; Reyes, M.; Silva, C. Automatic Brain Tumor Grading from MRI Data Using Convolutional Neural Networks and Quality Assessment. In Understanding and Interpreting Machine Learning in Medical Image Computing Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 106–114. [Google Scholar]
- Farhi, L.; Zia, R.; Ali, Z.A. 5 Performance Analysis of Machine Learning Classifiers for Brain Tumor MR Images. Sir Syed Res. J. Eng. Technol. 2018, 1, 6. [Google Scholar] [CrossRef]
- Vijh, S.; Sharma, S.; Gaurav, P. Brain Tumor Segmentation Using OTSU Embedded Adaptive Particle Swarm Optimization Method and Convolutional Neural Network. Emerg. Trends Comput. Expert Technol. 2019, 13, 171–194. [Google Scholar]
- Mohsen, H.; El-Dahshan, E.-S.A.; El-Horbaty, E.-S.M.; Salem, A.-B.M. Classification using deep learning neural networks for brain tumors. Futur. Comput. Inform. J. 2018, 3, 68–71. [Google Scholar] [CrossRef]
- Veeraraghavan, A.K.; Roy-Chowdhury, A.; Chellappa, R. Matching shape sequences in video with applications in human movement analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1896–1909. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J. Digit. Imaging 2017, 30, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Huang, W.; Cao, S.; Yang, R.; Yang, W.; Yun, Z.; Wang, Z.; Feng, Q. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition. PLoS ONE 2015, 10, e0140381. [Google Scholar] [CrossRef]
- Cheng, J. Brain Tumor Dataset. 2017. Available online: https://doi.org/10.6084/m9.figshare.1512427.v5 (accessed on 10 September 2019).
- Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. [Google Scholar] [CrossRef]
- Wong, T.-T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Saeb, S.; Lonini, L.; Jayaraman, A.; Mohr, D.C.; Kording, K.P. The need to approximate the use-case in clinical machine learning. GigaScience 2017, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Little, M.A.; Varoquaux, G.; Saeb, S.; Lonini, L.; Jayaraman, A.; Mohr, D.C.; Kording, K.P. Using and understanding cross-validation strategies. Perspectives on Saeb et al. GigaScience 2017, 6, 1–6. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Phaye, S.S.R.; Sikka, A.; Dhall, A.; Bathula, D. Dense and Diverse Capsule Networks: Making the Capsules Learn Better. arXiv 2018, arXiv:1805.04001. [Google Scholar]
- Pashaei, A.; Ghatee, M.; Sajedi, H. Convolution neural network joint with mixture of extreme learning machines for feature extraction and classification of accident images. J. Real Time Image Process. 2019, 1–16. [Google Scholar] [CrossRef]
- Gumaei, A.; Hassan, M.M.; Hassan, R.; Alelaiwi, A.; Fortino, G. A Hybrid Feature Extraction Method With Regularized Extreme Learning Machine for Brain Tumor Classification. IEEE Access 2019, 7, 36266–36273. [Google Scholar] [CrossRef]
- Pashaei, A.; Sajedi, H.; Jazayeri, N. Brain Tumor Classification via Convolutional Neural Network and Extreme Learning Machines. In Proceedings of the 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 25–26 October 2018; pp. 314–319. [Google Scholar]
- Afshar, P.; Mohammadi, A.; Plataniotis, K.N. Brain Tumor Type Classification via Capsule Networks. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3129–3133. [Google Scholar]
- Kurup, R.V.; Sowmya, V.; Soman, K.P. Effect of Data Pre-processing on Brain Tumor Classification Using Capsulenet. In International Conference on Intelligent Computing and Communication Technologies; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 110–119. [Google Scholar]
- Srinivasan, K.; Nandhitha, N.M. Development of Deep Learning algorithms for Brain Tumor classification using GLCM and Wavelet Packets. Caribb. J. Sci. 2019, 53, 1222–1228. [Google Scholar]
- Sultan, H.H.; Salem, N.; Al-Atabany, W. Multi-Classification of Brain Tumor Images Using Deep Neural Network. IEEE Access 2019, 7, 69215–69225. [Google Scholar] [CrossRef]
- Kutlu, H.; Avcı; Avci, E. A Novel Method for Classifying Liver and Brain Tumors Using Convolutional Neural Networks, Discrete Wavelet Transform and Long Short-Term Memory Networks. Sensors 2019, 19, 1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput. Med. Imaging Graph. 2019, 75, 34–46. [Google Scholar] [CrossRef]
- Shaikh, M.; Kollerathu, V.A.; Krishnamurthi, G. Recurrent Attention Mechanism Networks for Enhanced Classification of Biomedical Images. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 1260–1264. [Google Scholar]
- Fernando, T.; Denman, S.; Aristizabal, D.E.A.; Sridharan, S.; Laurens, K.R.; Johnston, P.; Fookes, C. Neural Memory Plasticity for Anomaly Detection. arXiv 2019, arXiv:1910.05448. [Google Scholar]
- Rehman, A.; Naz, S.; Razzak, M.I.; Akram, F.; Razzak, I. A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning. Circuits Syst. Signal Process. 2019, 39, 757–775. [Google Scholar] [CrossRef]
- Tripathi, P.C.; Bag, S. Non-invasively Grading of Brain Tumor Through Noise Robust Textural and Intensity Based Features. In Computational Intelligence in Pattern Recognition; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 531–539. [Google Scholar]
- Ismael, M.; Abdel-Qader, I. Brain Tumor Classification via Statistical Features and Back-Propagation Neural Network. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 0252–0257. [Google Scholar]
- Kotia, J.; Kotwal, A.; Bharti, R. Risk Susceptibility of Brain Tumor Classification to Adversarial Attacks. In Proceedings of the Advances in Intelligent Systems and Computing, Krakow, Poland, 2–4 October 2019; pp. 181–187. [Google Scholar]
- Anaraki, A.K.; Ayati, M.; Kazemi, F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 2019, 39, 63–74. [Google Scholar] [CrossRef]
- Abiwinanda, N.; Hanif, M.; Hesaputra, S.T.; Handayani, A.; Mengko, T.R. Brain Tumor Classification Using Convolutional Neural Network. In World Congress on Medical Physics and Biomedical Engineering 2018 Prague; Springer: Singapore, 2018; pp. 183–189. [Google Scholar]
- Kaldera, H.N.T.K.; Gunasekara, S.R.; Dissanayake, M.B. Brain tumor Classification and Segmentation using Faster R-CNN. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, UAE, 26 March–10 April 2019; pp. 1–6. [Google Scholar]
- Kharrat, A.; Neji, M. Feature selection based on hybrid optimization for magnetic resonance imaging brain tumor classification and segmentation. Appl. Med. Inform. 2019, 41, 9–23. [Google Scholar]
- Portable Ultrasound Enables Anytime, Anywhere Imaging. Available online: https://healthtechmagazine.net/article/2018/07/portable-ultrasound-enables-anytime-anywhere-imaging (accessed on 3 February 2020).
- Moccia, S.; Foti, S.; Routray, A.; Prudente, F.; Perin, A.; Sekula, R.F.; Mattos, L.S.; Balzer, J.R.; Fellows-Mayle, W.; De Momi, E.; et al. Toward Improving Safety in Neurosurgery with an Active Handheld Instrument. Ann. Biomed. Eng. 2018, 46, 1450–1464. [Google Scholar] [CrossRef]
- Zaffino, P.; Pernelle, G.; Mastmeyer, A.; Mehrtash, A.; Zhang, H.; Kikinis, R.; Kapur, T.; Spadea, M.F. Fully automatic catheter segmentation in MRI with 3D convolutional neural networks: Application to MRI-guided gynecologic brachytherapy. Phys. Med. Boil. 2019, 64, 165008. [Google Scholar] [CrossRef] [PubMed]
Layer No. | Layer Name | Layer Properties |
---|---|---|
1 | Image Input | 256 × 256 × 1 images |
2 | Convolutional | 16 5 × 5 × 1 convolutions with stride [2 2] and padding ‘same’ |
3 | Rectified Linear Unit | Rectified Linear Unit |
4 | Dropout | 50% dropout |
5 | Max Pooling | 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0] |
6 | Convolutional | 32 3 × 3 × 16 convolutions with stride [2 2] and padding ‘same’ |
7 | Rectified Linear Unit | Rectified Linear Unit |
8 | Dropout | 50% dropout |
9 | Max Pooling | 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0] |
10 | Convolutional | 64 3 × 3 × 32 convolutions with stride [1 1] and padding ‘same’ |
11 | Rectified Linear Unit | Rectified Linear Unit |
12 | Dropout | 50% dropout |
13 | Max Pooling | 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0] |
14 | Convolutional | 128 3 × 3 × 64 convolutions with stride [1 1] and padding ‘same’ |
15 | Rectified Linear Unit | Rectified Linear Unit |
16 | Dropout | 50% dropout |
17 | Max Pooling | 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0] |
18 | Fully Connected | 1024 hidden neurons in fully connected (FC) layer |
19 | Rectified Linear Unit | Rectified Linear Unit |
20 | Fully Connected | 3 hidden neurons in fully connected layer |
21 | Softmax | softmax |
22 | Classification Output | 3 output classes, “1” for meningioma, “2” for glioma, and “3” for a pituitary tumor |
Division/Dataset | Testing Approach | Test Accuracy [%] | Average Precision [%] | Average Recall [%] | Average F1-Score [%] |
---|---|---|---|---|---|
record-wise/the original dataset | 10-fold | 95.40 | 94.81 | 95.07 | 94.93 |
One test | 97.39 | 95.44 | 96.94 | 96.11 | |
record-wise/the augmented dataset | 10-fold | 96.56 | 95.79 | 96.51 | 96.11 |
One test | 97.28 | 97.15 | 97.82 | 97.47 | |
subject-wise/the original dataset | 10-fold | 84.45 | 81.40 | 82.72 | 81.86 |
One test | 90.39 | 85.99 | 85.84 | 85.91 | |
subject-wise/the augmented dataset | 10-fold | 88.48 | 86.48 | 87.82 | 86.97 |
One test | 91.84 | 83.94 | 82.18 | 81.78 |
Reference | k-Fold Cross-Validation Method/Data Division | Accuracy [%] | Average Precision [%] | Average Recall [%] | Average F1-Score [%] |
---|---|---|---|---|---|
Phaye et al. [28] | 8-fold; data division not stated | 95.03 | X | X | X |
Pashaei et al. [29] | 5-fold; 80% data in training set, 20% in test | 93.68 | X | X | X |
Gumaei et al. [30] | 5-fold; 80% data in training set, 20% in test | 92.61 | X | X | X |
Pashaei et al. [31] | 10-fold; 70% data in training set, 30% in test. | 93.68 | 94.60 | 91.43 | 93.00 |
Proposed | 10-fold; 60% data in training set, 20% in validation, 20% in test. | 95.40 1 | 94.81 1 | 95.07 1 | 94.94 1 |
Reference | Data Division | Accuracy [%] | Average Precision [%] | Average Recall [%] | Average F1-Score [%] |
---|---|---|---|---|---|
Afshar et al. [32] | data division not stated | 86.56 | X | X | X |
Vimal Kurup et al. [33] | 80% data in training set, 20% in test | 92.60 | 92.67 | 94.67 | 93.33 |
Srinivasan et al. [34] | 75% data in training set, 25% in test | 93.30 | X | 91.00 | 72.00 |
Proposed | 60% data in training set, 20% in validation, 20% in test | 97.39 1 | 95.44 1 | 96.94 1 | 96.11 |
Reference | Data Division | Accuracy [%] | Average Precision [%] | Average Recall [%] | Average F1-Score [%] |
---|---|---|---|---|---|
Sultan et al. [35] | 68% data in training set, 32% in validation and test | 96.13 | 96.06 | 94.43 | X |
Proposed | 60% data in training set, 20% in validation, 20% in test | 97.28 1 | 97.15 1 | 97.82 1 | 97.47 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badža, M.M.; Barjaktarović, M.Č. Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network. Appl. Sci. 2020, 10, 1999. https://doi.org/10.3390/app10061999
Badža MM, Barjaktarović MČ. Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network. Applied Sciences. 2020; 10(6):1999. https://doi.org/10.3390/app10061999
Chicago/Turabian StyleBadža, Milica M., and Marko Č. Barjaktarović. 2020. "Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network" Applied Sciences 10, no. 6: 1999. https://doi.org/10.3390/app10061999
APA StyleBadža, M. M., & Barjaktarović, M. Č. (2020). Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network. Applied Sciences, 10(6), 1999. https://doi.org/10.3390/app10061999