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Abstract: As one of the important parts of a mechanical transmission system, a rolling bearing often has
multiple faults coexisting, and the mutual coupling between multiple faults poses a challenge for accurate
diagnosis of rolling bearings. Aiming at the above problems, this paper proposes a weighted Morlet
wavelet-overlapping group sparse (WOGS) algorithm for the multiple fault diagnosis of rolling bearings.
On the basis of the overlapping feature of Morlet wavelet transform coefficients, a WOGS optimization
model was initially constructed. Thereafter, the weight coefficients in the model were constructed by
analyzing the impulse features of the signal. Thus, majorization-minimization was used to solve the
optimization problem. A case study on weak multiple fault diagnosis of rolling bearings was performed
to validate the effectiveness of the WOGS algorithm. Quantitative indexes are used to further discuss the
extraction accuracies of different algorithms, and the results show that the proposed algorithm exhibits
better performance than other algorithms.

Keywords: overlapping group sparse; multiple fault diagnosis; morlet wavelet transform; rolling bearing;
sparse optimization

1. Introduction

Rolling bearings act as tiny transmission components in a complex mechanical system. If a rolling
bearing fails, then the overall failure rate of a complex system will increase due to its scale effect, which will
cause significant economic losses or serious safety accidents [1]. Rolling bearings often have multiple faults
coexisting, and multiple fault features are coupled with one another in real industries. Compared with a
single fault, the coupling between multiple faults makes fault diagnosis more difficult. In order to solve
these problems, various methods—vibration analysis [2–4], current signal signature analysis [5], acoustic
emission feature recognition [6], etc., are widely used in rolling bearing fault diagnosis. Because a vibration
signal directly expresses the dynamic behavior of the faulty bearing and is sensitive to faults, it has been
widely used in industry.

As a core concept of condition monitoring and fault diagnosis, a signal processing technique
is an efficient and effective method for fault feature extraction. Take as examples, empirical mode
decomposition (EMD) [2,7,8], wavelet transform [9,10], spectral kurtosis [3,11], stochastic resonance [12],
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and morphological filtering [13]. The above traditional signal processing methods are suitable for the
feature extraction of a single fault; hence, they are generally inapplicable to multiple fault diagnosis.
Therefore, some improved algorithms have been proposed for multiple fault diagnosis. Jiang et al. [14]
used multiwavelet packets as pre-filters to improve colorred ensemble empirical mode decomposition
(EEMD) results and the improved algorithm to analyze the multiple faults in a rotor experimental
device and industrial machine set. Chen et al. [15] combined an improved adaptive redundancy
lifting multiwavelet with a Hilbert transform algorithm for rolling bearing compound fault detection.
Furthermore, Zhang et al. [16] proposed a method on the basis of resonance sparse decomposition and
comb filter for gearbox multiple fault diagnosis. The proposed method achieves composite fault separation
on the basis of the morphological differences of divergent types of faults. Du et al. [17] proposed a sparse
feature recognition method on the basis of the union of redundant dictionary for multiple fault diagnosis
with different morphological waveforms.

The above fault separation methods obtain effective results in multiple fault diagnosis, but they still
suffer from the following drawbacks. (1) The methods based on EMD [2,7,8], wavelet transform [9,10],
and spectral kurtosis [3,11] are used to construct the appropriate filter to extract the resonance band
where the local fault is located. Since a single local fault has only one resonance band in the frequency
domain, it is easy to extract fault features by constructing an appropriate filter. However, under complex
faults, the resonance band information is more complex, so it is difficult to achieve the ideal effect simply
by constructing band-pass filter. (2) The morphological method can realize multiple faults separation,
which is based on different fault signals with different morphological characteristics. For example,
the morphological method can successfully separate the harmonic morphology and periodic impulsive
waveforms in [17], which respectively indicate the misalignment of the gearbox output shaft and localized
faults in a gear. In the multiple faults of rolling bearings, such as inner and outer faults, the fault features
are all in the form of impulse, and the morphological difference is small. Therefore, obtaining the desired
effect by using the difference in fault features to separate the multiple faults of rolling bearings is difficult.

Different from the above methods, sparse representation can effectively realize the capture of the
essence of information and the most efficient expression. The method based on sparse representation has
been widely used in the field of mechanical fault diagnosis [18–22]. For instance, Yang et al. [23] used
basis pursuit to diagnose rolling bearing faults. The result shows that the basis pursuit can represent
features with fine resolution in the time-frequency domain, which makes explaining the fault features easy.
Feng and Chu [24] applied some typical atomic decomposition methods, such as the method of frames,
best orthogonal basis, and matching and basis pursuits, to analyze the vibration signals of damaged
gearboxes. Moreover, Liu et al. [25] used the matching pursuit and time-frequency atom to analyze the
bearing vibration signals and extract the vibration signatures.

In recent years, structural group sparse methods have received extensive attention in the fields
of statistics, machine learning, signal processing, computer vision, and biological information [26–29].
Structural group sparse indicates not only that the signal is sparse, but also that the signal has a simple
form of structural sparsity [30]. Group sparsity can be divided into non-overlapping group sparse
and overlapping group sparse models. If no coupling exists between adjacent groups in the signal,
then constructing a non-overlapping group sparse model can simplify the optimization problem [31].
Non-overlapping group sparse is often not satisfactory to obtain good noise reduction results; therefore,
the overlapping group sparse (OGS) model is introduced. For instance, OGS has been implemented for
estimating sparse signals in noise [32]. OGS is a special structure in the structural group sparse model,
indicating that an overlap exists between adjacent groups. In addition to the sparsity of the wavelet
coefficients of the multiple fault features, interrelated structures also exist between the coefficients. OGS
has been introduced to the field of fault diagnosis in recent years. For instance, on the basis of the
overlapping group shrinkage and majorization-minimization (MM), He et al. [33,34] extracted the periodic
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group sparse signal from the vibration signal and realized the compound fault diagnosis of rolling bearings.
The proposed algorithm requires a priori knowledge of the location of the fault to further separate the
different faults. OGS is an effective method for extracting compound faults. However, the following
problems also exist. (1) Determining the location of the fault before disassembling is impossible. (2) The
literature [33,34] is based on the prior knowledge of the sparsity of the fault signal itself, but the fault signal
is sparse under wavelet transform, and the signal itself is not sparse. In this research, OGS is improved to
overcome these shortcomings.

In industry, during the degradation of a bearing, multiple types of faults may coexist, and the signal
is weak due to the long signal transmission path. Therefore, in this research, a multiple fault feature
extraction method based on the WOGS is proposed. Overlaps emerge in the time domain due to the
different types of faults; thus, the wavelet transform coefficients must also overlap. The OGS model is
constructed on the basis of the overlapping wavelet transform coefficients, and the sparse model is solved
by MM. The weight coefficients in the OGS model are then estimated by analyzing the salient features of
the vibration signal. Consequently, the weak impulse features in the vibration signal can be enhanced,
which are then evaluated for multiple fault diagnosis.

The rest of this paper is organized as follows. In Section 2, the OGS is reviewed and the
majorization-minimization algorithm for the OGS problem is presented. Section 3 details the proposed
algorithm to extract multiple fault features. Section 4 covers the verification of the proposed algorithm by
using a simulated signal model. Section 5 presents the experimental study to further validate the proposed
algorithm. Finally, Section 6 concludes the paper.

2. Background

2.1. Overlapping Group Sparse

The observed vibration signal of rolling bearing y is denoted as y = [y(0), . . . , y(n − 1)]T in Rn,
which is described as:

y(i) = x(i) + w(i), i ∈ I. (1)

where the signal x(∈ Rn) is known to have a group property, and w(∈ Rn) is white Gaussian noise.
According to the prior knowledge that x has group sparse characteristics, a sparse component x can be
solved from the observed signal y by establishing a sparse optimization model:

x̂ = arg min
x

{
F(x) =

1
2
‖y− x‖2 + λG(x)

}
. (2)

where λ > 0 is the regularization parameter. The first addend in (2) is the fidelity term, which can constrain
the error between the estimated signal x̂ and the observed signal y. The second addend is the penalty term,
which can constrain the sparsity of x. The parameter λ is used to balance the constraint weight between
the fidelity term and the sparse term. In addition, non-zero coefficients usually are not independently
distributed and form a cluster, and the overlaps of coefficients emerge between adjacent groups. Therefore,
the overlapping group lasso function can be selected to build regularization term G(x), which is defined as:

G(x) = ∑
i∈I

[
∑
j∈J
|x(i + j)|2

]1/2

, (3)

where i is the group index, j is the index of the coefficients in group i, and each group is of the same size
|J|. For a one-dimensional signal x of length N and group size K, we set I in Equation (3) to:
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I = {0, . . . , N − 1}. (4)

and J in Equation (3) is set to:
J = {0, . . . , K− 1}. (5)

In the rolling bearing multiple fault, because different fault features have overlapping features in the
time-domain, their wavelet transform coefficients also have the feature of overlapping sparse groups. If a
non-overlapping group sparse model is used to build a model with overlapping group sparse, it will lead
to the problem of missing partial coefficients. In the following, from the perspective of the selection of
overlapping group sparse coefficients between non-overlapping group sparse model and overlapping
group sparse model, it shows that the overlapping group model is more suitable for coefficient selection
with the overlapping group sparse property. Figure 1 shows that coefficients have overlapping group
structure, where each ellipse represents a group. Group x3, x4, x5, x6 and group x10, x11 are selected, and
other groups are discarded; meanwhile, coefficients x3 and x4 are overlapping parts. Coefficient selection
results of non-overlapping group sparse model are shown in Figure 2a; the coefficients of the overlapping
part x3 and x4 will eventually be discarded. If the overlapping group sparse model is used, the result of
coefficient selection is shown in Figure 2b, and the overlapping parts x3 and x4 will be retained eventually.

Figure 1. Coefficients with overlapping group structure.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x10 x11x5 x6

(a)

(b)

Figure 2. Coefficient selection results: (a) non-overlapping group sparse; (b) overlapping group sparse.

2.2. Majorization-Minimization for OGS

The solution of the sparse optimization problem is usually divided into two steps. The first
step is to pre-process the objective function, and transform the objective function that is non-smooth,
non-convex, and inseparable into a smooth, convex, separable function. The second step is to solve
the transformed objective function. MM is suitable for solving difficult optimization problems directly,
such as non-differentiable problems. MM does not need to directly minimize the objective function F(x)
in Equation (2), but converts F(x) into optimization problem Qk(x, xk), {k = 0, 1, 2, . . .}. The advantage of
this is that the solution of Qk(x, xk) is simpler than optimization problem F(x). The constructed function
Qk(x, xk) needs to satisfy the following constraints:
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{
Qk(x, xk) ≥ F(x), ∀x
Qk(xk, xk) = F(xk)

(6)

Through the k-th iterations, Qk(x, xk) converges to the minimum value of the objective function
F(x). Because the MM method is simple to use and efficiently calculated, it plays a more prominent
role in multivariable optimization. Using MM algorithm to solve the optimization function F(x) can be
summarized as the following steps:

(1) Construct an appropriate function Qk(x, xk) to satisfy the constraints in Equation (51);
(2) Calculate the minimum of Qk(x, xk), marked as xk + 1:

xk+1 = arg min
x

Qk(x, xk); (7)

(3) Let k = k + 1; go to step (2).

To solve the sparse optimization problem (2), we use the MM algorithm. For instance, if the group
size is set to K = 2, then the optimization objective function F(x) in Equation (2) is expanded as:

F(x) = min
θ∈RN

1
2
‖y− x‖2 + λ

(
· · ·+

√
|x(1)|2 + |x(2)|2+

√
|x(2)|2 + |x(3)|2 +

√
|x(3)|2 + |x(4)|2 + · · ·

)
(8)

The derivative is expressed as:

∂F(x)
∂x(i)

= x(i)− y(i) + λx(i)

 1√
|x(i− 1)|2 + |x(i)|2

+
1√

|x(i)|2 + |x(i + 1)|2

 , 0 ≤ i ≤ N − 1. (9)

In Equation (9), x(−1) and x(N) can be considered zero, as noted for i /∈ I. The Equation (9) is
rewritten as:

∂F(x)
∂x(i)

= x(i)− y(i) + λx(i)r(i; x), (10)

where r(i; x) = ∑
j∈J

[
∑

k∈J
|x(i− j + k)|2

]−1/2

.

Setting the derivative to zero, we can formulated the optimization problem as:

x(i) + λx(i)r(i; x) = y(i), i ∈ I. (11)

Hence, rewrite Equation (11) as:

x(i) =
y(i)

1 + λr(i; x)
, i ∈ I. (12)

More details about the MM procedure can be found in [35,36].

3. The Proposed Algorithm

3.1. WOGS Model

Fault signal x is assumed to be non-sparse, but it is approximately sparse under the Morlet wavelet
transform. Fault signal x can be expressed as:
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x = Φθ, (13)

where Φ and θ represent the Morlet wavelet dictionary and the sparse representation coefficient. In order to
solve the regularization inverse problem, that is, recover x from the observed vibration signal y, the sparse
optimization problem can be formulated as:

θopt = arg min
x

{
F(θ) = min

θ∈RN

1
2
‖y−Φθ‖2 + λG(θ)

}
, (14)

where G(θ) is a regularized penalty function for inducing sparse solutions. Penalty term G(θ) depends on
the structural form of coefficient θ. In the multiple fault signal of rolling bearings, only a small number
of coefficients have large amplitudes, and the rest are close to zero. The OGS regularization term in
Equation (3) is used to characterize the overlapping group sparsity of x. Therefore, the regularization
function based on the Morlet wavelet transform coefficient θ is defined as

G(θ) = ∑
i

[
∑
j∈J
|θ(i + j)|2

]1/2

(15)

for a two-dimensional (2-D) vector (θ) of size N1 × N2 with a group size of K1 × K2, and then I and J are
set to:

I = {(i1, i2) : 0 ≤ i1 ≤ N1 − 1, 0 ≤ i2 ≤ N2 − 1}, J = {(j1, j2) : 0 ≤ j1 ≤ K1 − 1, 0 ≤ j2 ≤ K2 − 1}. (16)

3.2. Adaptive Weight Parameter

The value of the weights wi in the OGS problem have a great effect on the accuracy of fault feature
extraction. In view of this dependence on the weight selection, the weights wi are constructed by analyzing
the salient features of the fault signals. The purpose of modifying the values of the weights is to obtain a
good reconstruction of the impulse signal. Introducing the corrected weights to penalty item G(θ) can be
written as follows:

G(θ) =
n

∑
i=1

wi‖θi,K‖2 (17)

k ∈ supp(y) should denote the position of the significant feature, such as the impulse sequence;
^

Γk ⊂ Γ
should be the set of groups containing position k; and finally, define a shrinkage operator on the weights
P : w ∈ R+ → R+ by:

P(wi) ≡ w̃i =

{
aiwi if g(i) ∈

^

Γk
wi otherwise

(18)

where ai ∈ [0; 1]. For the given group g(i), if w̃i ≤ wi, then the weights are correspondingly weakened in
the optimization process. Therefore, preserving the coefficients of the fault-related salient features during
the regularization process is advantageous.∣∣θj,n

∣∣ should be the wavelet coefficient at position n and scale j under the Morlet wavelet transform.
The normalized wavelet coefficients can be written as:

δ(n) :=

(
J

∏
j=J0

γ
(∣∣θj,n

∣∣))1/(J−J0+1)

(19)
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where γ (·) is expressed as

γ(θj,n) =
θj,n −min θj,·

max θj,· −min θj,·
(20)

In (20), γ (·) denotes the normalization function. At the location of the impact sequence,
the normalized wavelet coefficients δ are close to 1. When the signal is in the smoothing phase,
the normalized wavelet coefficients δ are approximately zero. Threshold and the minimum interval
length of r are defined to find the location of the impulse points. We define set Kτ,r(1), Kτ,r(2), Kτ,r(S) as a
non-empty, disjoint, non-adjacent interval that must satisfy the interval length greater than r and δ(n) > τ.
The position of the salient feature in the observed signal y is determined by the S set of positions Kτ,r in
the following equation:

Kτ,r :=

{
max

n∈Kτ,r(s)
δ(n)

}S

s=1

(21)

Algorithm 1 gives the process of estimating the set of positions Kτ,r and the value of weights {wi},
which are determined by the choice of parameters τ and r.

Algorithm 1: Determination of the set of positions Kτ,r and adaptive weights {wi}.

Input: y; r, n0
Output: {wi}
Procedure:

θ ← MorletCWT(y)
δ(n)← θ{

τq
}
← δ

Kτq ,r ←
{

n : δ(n) > τq
}

Kτq ,r(i)← arg max
n∈Kτq ,r(i)

δ(n)
^

Γk ← Kτq ,r
σ̂2 ← Estimate noise variance from θ
a← Set shrinkage factor according to σ̂

{wi} ←
(^

Γk, a
)

End

3.3. The Fault Feature Extraction Algorithm Based on WOGS

When the fault signal x itself has overlapping group sparsity characteristics, the optimal solution is
obtained by using Equation (12). However, the actual fault signal does not have sparsity characteristics,
and the multi-fault signal has overlapping group sparsity characteristics under wavelet transform, so the
WOGS problem is constructed, as shown in Equation (14). Similarly, MM algorithm is used to solve the
WOGS problem, and the derivative of Equation (14) is expressed as:

∂F(θ)
∂θ(i)

= Φ−1 (Φθ(i)− y(i)) + λθ(i)r(i; θ) (22)

where r(i; θ) = ∑
j∈J

[
∑

k∈J
|θ(i− j + k)|2

]−1/2

Hence, the optimal θ(i) can be obtained:

θ(i) =
Φ−1y(i)

1 + λr(i; θ)
, i ∈ I. (23)
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The fault signal x is reconstructed according to the wavelet transform coefficients:

x = Φθ (24)

The fault feature extraction algorithm based on WOGS is summarized in Algorithm 2. Moreover,
its corresponding flow chart is shown in Figure 3.

Algorithm 2: Fault feature extraction based on WOGS.

1: Input: y, w, K.
2: Initialize morlet-wavelet transform coefficient: θ = Φ−1y.

3: Construct 2-D MW-OGS optimization problem: θopt = arg min
x

{
F(θ) = min

θ∈RN

1
2‖y−Φθ‖2 + λG(θ)

}
.

4: Calculate weight coefficient: {wi} ←
(^

Γk, a
)

.

5: Solve WOGS problem: θ(i) = Φ−1y(i)
1+wir(i;θ)

, i ∈ I′.
Until convergence

6: Output denoised signal: x = Φθ.
7: Envelope demodulation analysis is performed on the denoised signal x to extract fault features.

Figure 3. The fault feature extraction algorithm based on WOGS.

4. Simulation Signal Analysis

The actual rolling bearing fault signal model is simplified to verify the effectiveness of the proposed
algorithm. Therefore, the simulation model of the rolling bearing multiple fault signal is established:
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s(t) = s1(t) + s2(t) + w(t)
s1(t) = e−80t sin(600πt)
s2(t) = e−250t sin(2000πt)

(25)

where s1(t) is the impulse response caused by the first partial fault with feature frequency f1 = 20 Hz,
s2(t) is the impulse response caused by the second local fault with feature frequency f2 = 70 Hz, and w(t)
is white Gaussian noise. The MATLAB script function awgn (x, SNR) refers to the addition of white
Gaussian noise to the vector signal x. The scalar snr specifies the signal-to-noise ratio per sample, in dB.
Here, the vector signal is set to s1(t)+ s2(t), and the signal-to-noise ratio is set to be SNR = −5. Figure 4a–c
correspond to s1(t), s2(t), and s(t), respectively. Seeing the periodic impulse feature from synthesized
signal s(t) is difficult. In order to extract periodic impulse features, spectral analysis is a common type
of method; such methods include frequency spectral analysis and envelope spectral analysis. Frequency
spectrum analysis is used to perform a Fourier transformation on the original signal. Envelope spectrum
analysis performs the Hilbert transformation on the original signal, and then the Fourier transform is
applied to the envelope. The amplitude of fault feature frequency in the frequency spectrum is small, while
the envelope spectrum is sensitive to impulse components, so the amplitude of fault feature frequency
in the envelope spectrum is very high and easy to identify. Figure 5 shows the frequency and envelope
spectrum of synthesized signal s(t). Figure 5a exhibits that the resonance band corresponding to two local
faults, which are marked with red lines. In the envelope spectrum, the frequency components at 20 and
70 Hz have the largest magnitude; they represent the feature frequencies of the two impulses, respectively.
In addition to the above feature frequencies, significant noise components are available.
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Figure 4. Simulated signal: (a) s1(t). (b) s2(t). (c) s(t).
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Figure 6 shows the time-frequency representation of the simulated signal based on the Morlet-wavelet
transform. As can be seen from the figure, TF1 and TF2 correspond to the time-frequency distribution of
two local fault signals s1(t) and s2(t) in Equation (25), respectively. It can be seen from Figure 6 that they
have periodic impact characteristics along the time axis, but it is difficult to get accurate periodic values.
The Morlet-wavelet coefficients are taken as the observed signal y in Equation (1). Figure 7a–c shows the
denoised results based on the WOGS algorithm with a group size 7× 2 (i.e., seven frequency bins × two
time bins). Comparing Figures 5a and 7a, we find that the periodic impulse features are evident after noise
reduction. Figure 7b shows the frequency spectrum of the denoised signal, where the two resonance bands
representing local faults are preserved. The dominant frequency components in Figure 7c are 20, 40, 60,
and 80 Hz, which represent the feature and harmonic frequencies of the first impulse component, and the
frequency components at 70, 140, and 210 Hz represent the feature and harmonic frequencies of the second
impulse component.
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Figure 5. Frequency spectrum and envelope spectrum of the simulated signal: (a) Frequency spectrum of
the simulated signal. (b) Envelope spectrum of the simulated signal.

Figure 6. Time-frequency representation of simulated signal.
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Figure 7. Results of the proposed WOGS algorithm: (a) Time domain waveform. (b) Frequency spectrum.
(c) Envelope spectrum.

The simulated signal is decomposed by the tunable Q-factor wavelet transform (TQWT), which is
similar to the WOGS algorithm. The sparse optimization model established in TQWT can be written as:

arg min
w1,w2

‖y−Φ1w1 −Φ2w2‖+
J1+1

∑
j=1

λ1,j
∥∥w1,j

∥∥
1 +

J2+1

∑
j=1

λ2,j
∥∥w2,j

∥∥
1 (26)

x1 = Φ1w1x2 = Φ2w2 (27)

where Φ1 and Φ2 denote the inverse TQWT having high and low Q-factors respectively, and λ1 and λ2 are
the regularization parameters. The sparse coefficients w1 and w2 are obtained by solving the optimization
problem. Then, through the signal reconstruction of Equation (25), the high-factors component and
low-factors component of the signal can be obtained, which represent the harmonic component and the
impact component, respectively. Therefore, TQWT and WOGS have similar ideas for extracting fault
features. But based on different prior knowledge, the two algorithms build different models. In order to
highlight the weak fault characteristics, we weighted the penalty terms in the WOGS model. The resonance
characteristic of the signal is used to construct the wavelet basis in TQWT. However, we use the Morlet
wavelet basis function in WOGS. Here, the parameters of the high oscillatory component are Q1 = 7,
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r1 = 5, J1 = 10, and the parameters of the low oscillatory component are Q2 = 2, r2 = 3.5, J2 = 7. Figure 8
illustrates the decomposition result of the TQWT, and Figure 8b shows that the impulse feature can be
observed in the low oscillatory component. Furthermore, Figure 9a–c exhibits the envelope spectra of the
high and low oscillatory and residual components. Figure 9b depicts some obvious peaks at 20 and 70 Hz,
corresponding to the feature frequencies of the two different impulse components. The methods in [33,34]
use the OGS algorithm to extract multiple faults directly. Figure 10 displays the denoised result of the OGS
algorithm with group size K = 3. Figure 10 shows that no evident periodic impulse features are available.
The same signal was also processed by using soft threshold denoising. Figure 11 shows the denoised
results of soft threshold. In addition to the impulse fault frequency, a large amount of noise also emerges.

Compared with other methods that extract multiple fault information when rolling bearing signals
are masked by strong noise, the WOGS algorithm can obtain good diagnostic results.
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Figure 8. Decomposition results by TQWT: (a) High oscillatory component. (b) Low oscillatory component.
(c) Residual component.

The energy ratio at the characteristic frequency is used as an evaluation index to compare the fault
feature extraction effects of the above algorithms. The energy ratio can be defined as:

R f =
∑4

t=1 S(t× fi) + ∑4
j=1 S(j× fo)

S( f )
(28)
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where fi and fo correspond to the inner and outer fault characteristic frequencies, respectively.
S( f ) represents the energy of the entire envelope spectrum. The computer configuration is as follows:
the processor—Intel Core i7-8550U; the CPU frequency—1.8 GHz; the memory—16 GB; the graphics
card—NVIDIA GeForce MX150; operating system—Win10 (64bit); the program—implemented on
MATLAB R2015b. Table 1 shows the energy ratio R f and CPU running time Tf of the above algorithms.
The results show that WOGS algorithm has the largest energy ratio, which indicates that it has a stronger
ability to extract weak multiple fault features. However, it is time-consuming to calculate the weight
coefficients and Morlet wavelet transform in WOGS algorithm, so the proposed algorithm not only
improves the extraction accuracy of the algorithm, but also sacrifices the algorithm efficiency.
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Figure 9. Envelope spectra of the decomposed signals: (a) High oscillatory component. (b) Low oscillatory
component. (c) Residual component.

Table 1. Comparison of R f and Tf of four algorithms.

Algorithms R f Tf (s)

TQWT 0.015 1.76
OGS 0.079 1.17

Soft threshold 0.018 0.44
WOGS 0.242 1.40
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Figure 10. Results of OGS: (a) Time-domain waveform. (b) Frequency spectrum.
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Figure 11. Results of soft threshold: (a) Time-domain waveform. (b) Frequency spectrum.

5. Experimental Verification

In the part of experimental verification, two different signal types are used: (1) Two fault signals
collected separately are synthesized to generate composite fault signal. (2) The inner and outer race of a
rolling bearing are set with faults respectively, and the fault signal is collected by a single-channel sensor.
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5.1. Application to a Synthesized Signal Mixture

Rolling bearing data were taken from the Case West Reserve University (CWRU) [37], wherein
inner and outer races each had a single point fault generated by electro-discharge machining, and the
experimental platform is shown in Figure 12. The fault sizes of the inner race and outer race were 0.007 inch
(width) × 0.011 inch (depth). The motor speed was 1797 rpm (29.95 Hz), the sampling frequency was
12,000 Hz, and the number of sampling points was 12,000. The type of rolling bearing was SKF62055,
and its structural parameters are shown in Table 2. According to the structural parameters of the rolling
bearing, the characteristic frequencies of rolling bearing can be calculated; characteristic frequencies of the
outer and inner races are about 162.2 Hz and 107.4 Hz respectively. The mixed signal was synthesized by
the superposition matrix for the inner and outer race fault data of Case West Reserve University. In order
to further weaken the fault characteristics, the inner and outer faults were superimposed with −5 dB noise.
Figure 13 shows the time-domain waveform and frequency spectra of the inner race fault, outer race fault,
and mixed signal. In the envelope spectrum of the mixed signal Figure 13f, the characteristic frequency of
inner race 107.4 Hz can be extracted. However, the characteristic frequency of outer race and its harmonic
components cannot be observed.

Figure 12. Experimental setup.

Table 2. Structural parameters of rolling bearing.

Type Diameter of Balls Pitch Diameter Pitch Diameter Contact Angle

SKF62055 7.94 (mm) 39.04 (mm) 9 (mm) 0◦ (◦)

Figure 14 shows the denoised results based on the proposed WOGS algorithm with a group size
6× 3. In the envelope spectrum, Figure 14b, the characteristic frequencies of inner and outer race faults are
clearly extracted. Thus, the fault features of the two defects are clearly revealed by the proposed algorithm.
We adopt TQWT, OGS, and the soft threshold algorithm for the same synthesized signal for improved
verification and comparison. The denoised results are shown in Figures 15–17, where the characteristic
frequencies and its harmonics are not obvious. Similarly, R f and Tf are used for comparative analysis of
four algorithms, and the results are shown in Table 3. It can be seen from the table that the energy ratio of
WOGS algorithm is the largest, and the CPU running time of soft threshold noise reduction is the shortest.
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Figure 13. Cont.
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Figure 13. Time-domain waveform and frequency spectrum of the single fault signals and the mixed signal:
(a) Time-domain waveform of inner race fault signal. (b) Envelope spectrum of inner race fault signal.
(c) Time-domain waveform of outer race fault signal. (d) Envelope spectrum of outer race fault signal.
(e) Time-domain waveform of the mixed signal. (f) Envelope spectrum of the mixed signal.
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Figure 14. Results of the proposed weighted WOGS algorithm: (a) Time-domain waveform.
(b) Envelope spectrum.
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Figure 15. Results of TQWT: (a) High oscillatory component. (b) Low oscillatory component.
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Figure 16. Results of soft threshold: (a) Time-domain waveform. (b) Envelope spectrum.

Table 3. Comparison of R f and Tf of four algorithms.

Algorithms R f Tf

TQWT 0.0143 2.25 (s)
OGS 0.0194 1.43 (s)

Soft threshold 0.0143 0.51 (s)
WOGS 0.0553 1.48 (s)
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Figure 17. Results of OGS: (a) Time-domain waveform. (b) Envelope spectrum.

5.2. Application to a Real Signal Mixture

While Section 4 describes the effectiveness of the proposed WOGS algorithm with simulated signal,
this section deals with the proposed algorithm used to extract the multiple faults of rolling bearings with a
test bench (Figure 18a). The test bench is driven by an AC motor via a shaft and composed of a loading
system, four rolling bearings, a sensor monitoring system, a signal modulate circuit, and a software
monitoring system. Figure 18b shows the loading diagram of four bearings in the test bench. The sensor
monitoring system contains three accelerometers, and four thermocouple sensors are installed on the
housing of the rolling bearings to collect bearing vibration and temperature signals. Figure 18c depicts the
sensor arrangement. The employed accelerometer, i.e., PCB Piezotronics model 608A11, is used to measure
the radial vibration signal, with a nominal sensitivity of 100 mV/g and a measurement range of ±50 g.
NI 9234 is employed for data acquisition, which can simultaneously collect four channels of acceleration
signal, and each channel has its own current source to supply the acceleration sensor. The motor speed is
1050 r/min, the signal sampling frequency is 10,240 Hz, and the sampling time is 1 s. Four rolling bearings
are mounted on the shaft (Figure 18b). The faulty bearing is equipped on the far left, and the other three
positions are mounted with healthy bearings. The type of the experimental bearing is a single row deep
groove ball bearing 6205.

One rolling bearing is damaged with an electrical discharge from a wire to simulate a faulty bearing
(Figure 19). The inner fault size is 1.6 mm (width) × 4 mm (depth), and the outer fault size is 1.6 mm
(width) × 2 mm (depth). Table 3 shows the structural parameters of the rolling bearing 6205. According
to the calculations of the fault feature frequencies of rolling bearings, the theoretical results of rolling
bearing’s characteristic frequencies are shown in Table 4.
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(a)

(b)

(c)

Figure 18. Rolling bearing test rig: (a) Bearing failure test bench. (b) The diagram of loading system.
(c) Sensor layout.
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Figure 19. Experimental bearing with multiple faults on the surfaces of the inner race and outer race.

Table 4. The theoretical calculation result of characteristic frequencies of rolling bearing 6205.

Bearing Type fi fo fb fc

HRB 6205 94.76 (Hz) 62.74 (Hz) 41.2 (Hz) 6.95 (Hz)

Figure 20a shows the time domain waveform of the collected vibration signal, which is dominated
by impulse features. However, determining the time interval of the periodic impulse features is difficult.
Figure 20b shows the frequency spectrum corresponding to Figure 20a. The weak multiple fault
characteristics of rolling bearings are difficult to extract directly from the frequency spectrum due to
the strong background noise. Figure 20c shows the envelope spectrum. Extracting the fault feature
frequencies of inner and outer rings is difficult because the multiple fault information may be mixed
with noise.

The proposed WOGS algorithm is used to process the experimental signal, with the group size 3× 7.
Figure 15 shows the denoised results, and Figure 21a depicts that impulse features are apparent. Moreover,
Figure 21b shows the frequency spectrum of denoised signals. It reduces wideband noise, such as white
noise. From the envelope spectrum shown in Figure 21c, the frequency components at 63, 134, and 201 Hz
have the largest magnitudes, and these frequencies are approximately equal to the outer fault feature
frequency and its harmonic frequencies. The frequency components at 95 and 190 Hz are close to the inner
fault feature frequency. The result is consistent with the setup of the experiment when outer and inner
race faults are extracted.

For comparison, the same experimental signal is analyzed with TQWT, OGS, and soft threshold
denoising to further demonstrate the superiority of the proposed algorithm, respectively. The analyzed
results are shown in Figures 22–24, and the weak, multiple faults are not more obvious than the results in
Figure 21. Similarly, the energy ratio and CPU running time are used to compare and analyze the above
algorithms, and the results are shown in Table 5. It can be seen from the table that the energy ratio of the
proposed algorithm is obviously larger than in other algorithms. The conclusions drawn are basically
consistent with the simulation analysis.
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Figure 20. Experimental signal: (a) Time domain waveform. (b) Frequency spectrum.
(c) Envelope spectrum.
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Figure 21. Results of the proposed WOGS algorithm: (a) Time domain waveform. (b) Frequency spectrum.
(c) Envelope spectrum.
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Figure 22. Results of TQWT: (a) High oscillatory component. (b) Low oscillatory component.
(c) Residual component.
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Figure 23. Results of OGS: (a) Time domain waveform. (b) Envelope spectrum.

Table 5. Comparison of R f and Tf of four algorithms.

Algorithms R f Tf (s)

TQWT 0.0185 2.26
OGS 0.023 1.43

Soft threshold 0.0252 0.19
WOGS 0.135 1.20
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Figure 24. Results of soft threshold: (a) Time domain waveform. (b) Envelope spectrum.

6. Conclusions

This paper presents a weak multiple fault detection algorithm for rolling bearings on the basis of
WOGS. The proposed algorithm addresses the problem of weak multiple fault extraction due to the long
signal transmission path. The application of the WOGS algorithm to the weak multiple fault diagnosis of
rolling bearings demonstrates its validity. The conclusions of this paper are summarized as follows:

(1) This paper proves that the proposed WOGS algorithm can diagnose weak multiple faults without
any prior knowledge like OGS does with some prior knowledge.

(2) A weighted WOGS is adaptively constructed by analyzing the salient features of the signals—an
effective way to enhance impulse characteristics and suppress noise components in the
vibration signal.

(3) The simulation and the experiment performed and the results obtained show that the proposed
WOGS algorithm achieves good results in the area of the weak multiple fault diagnosis of rolling
bearings, especially regarding a multiple fault signal due to signal attenuation caused by a long
transmission path.

In future research, we will continue to explore how to select group structure parameters K1 and K2 in
the WOGS algorithm to obtain better extraction results. In addition, the complexity of the algorithm needs
to be simplified to further improve algorithm’s efficiency.
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Abbreviations

The following abbreviations are used in this manuscript:

WOGS weighted Morlet wavelet-overlapping group sparse
EMD Empirical mode decomposition
EEMD Ensemble empirical mode decomposition
MM Majorization-minimization
2-D Two-dimensional
TQWT Tunable Q-factor wavelet transform
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