An Anatomical-Based Subject-Specific Model of In-Vivo Knee Joint 3D Kinematics From Medical Imaging
Abstract
:1. Introduction
2. Methods
2.1. Data Acquisition
2.2. Image Data Post-Processing
2.3. Knee Kinematic Model
2.4. Definition and Validation of the Subject-Specific Model
3. Results
4. Discussions
Author Contributions
Funding
Conflicts of Interest
References
- Liverani, E.; Conconi, M.; Sancisi, N.; Lutey, A.H.A.; Ascari, A.; Fortunato, A. Fabrication of Knee Prostheses by Means of SLM: Process and Functional Characterization. In Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference, College Station, TX, USA, 18–22 June 2018; p. V001T01A009. [Google Scholar] [CrossRef]
- Leardini, A.; Belvedere, C.; Nardini, F.; Sancisi, N.; Conconi, M.; Parenti-Castelli, V. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis. J. Biomech. 2017, 62, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Hefzy, M.S.; Cooke, T.D.V. Review of Knee Models: 1996 Update. Appl. Mech. Rev. 1996, 49, S187–S193. [Google Scholar] [CrossRef]
- Fuss, F.K. Anatomy of the cruciate ligaments and their function in extension and flexion of the human knee joint. Am. J. Anat. 1989, 184, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, J.; O’Connor, J. The mechanics of the knee and prosthesis design. J. Bone Jt. Surg. Br. Vol. 1978, 60-B, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Di Gregorio, R.; Parenti-Castelli, V. A Spatial Mechanism With Higher Pairs for Modelling the Human Knee Joint. J. Biomech. Eng. 2003, 125, 232. [Google Scholar] [CrossRef] [PubMed]
- Parenti-Castelli, V.; Di Gregorio, R. Advances in Robot Kinematics. In Advances in Robot Kinematics; Chapter Parallel Mechanisms Applied to the Human Knee Passive Motion Simulation; Lenarcic, J., Stanisic, M.M., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 333–344. [Google Scholar] [CrossRef]
- Wilson, D.; O’Connor, J. A three-dimensional geometric model of the knee for the study of joint forces in gait. Gait Posture 1997, 5, 108–115. [Google Scholar] [CrossRef]
- Belvedere, C.; Ensini, A.; Feliciangeli, A.; Cenni, F.; D’Angeli, V.; Giannini, S.; Leardini, A. Geometrical changes of knee ligaments and patellar tendon during passive flexion. J. Biomech. 2012, 45, 1886–1892. [Google Scholar] [CrossRef]
- Girgis, F.G.; Marshall, J.L.; Monajem, A.R.S.A. The Cruciate Ligaments of the Knee Joint: Anatomical. Functional and Experimental Analysis. Clin. Orthop. Relat. Res. 1975, 106, 216–231. [Google Scholar] [CrossRef]
- Ottoboni, A.; Parenti-Castelli, V.; Sancisi, N.; Belvedere, C.; Leardini, A. Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint: An experiment-based assessment. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010, 224, 1121–1132. [Google Scholar] [CrossRef]
- Rovick, J.S.; Reuben, J.D.; Schrager, R.J.; Walker, P.S. Relation between knee motion and ligament length patterns. Clin. Biomech. 1991, 6, 213–220. [Google Scholar] [CrossRef]
- Sancisi, N.; Parenti-Castelli, V. A New Kinematic Model of the Passive Motion of the Knee Inclusive of the Patella. J. Mech. Robot. 2011, 3, 41003. [Google Scholar] [CrossRef]
- Sancisi, N.; Parenti-Castelli, V. A novel 3D parallel mechanism for the passive motion simulation of the patella-femur-tibia complex. Meccanica 2011, 46, 207–220. [Google Scholar] [CrossRef]
- Belvedere, C.; Siegler, S.; Fortunato, A.; Caravaggi, P.; Liverani, E.; Durante, S.; Ensini, A.; Konow, T.; Leardini, A. New comprehensive procedure for custom-made total ankle replacements: Medical imaging, joint modeling, prosthesis design, and 3D printing. J. Orthop. Res. 2019, 37, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Da Luz, S.B.; Modenese, L.; Sancisi, N.; Mills, P.M.; Kennedy, B.; Beck, B.R.; Lloyd, D.G. Feasibility of using MRIs to create subject-specific parallel-mechanism joint models. J. Biomech. 2017, 53, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, T.A.; Schache, A.G.; Graham, H.K.; Baker, R.; Thomason, P.; Pandy, M.G. Potential of lower-limb muscles to accelerate the body during cerebral palsy gait. Gait Posture 2012, 36, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.C.; Lu, T.W.; Chen, S.C. Influence of model complexity and problem formulation on the forces in the knee calculated using optimization methods. Biomed. Eng. Online 2013, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Schellenberg, F.; Taylor, W.R.; Jonkers, I.; Lorenzetti, S. Robustness of kinematic weighting and scaling concepts for musculoskeletal simulation. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 720–729. [Google Scholar] [CrossRef] [Green Version]
- Valente, G.; Pitto, L.; Stagni, R.; Taddei, F. Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities. J. Biomech. 2015, 48, 4198–4205. [Google Scholar] [CrossRef]
- Smale, K.B.; Conconi, M.; Sancisi, N.; Krogsgaard, M.; Alkjaer, T.; Parenti-Castelli, V.; Benoit, D.L. Effect of implementing magnetic resonance imaging for patient-specific OpenSim models on lower-body kinematics and knee ligament lengths. J. Biomech. 2019, 83, 9–15. [Google Scholar] [CrossRef]
- El Habachi, A.; Moissenet, F.; Duprey, S.; Chèze, L.; Dumas, R. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model. Med. Biol. Eng. Comput. 2015, 53, 655–667. [Google Scholar] [CrossRef]
- Sancisi, N.; Zannoli, D.; Parenti-Castelli, V. A procedure to analyse and compare the sensitivity to geometrical parameter variations of one-dof mechanisms. In Proceedings of the ASME - IDETC/CIE 2011, Washington, DC, USA, 29–31 August 2011; pp. 1–9. [Google Scholar]
- Taddei, F.; Martelli, S.; Valente, G.; Leardini, A.; Benedetti, M.G.; Manfrini, M.; Viceconti, M. Femoral loads during gait in a patient with massive skeletal reconstruction. Clin. Biomech. 2012, 27, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Dumas, R.; Moissenet, F.; Gasparutto, X.; Chèze, L. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2012, 226, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Moissenet, F.; Chèze, L.; Dumas, R. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J. Biomech. 2014, 47, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, G.T.; Zajac, F.E. A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 1989, 22, 1–10. [Google Scholar] [CrossRef]
- Sandholm, A.; Schwartz, C.; Pronost, N.; De Zee, M.; Voigt, M.; Thalmann, D. Evaluation of a geometry-based knee joint compared to a planar knee joint. Vis. Comput. 2011, 27, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Catani, F.; Belvedere, C.; Ensini, A.; Feliciangeli, A.; Giannini, S.; Leardini, A. In-vivo knee kinematics in rotationally unconstrained total knee arthroplasty. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2011, 29, 1484–1490. [Google Scholar] [CrossRef] [Green Version]
- Banks, S.A.; Hodge, W.A. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans. Bio-Med Eng. 1996, 43, 638–649. [Google Scholar] [CrossRef]
- Durastanti, G.; Leardini, A.; Siegler, S.; Durante, S.; Bazzocchi, A.; Belvedere, C. Comparison of cartilage and bone morphological models of the ankle joint derived from different medical imaging technologies. Quant. Imaging Med. Surg. 2019, 9, 1368–1382. [Google Scholar] [CrossRef]
- Fantozzi, S.; Catani, F.; Ensini, A.; Leardini, A.; Giannini, S. Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: In vivo fluoroscopic analysis during activities of daily living. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2006, 24, 2222–2229. [Google Scholar] [CrossRef]
- Lin, Z.; Tang, Y.; Tan, H.; Cai, D. Patellofemoral kinematic characteristics in anterior cruciate ligament deficiency and reconstruction. BMC Musculoskelet. Disord. 2019, 20, 82. [Google Scholar] [CrossRef]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Sancisi, N.; Parenti-Castelli, V. A 1-Dof parallel spherical wrist for the modelling of the knee passive motion. Mech. Mach. Theory 2010, 45, 658–665. [Google Scholar] [CrossRef]
- Fregly, B.J.; Rahman, H.A.; Banks, S.A. Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy. J. Biomech. Eng. 2005, 127, 692–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumas, R.; Cheze, L.; Moissenet, F. Multibody Optimisations: From Kinematic Constraints to Knee Contact Forces and Ligament Forces. In Biomechanics of Anthropomorphic Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 65–89. [Google Scholar]
- Guess, T.M.; Thiagarajan, G.; Kia, M.; Mishra, M. A subject specific multibody model of the knee with menisci. Med. Eng. Phys. 2010, 32, 505–515. [Google Scholar] [CrossRef]
- Marra, M.A.; Vanheule, V.; Fluit, R.; Koopman, B.H.F.J.M.; Rasmussen, J.; Verdonschot, N.; Andersen, M.S. A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty. J. Biomech. Eng. 2015, 137. [Google Scholar] [CrossRef]
- Tersi, L.; Barré, A.; Fantozzi, S.; Stagni, R. In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation. Med. Biol. Eng. Comput. 2013, 51, 257–265. [Google Scholar] [CrossRef]
- D’Isidoro, F.; Eschle, P.; Zumbrunn, T.; Sommer, C.; Scheidegger, S.; Ferguson, S.J. Determining 3D Kinematics of the Hip Using Video Fluoroscopy: Guidelines for Balancing Radiation Dose and Registration Accuracy. J. Arthroplast. 2017, 32, 3213–3218. [Google Scholar] [CrossRef] [Green Version]
- Sancisi, N.; Parenti-Castelli, V. A sequentially-defined stiffness model of the knee. Mech. Mach. Theory 2011, 46, 1920–1928. [Google Scholar] [CrossRef]
- Gasparutto, X.; Moissenet, F.; Lafon, Y.; Chèze, L.; Dumas, R. Kinematics of the normal knee during dynamic activities: A synthesis of data from intracortical pins and biplane imaging. Appl. Bionics Biomech. 2017, 2017. [Google Scholar] [CrossRef]
Tibio–Femoral Group | First Estimation | Optimized Model | ||||
---|---|---|---|---|---|---|
ACL Tibia insertion (mm) | 12.38 | −2.30 | −4.01 | 14.03 | −1.21 | −3.72 |
ACL Femur insertion (mm) | −8.11 | −3.37 | 7.21 | −8.60 | −1.43 | 7.28 |
PCL Tibia insertion (mm) | −15.59 | −12.43 | 16.68 | −17.24 | −12.15 | 15.60 |
PCL Femur insertion (mm) | −3.86 | −9.79 | −6.64 | −3.66 | −7.93 | −5.94 |
MCL Tibia insertion (mm) | 5.54 | −73.62 | −17.61 | 4.55 | −72.62 | −16.23 |
MCL Femur insertion (mm) | −7.21 | −3.50 | −39.93 | −7.25 | −2.90 | −38.05 |
LC Tibia point (mm) | 8.60 | −51.88 | 19.44 | 10.58 | −51.69 | 19.26 |
LC Femur point (mm) | 1.09 | 0.22 | 30.18 | 1.75 | −1.67 | 30.09 |
MC Tibia point (mm) | −17.92 | 53.39 | −20.65 | −15.95 | 53.53 | −20.37 |
MC Femur point (mm) | −4.61 | −3.65 | −22.42 | −6.45 | −4.24 | −22.93 |
ACL length (mm) | 32.85 | 33.05 | ||||
PCL length (mm) | 39.65 | 41.46 | ||||
MCL length (mm) | 102.33 | 100.79 | ||||
LC length (mm) | 80.72 | 78.77 | ||||
MC length (mm) | 30.19 | 31.11 | ||||
Patello–Femoral Group | ||||||
(rad) | 0.17 0.31 | 0.14 −0.24 | ||||
(mm) | 7.06 4.60 | 5.95 9.56 | ||||
(rad) | 0.10 1.18 | 0.07 0.44 | ||||
(mm) | −41.66 2.78 | −45.02 5.55 | ||||
PL Tibia insertion (mm) | 35.81 | −46.32 | −3.87 | 35.81 | −46.32 | −3.87 |
PL Patella insertion (mm) | 7.80 | −13.04 | 0.61 | 7.80 | −13.04 | 0.61 |
PL length (mm) | 80.48 | 80.48 | ||||
(mm) | 2.64 | 1.48 | ||||
(mm) | −0.07 | −0.78 |
Group | (deg) | (deg) | (deg) | x (mm) | y (mm) | z (mm) | |
---|---|---|---|---|---|---|---|
TF joint | MAE | ||||||
MAX | |||||||
PF joint | MAE | ||||||
MAX |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardini, F.; Belvedere, C.; Sancisi, N.; Conconi, M.; Leardini, A.; Durante, S.; Parenti-Castelli, V. An Anatomical-Based Subject-Specific Model of In-Vivo Knee Joint 3D Kinematics From Medical Imaging. Appl. Sci. 2020, 10, 2100. https://doi.org/10.3390/app10062100
Nardini F, Belvedere C, Sancisi N, Conconi M, Leardini A, Durante S, Parenti-Castelli V. An Anatomical-Based Subject-Specific Model of In-Vivo Knee Joint 3D Kinematics From Medical Imaging. Applied Sciences. 2020; 10(6):2100. https://doi.org/10.3390/app10062100
Chicago/Turabian StyleNardini, Fabrizio, Claudio Belvedere, Nicola Sancisi, Michele Conconi, Alberto Leardini, Stefano Durante, and Vincenzo Parenti-Castelli. 2020. "An Anatomical-Based Subject-Specific Model of In-Vivo Knee Joint 3D Kinematics From Medical Imaging" Applied Sciences 10, no. 6: 2100. https://doi.org/10.3390/app10062100
APA StyleNardini, F., Belvedere, C., Sancisi, N., Conconi, M., Leardini, A., Durante, S., & Parenti-Castelli, V. (2020). An Anatomical-Based Subject-Specific Model of In-Vivo Knee Joint 3D Kinematics From Medical Imaging. Applied Sciences, 10(6), 2100. https://doi.org/10.3390/app10062100