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Abstract: A photovoltaic grid-connected inverter is a strongly nonlinear system. A model predictive
control method can improve control accuracy and dynamic performance. Methods to accurately
model and optimize control parameters are key to ensuring the stable operation of a photovoltaic
grid-connected inverter. Based on the nonlinear characteristics of photovoltaic arrays and switching
devices, we established a nonlinear model of photovoltaic grid-connected inverters using the state
space method and solved its model predictive controller. Then, using the phase diagram, folded
diagram, and bifurcation diagram methods, we studied the nonlinear dynamic behavior under the
influence of control parameters on both fast and slow scales. Finally, we investigated the methods of
parameter selection based on the characteristics of nonlinear dynamic behavior. Our research shows
that the predictive controller parameters are closely related to the bifurcation and chaos behaviors of
the grid-connected photovoltaic inverter. The three-dimensional bifurcation diagram can be used to
observe the periodic motion region of the control parameters. After selecting the optimization target,
the bifurcation diagram can be used to guide the selection of control parameters for inverter design.
The research results can be used to guide the modeling, stability analysis, and optimization design of
photovoltaic grid-connected inverters.

Keywords: Photovoltaic grid-connected inverter; Nonlinear dynamics; Predictive control;
Nonlinear model

1. Introduction

In recent years, with the development of new energy generation technologies, more and more
photovoltaic grid-connected inverters are being connected to the power grid, making the modeling
and stability of new power grids a hot research subject [1–3]. Converting a photovoltaic array into
an equivalent variable voltage source greatly simplifies the modeling, control strategy, and stability
analysis of photovoltaic grid-connected inverters [4] and especially reduces the computation costs for
small-world network models [5]. Similarly, by simplifying the H-bridge switch circuit appropriately
and then establishing an equivalent model, the analysis, controller design, and numerical simulation
of multi-paralleled grid-connected inverters are greatly simplified [6]. A photovoltaic array is a typical
nonlinear device that may have a great impact on the accuracy of a photovoltaic grid-connected
inverter model after simplification. With the rapid increase in the computing capabilities of modern
microprocessors, researchers are increasingly exploring nonlinear models to improve the accuracy
of system models. Nonlinear models of photovoltaic arrays can allow for analysis of the nonlinear
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characteristics of the system, thus providing more accurate modeling for photovoltaic grid-connected
inverter [7–9].

An inverter circuit contains power switching devices, which are strongly nonlinear systems.
Establishing a piecewise smooth model can better reveal the inherent physical characteristics of the
system, such as bifurcation and chaos [10–13]. Since the 1980s, the nonlinear dynamic behaviors of
power electronics systems have been widely studied, including the bifurcation and chaotic behaviors
of DC/DC converters [14–16], DC/AC converters [11,13,17], and motor systems [18,19]. Studies have
shown that the bifurcation and chaotic behaviors are closely related to the control and stability of power
electronic systems, the bifurcation behavior of multi-inverter microgrids has an inherent relationship
with system stability [20,21], and chaos control in power electronics systems is crucial for system
stability [22,23]. With the continuous increase of the number of distributed photovoltaic grid-connected
inverters, accurate system modeling, control, and stability analysis are becoming more and more
important. Only by comprehensively considering the nonlinear characteristics of photovoltaic arrays
and the switching characteristics of inverter circuits can accurate models of photovoltaic grid-connected
inverters be established.

The main work of this paper is to establish a nonlinear model for photovoltaic grid-connected
inverters and solve its predictive controller, study the nonlinear dynamic behavior of photovoltaic
grid-connected inverters using methods including time-domain waveforms, phase diagrams, folded
diagrams, and bifurcation diagrams, and finally explore how to select control parameters using
nonlinear dynamic behavior characteristics such as bifurcation and chaos. The work of this paper may
serve as a valuable reference in the modeling, optimization control, and stability analysis of large-scale
distributed new energy grid-connected power generation systems.

2. Circuit Structure and Operational Principle of Photovoltaic Grid-Connected Inverter

A single-phase full-bridge photovoltaic (PV) grid-connected inverter is a typical circuit structure
of photovoltaic grid-connected inverters. In single-phase PV grid-connected inverter, there are two
typical structures, namely single-stage structure, and two-stage structure. The two-stage structure is
to add a DC/DC converter in front of the DC/AC converter, which enables MPPT (Maximum Power
Point Tracking) to be carried out in the DC/DC converter. For a single-stage structure, MPPT is
placed in DC/AC. From the control point of view, the two-stage structure can be separated from the
grid-connected control and MPPT control, which is more convenient for control, but low conversion
efficiency. In the single-stage structure, the grid-connected control and MPPT control are integrated.
Although the control is relatively complex, it can be easily realized at present. The single-stage structure
is relatively simple, which helps improve efficiency. To express this more simply, in this paper, we use
a single-stage structure for analysis.

The circuit, as shown in Figure 1, consists of a power block, an isolation block, and a control
block. In the power block, the PV array and the capacitor C1 constitute the power input source; M1–M4

constitute the full-bridge circuit; L1, L2, and C2 constitute the LCL output filter; RL is the equivalent
resistance of the circuit conductor wires; and ug is the signal of the public power grid. In Figure 1, iPV

and uPV are the output current and output voltage of the PV array, respectively; uC1 and iC1 are the
voltage and charging/discharging currents across the capacitor C1, respectively; uC1 = uPV; i1 and i2
are the currents across the filter inductors L1 and L2, respectively; and uC2 and iC2 are the voltages
across the capacitor C2 and the charge/discharge currents, respectively.
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Figure 1. Circuit structure of a photovoltaic grid-connected inverter.

The voltage sensors 1 and 2 and current sensors 1 and 2 of the isolation block acquire the signals
uPV (i.e., uC1), uC2, iC1, and iC2, respectively, and send them to the A/D samplings of the control block
to obtain the corresponding digital signals uPV(k), uC2(k), iC1(k), and iC2(k). The PWM (Pulse Width
Modulation) isolation driver is responsible for isolating the PWM generator of the control block and
amplifying its signals for driving the power switches M1–M4.

In the control block, the predictive control algorithm Γ(·) calculates the duty ratio D(k) of the
PWM signal based on the digital signals uPV(k), uC2(k), iC1(k), and iC2(k).

Whether unipolar polarity SPWM (Sinusoidal Pulse Width Modulation) or bipolar SPWM is
used, the inverter can be effectively controlled. The principle of unipolar polarity SPWM and bipolar
polarity SPWM are shown in Figure 2a,b, respectively. As shown in Figure 2, unipolar SPWM has
more switch state combinations than bipolar SPWM. Both unipolar SPWM and bipolar SPWM can
effectively control the inverter. To make the logic expression more concise, bipolar SPWM is used
in the analysis of this paper. According to the bipolar SPWM principle, a Boolean logic variable S is
defined as S ∈ {0, 1}, and then the switching logic of the power switches M1–M4 is expressed as follows:
M1 = M4 = S, M2 = M3 = S, where

S =

1 t ∈ [kTs, kTs + D(k)Ts]

0 t ∈ (kTs + D(k)Ts, (k + 1)Ts]
, (1)

where the integer k refers to the starting point of the kth switching cycle, Ts represents the switching
period of the inverter, and D(k) represents the duty ratio of the kth switching cycle. The circuit system
shown in Figure 1 has a non-linear characteristic because of the photovoltaic array as the power input.
Driven by the switching signal S, the circuit switches between two subsystems. This is a typical
switched nonlinear system.
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Figure 2. Sinusoidal Pulse Width Modulation (SPWM) principle. (a) Unipolar SPWM; (b) Bipolar SPWM.

3. Nonlinear Dynamic Model of Photovoltaic Grid-Connected Inverter

PV arrays have the characteristics of nonlinear output, wide range of voltage and current
fluctuations, and are susceptible to environmental influences. Therefore, when modeling photovoltaic
grid-connected inverters, PV arrays affect the accuracy of photovoltaic grid-connected inverter models.
Using the mathematical model of the PV module [8] and denoting the number of PV modules in the
PV array in series and in parallel as nS and nP, respectively, the mathematical model of the PV array is
composed of the two following equations:

iPV = G(uC1), (2)

G(uC1) = nPIph − nPIs

e
q(α0+

α1
nS

uC1+
α2
n2

S
u2

C1+
α3
n3

S
u3

C1)

NsKTA − 1


−

nP

(
α0+

α1
nS

uC1+
α2
n2

S
u2

C1+
α3
n3

S
u3

C1

)
Rsh

.

(3)

where Iph is the photocurrent, Is is the saturation current, Ns is the number of series units inside the
module, T is the module temperature, A is the diode ideality factor, Rsh is the shunt resistance, and
α0, α1, α2, and α3 are polynomial fitting coefficients. These parameters can be calculated from the
specification parameters provided by the module manufacturer. Also in Equation (3), q the quantity of
elementary charge is (1.60217657× 10−19), and K is the Boltzmann constant (1.3806488× 10−23). The PV
array model is shown in Figure 3.
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Now we consider the two switching states, S = 0 or 1, of the circuit in Figure 1 and establish the
state equation of the photovoltaic grid-connected inverter, using uC1, uC2, i1, and i2 as the state variables.
In the switch state S = 1, the switching combination of the power switches M1–M4 yields iS = i1.
The KCL (Kirchoff’s Current Law) equations on the nodes a and b are derived. The KVL (Kirchhoff’s
Voltage Law) equations are derived on the C1→L1→C2→C1 loop and on the C2→RL→L2→ug→C2 loop.
Similarly, when S = 0, the switching combination of the power switches M1–M4 yields iS = −i1, and
the same KCL and KVL equations are derived. The nonlinear mathematical model of the photovoltaic
grid-connected inverter is finally obtained:

di1
dt = − 1

L1
uC2 +

1
L1
(2S− 1)uC1

di2
dt = −RL

L2
i2 + 1

L2
uC2 −

1
L2

ug
duC1

dt = 1
C1

G(uC1) −
1

C1
(2S− 1)i1

duC2
dt = 1

C2
i1 − 1

C2
i2

, (4)

where and ug = sin(ωt), whereω represents the angular frequency (rad/s) of the power grid signal.
To reflect the influence of PLL on the model, it is necessary to introduce the power grid frequency

ω into the model as a parameter of the model. The power grid voltage signal ug cannot be a fixed sine
wave signal, but a state variable. Therefore, we need to build an intermediate variable ϑ, which has the
following relationship with the grid signal ug: dug

dt = ωϑ
dϑ
dt = ωug

, (5)

The angle frequencyω is obtained by PLL. In the process of solving the equation, the integration of
ωwill get the phase angle. Therefore, after considering the PLL unit, the equation of PV grid-connected
inverter is as follows: 

di1
dt = − 1

L1
uC2 +

1
L1
(2S− 1)uC1

di2
dt = −RL

L2
i2 + 1

L2
uC2 −

1
L2

ug
duC1

dt = 1
C1

G(uC1) −
1

C1
(2S− 1)i1

duC2
dt = 1

C2
i1 − 1

C2
i2

dug
dt = ωϑ

dϑ
dt = ωug

. (6)

4. Dynamic Behavior Under Predictive Control

4.1. Solving the Predictive Controller of Photovoltaic Grid-Connected Inverter

The predictive controller expression can be easily solved from a simplified circuit of the photovoltaic
grid-connected inverter. Considering the system shown in Figure 1, i1 ≈ i2 ≡ iO; let L = L1 + L2,
η0 ∈ (0, 1.0), and {

L1 = η0L
L2 = (1− η0)L

. (7)

The simplified circuit of the photovoltaic grid-connected inverter is shown in Figure 4, and its
differential equation is as follows:

L
diO
dt

+ RLiO + ug − uinv = 0. (8)
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Its solution is

iO(t) = iO(t0)e−
RL
L (t−t0) +

1
L

∫ t

t0

e−
RL
L (t−τ)

[
uinv(τ) − ug(τ)

]
dτ. (9)
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2
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1
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Figure 4. Simplified circuit of photovoltaic grid-connected inverter.

Generally, the switching frequency of the inverter is ≥ 10 kHz, so TS ≤ 10−4 s, RL (mΩ), and L (mH)

can be regarded as the same order of magnitude. It can be found that e−
RL
L TS ≈ 1. Let t = (k + 1)TS and

t0 = kTS, make k equivalent to kTS, and in the kth switching cycle denote the average output voltage of
the full-bridge circuit and the grid voltage as uinv(k) and ug(k), respectively. Then the discrete form of
Equation (9) is

iO(k + 1) = iO(k) +
TS

L

[
uinv(k) − ug(k)

]
. (10)

Considering that the system switching frequency (>10 kHz) is much higher than the grid voltage
frequency (50 Hz), it can be considered that the grid voltage varies linearly within one switching
cycle, so

ug(k) =
ug(k) + ug(k + 1)

2
. (11)

Similarly, because of the role of the DC terminal capacitor C1, uC1 is almost constant during the
kth switching cycle. The average bridge circuit output voltage uinv(k) is the control signal to be solved
following the below equation:

uinv(k) = [2D(k) − 1] uC1(k). (12)

From Equations (10)–(12), the expression for the controller is as follows:

D(k) =
1

2uC1(k)

{
L

TS
[iO(k + 1) − iO(k)] +

ug(k) + ug(k + 1)

2

}
+

1
2

. (13)

Before time k, the system needs to calculate D(k) so that it can control the system according to
D(k) at time k and make the output current iO(k + 1) at time (k + 1) almost equal to the expected
output current iref(k + 1). Therefore, in Equation (13), uC1(k), ug(k), ug(k + 1), and iO(k) are unknown
and can be calculated by the predictive method. Relative to the power utility period (0.02 s) of
the grid-connected inverter, the switching period is usually very small (on the microsecond scale).
According to the principle of linear prediction, the voltage signal changes in two adjacent switching
periods are considered to be equal, with the following difference equations:

uC1(k + 1) − uC1(k) = uC1(k) − uC1(k− 1), (14)

uC1(k) − uC1(k− 1) = uC1(k− 1) − uC1(k− 2), (15)

ug(k + 1) − ug(k) = ug(k) − ug(k− 1), (16)

ug(k) − ug(k− 1) = ug(k− 1) − ug(k− 2). (17)
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From Equation (10), we arrive at the following expression:

iO(k) = iO(k− 1) +
TS

L

[
uinv(k− 1) − ug(k− 1)

]
. (18)

By simultaneously considering Equations (11) and (13)–(18) and knowing that iO(k + 1) is the
expected output current iref(k + 1) at time (k + 1), which is referred to as the reference current, the
expression of the final controller is obtained:

D(k) = 1
4uC1(k−1)−2uC1(k−2)

{
L

TS
[iref(k + 1) − iO(k)] + 5

2 ug(k− 1)

−
3
2 ug(k− 2)

}
+ 1

2 ,
(19)

where iO(k) = iO(k− 1) +
TS
L

{
[2D(k− 1) − 1] uC1(k− 1) −

3ug(k−1)−ug(k−2)
2

}
, iref(k + 1) =

Im sin[ω·(k + 1)TS], and Im is the magnitude of the reference current.
In the controller, Equation (19), iO(k− 1) is the sampled output current at time (k− 1). In an actual

system, a parameter η1 can be set by letting

iO(k− 1) = η1i1(k− 1) + (1− η1)i1(k− 1), (20)

where 0 ≤ η1 ≤ 1.

4.2. Fast-Scale Bifurcation of Photovoltaic Grid-Connected Inverter

To verify the effectiveness of the model, Equation (6), and the controller, Equation (19), the system
parameters shown in Table 1 are selected, where Umd

OC is the open-circuit voltage of the module, Uar
OC

is the open-circuit voltage of the array, Imd
SC is the short-circuit current of the module, and Iar

SC is the
short-circuit current of the array. Generally, the parameters of the PV model can be obtained directly
or indirectly from the manufacturer’s data manual. α0~α3, Iph, Is, A, Imd

SC and Umd
OC in Table 1 are the

parameters at STC of commercial PV module, JAM5(l)-72-155. These parameters are determined
using the parameterization approach in [8]. It is worth noting that the actual system usually adds a
backflow prevention diode to the output end of the photovoltaic array, so the output voltage range of
the photovoltaic array will be limited to 0–Uar

OC, and the output current will be limited to 0–Iar
SC. These

constraint conditions should be added during numerical simulation.

Table 1. Parameters of the photovoltaic grid-connected inverter.

PV Module Inverter Circuit and PV Array

Parameter Value Parameter Value

α0 0.4898 L1/mH 1.5
α1 0.8924 L2/mH 1.5
α2 0.0064 RL/Ω 0.2 × 10−4

α3 −9.5197 × 10−5 C1/µF 4.7 × 103

Iph/A 4.9415 C2/µF 4.7
Is/A 9.75 × 10−5 ω/(rad/s) 100π
NS 72 TS/µs 20
A 1.8 nS 15

Rsh/Ω 333.663 nP 6
Imd
SC /A 5.57 Iar

SC/A 33.42
Umd

OC/V 36.0 Uar
OC/V 540.0

With the control parameters set at η0 = 0.5 and η1 = 1.0, the numerical simulation results are
shown in Figure 5. The photovoltaic grid-connected inverter output current i2 has the same frequency
and phase as the grid voltage, which enables tracking and control of the grid-connected current.
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Figure 5. Time-domain waveform of system variables under predictive control.

Figures 6 and 7 show the states of quasiperiodic and chaotic motions of photovoltaic grid-connected
inverters, respectively. Figure 6 shows the quasiperiodic motion with the control parameters of η0 = 0.5
and η1 = 0.9. Figure 6a–c are the folded diagrams of output current i2, output voltage uC2 from the
photovoltaic grid-connected inverter, and uC1 at the photovoltaic array output terminals. Figure 6d is a
phase diagram of i2, uC2, and uC1. Similarly, Figure 7 shows chaotic motion with the control parameters
η0 = 0.5 and η1 = 0.5.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 14 

𝑈𝑂𝐶
𝑚𝑑/V 36.0  𝑈𝑂𝐶

𝑎𝑟/V 540.0 

With the control parameters set at 𝜂0 = 0.5 and 𝜂1 = 1.0, the numerical simulation results are 

shown in Figure 5. The photovoltaic grid-connected inverter output current 𝑖2  has the same 

frequency and phase as the grid voltage, which enables tracking and control of the grid-connected 

current. 

 

Figure 5. Time-domain waveform of system variables under predictive control. 

Figures 6 and 7 show the states of quasiperiodic and chaotic motions of photovoltaic 

grid-connected inverters, respectively. Figure 6 shows the quasiperiodic motion with the control 

parameters of 𝜂0 = 0.5 and 𝜂1 = 0.9. Figure 6(a)–(c) are the folded diagrams of output current 𝑖2, 

output voltage 𝑢C2 from the photovoltaic grid-connected inverter, and 𝑢C1 at the photovoltaic 

array output terminals. Figure 6(d) is a phase diagram of 𝑖2, 𝑢C2, and 𝑢C1. Similarly, Figure 7 

shows chaotic motion with the control parameters 𝜂0 = 0.5 and 𝜂1 = 0.5. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-400

-300

-200

-100

0

100

200

300

400

500

600
i1/A
i2/A
uC1/V
uC2/V
ug/V

0.012 0.018

2
0

0
3

5
0

0.032 0.0381
0

4
0

t/s

u
C

1
, 
u

C
2
, 
u

g
/V

-400

-300

-200

-100

0

100

200

300

400

500

600

i 1
,i

2
/A

 

0 0.5π π 1.5π 2π

θ

-60

-40

-20

0

20

40

i 2
/A

 

0 0.5π π 1.5π 2π

θ

-400

-200

0

200

400

u
C

2
/V

 

0 0.5π π 1.5π 2π

θ

498

500

502

504

506

508

510

512

u
C

1
/V

 

-400
520

-200

50

0

u
C

2
/V

200

510

400

uC1/V i2/A

0500
490 -50

Figure 6. Quasiperiodic motion at η0 = 0.5 and η1 = 0.9. (a) Folded diagram of output current i2; (b)
Folded diagram of output voltage uC2; (c) Folded diagram of output voltage uC1 of the photovoltaic
array; (d) Phase diagram of quasi-periodic motion of i2, uC2 and uC1.
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Figure 7. Chaotic motion at η0 = 0.5 and η1 = 0.5. (a) Folded diagram of output current i2; (b) Folded
diagram of output voltage uC2; (c) Folded diagram of output voltage uC1 of the photovoltaic array; (d)
Phase diagrams of chaotic motion of i2, uC2 and uC1.

4.3. Analysis of Slow-Scale Bifurcation of Photovoltaic Grid-Connected Inverter

Through the analysis of slow-scale bifurcation, the nonlinear dynamic behavior of the system
with different control parameters can be understood. With η0 and η1 as bifurcation parameters, the
bifurcation diagrams are shown in Figures 8 and 9, respectively. With η1 being set to 0.5 and 0.9,
respectively, and η0 varying, the bifurcation diagrams are shown in Figure 8a–d. Figure 8 shows that
with η0 as the bifurcation parameter, the value of η1 affects the size of the chaotic motion region of
the system. As η1 increases, it can be seen that the chaotic region becomes smaller. It can also be
seen that in the parameter area where the inverter output current i2 generates chaos, the chaos and
period-doubling bifurcation phenomena of the voltage uC1 at the output terminals of the photovoltaic
array occur, but the chaotic region of uC1 is small. Hence, the voltage uC1 at the output terminals of the
photovoltaic array is not prone to chaotic motion.
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Figure 8. Cont.
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Figure 8. Bifurcation diagrams with η0 as the bifurcation parameter. (a) Bifurcation diagram of the
output current i2 at η1 = 0.5; (b) Bifurcation diagram of the output voltage uC1 of the photovoltaic
array at η1 = 0.5; (c) Bifurcation diagram of the output current i2 at η1 = 0.9; (d) Bifurcation diagram of
the output voltage uC1 of the photovoltaic array at η1 = 0.9.
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Figure 9. Bifurcation diagrams with η1 as the bifurcation parameter. (a) Bifurcation diagram of the
output current i2 at η0 = 0.4; (b) Bifurcation diagram of the voltage uC1 at the output terminals of
the photovoltaic array at η0 = 0.4; (c) Bifurcation diagram of the output current i2 at η0 = 0.8; (d)
Bifurcation diagram of the voltage uC1 at the output terminals of the photovoltaic array at η0 = 0.8.

With η0 being set to 0.4 and 0.8, respectively, and η1 varying, the bifurcation diagrams are shown
in Figure 9. With η1 as the bifurcation parameter, the value of η0 also affects the chaotic motion area
of the system. When η0 changes from 0.4 to 0.8, the chaotic motion region of the system becomes
larger. In the parameter area where the inverter output current i2 generates chaos, the chaos and
period-doubling bifurcation of the voltage uC1 at the output terminals of the photovoltaic array occur.
As shown in Figure 9b,d, the chaotic motion region of uC1 is very small.
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5. Discussion

The output of the photovoltaic array has strongly nonlinear characteristics. The inverter circuit
contains power switching devices, which is also a typical strongly nonlinear circuit. Therefore, the
photovoltaic grid-connected inverter model, Equation (6), is a nonlinear model. The accuracy of the
model is very important for the optimal design of the controller and the stability analysis of the system.

Figures 6 and 7 provide analyses of the fast-scale bifurcations of photovoltaic grid-connected
inverters with folded diagrams. They show that at certain parameter values, the system is in
quasiperiodic and chaotic motion states. Fast-scale bifurcation analysis can be used to understand the
dynamic behavior of each phase of the system state variable in the entire power frequency cycle with
specific parameters for photovoltaic grid-connected inverters.

Figures 8 and 9 show the bifurcation and chaos phenomena of the system using slow-scale
bifurcation diagrams. It shows that as the control parameters change, the system switches between
periodic, bifurcation, and chaotic motion states. The analysis of slow-scale bifurcation can be used to
understand the influence of the changes in control parameters on the nonlinear dynamic behavior of
the system, and it can also be used as a design guide for control parameters.

Figures 8 and 9 indicate that when using η0(η1) as the bifurcation parameter, the value of η1(η0)

affects the size of the chaotic motion window of the system. Therefore, in order to fully understand the
influence of control parameters on the nonlinear dynamic behavior of the system, a three-dimensional
bifurcation diagram, as shown in Figure 10, is constructed using η0 and η1 as the bifurcation parameters.
The top view of the three-dimensional bifurcation diagram as shown in Figure 10b clearly shows the
parameter area corresponding to the chaotic motion and periodic motion of the system. This servers as
the guidance for selection of control parameters.
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Figure 10. (a) Three-dimensional bifurcation diagram and (b) its top view with both η0 and η1 being
bifurcation parameters.

When designing a controller, the control parameters η0 and η1 should be selected from the area of
the periodic orbits shown in Figure 10b to ensure that the system is in a periodic motion state. In the
design, the parameter values can be further optimized according to the objectives. Taking the reduction
of the total harmonic distortion (THD) of the output current as an example, just take the parameter
corresponding to the minimum value of THD from the output current THDs of the inverter calculated
in the area of the periodic orbits shown in Figure 10b. A specific case is as follows. Figure 11a shows the
method of parameter selection through the bifurcation diagram and the total harmonic distortion. Let
η0=0.8 and η1 be the bifurcation parameters; for example, when η1 is in the range of 0.8–1.0, the system
is in the periodic motion state. In the region of this periodic motion, the total harmonic distortion
of the output current i2 of the photovoltaic grid-connected inverter is calculated for each parameter
value. The purple curve in Figure 11a shows that when the control parameter η1 is 0.93, the total
harmonic distortion of i2, at 2.87%, is at its lowest. Accordingly, the control parameters are selected as
η0 = 0.8 and η1 = 0.93, and the time-domain waveform of the output current i2 from the photovoltaic
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grid-connected inverter is shown in Figure 11b. Based on the control parameters selected in this
example, a 1kW experimental prototype is used to verify the effectiveness of the controller, as shown
in Figure 12. The parameters of the experimental prototype are shown in Table 2. The experimental
results show that the output current of the inverter can track the voltage signal of the power grid well
without obvious distortion. Take out the current signal and put it into Matlab (R2019a)/Simulink to
calculate its THD, which is 2.95%.
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Figure 12. A 1kW prototype experiment. (a) Experimental prototype; (b) Grid-connected current and
grid voltage waveform.

Table 2. Parameters of the 1kW experimental prototype.

Parameter Value

L1/mH 2.4
L2/mH 0.6
C1/µF 4.7 × 103

C2/µF 4.7
fgrid/Hz 50
fS/ kHz 25
η0 0.8
η1 0.93

Iar
SC/A 33.42

Uar
OC/V 540.0

PV grid-connected inverter contains switching devices, which is a typical strong non-linear system.
The existing research shows that the PV grid-connected inverter will appear bifurcation and chaos in a
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certain range of parameters. The non-linear dynamics of PV grid-connected inverter can be studied
on two-time scales (switching frequency and grid line frequency) by fast and slow-scale bifurcations.
When the system begins to bifurcate from periodic motion and then enters into chaos, it means that
the system has begun to deteriorate and become unstable. These dynamic behaviors are related to
system parameters, which include electronic component parameters and control parameters. The
study of the relationship between the device and control parameters and the non-linear dynamic
behavior can reveal the dynamic behavior of the PV grid-connected inverter, guide the developers to
choose the correct parameter range, and guide the controller design. The study of non-linear dynamic
behavior can lead a perspective to study the design and stability of PV grid-connected inverter, which
is complementary to the classical linear control theory, and provides analysis methods and tools for the
design of PV grid-connected inverter.

6. Conclusions

A photovoltaic grid-connected inverter is a strongly nonlinear system, so it is of great significance
to establish its nonlinear model for analysis. To improve the modeling accuracy, in this study
we have comprehensively considered the nonlinear characteristics of photovoltaic arrays and the
strongly nonlinear characteristics of switching circuits, established a nonlinear model of photovoltaic
grid-connected inverters, and solved its predictive controller. We have analyzed the model by using
folded diagrams, phase diagrams, and bifurcation diagrams. We have studied the nonlinear dynamic
behavior of photovoltaic grid-connected inverters under predictive control on both fast and slow scales.
Our studies have shown that bifurcation and chaotic behaviors exist in photovoltaic grid-connected
inverters under a certain range of control parameters. By analyzing the inherent relationship between
the control parameters and the nonlinear dynamic behavior characteristics, we can select and optimize
the control parameters in the design of grid-connected inverters. Based on this work, future studies
can further explore random fluctuations of the power grids, local loads, photovoltaic arrays under the
influence of the environment, and the network structure characteristics of the new smart grid, thus
yielding additional insights into the stability and interaction mechanisms of photovoltaic grid-connected
inverters and power grids.
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