Numerical Analysis for Critical Structures Protection against Blast Loading Using Metallic Panels
Abstract
:1. Introduction
2. Pressures on the Structural Surfaces
3. Mathematical Model and Model Hypothesis
4. Results and Discussion
4.1. CPS 3
4.2. CPS 4
4.3. CPS 4 and Masonry Wall with No Distance between Them
4.4. CPS 4 and Masonry Wall with 500 mm Distance between Them
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbas, A.; Adil, M.; Ahmad, N.; Ahmad, I. Behavior of reinforced concrete sandwiched panels (RCSPs) under blast load. Eng. Struct. 2019, 181, 476–490. [Google Scholar] [CrossRef]
- Draganić, H.; Gazić, G.; Varevac, D. Experimental investigation of design and retrofit methods for blast load mitigation—A state-of-the-art review. Eng. Struct. 2019, 190, 189–209. [Google Scholar] [CrossRef]
- Li, Z.; Chen, W.; Hao, H. Numerical study of sandwich panel with a new bi-directional Load-Self-Cancelling (LSC) core under blast loading. Thin-Walled Struct. 2018, 127, 90–101. [Google Scholar] [CrossRef]
- Helal, M.M.K.; Elsayed, F. Dynamic behavior of stiffened plates under underwater shock loading. Mater. Test. 2015, 57, 506–517. [Google Scholar] [CrossRef]
- Fathallah, E.; Qi, H.; Tong, L.; Helal, M. Numerical Simulation and Response of Stiffened Plates Subjected to Non-Contact Underwater Explosion. Adv. Mater. Sci. Eng. 2014, 2014, 752586. [Google Scholar] [CrossRef] [Green Version]
- Fathallah, E.; Qi, H.; Tong, L.; Helal, M. Numerical investigation of the dynamic response of optimized composite elliptical submersible pressure hull subjected to non-contact underwater explosion. Compos. Struct. 2015, 121, 121–133. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Gu, W.; Liu, X.; Cao, T. Shock Wave Attenuation Characteristics of Aluminum Foam Sandwich Panels Subjected to Blast Loading. Shock Vib. 2018, 2018, 2686389. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Cao, Z.K.; Yao, G.C.; Luo, H.J.; Zu, G.Y. Performance of aluminum foam–steel panel sandwich composites subjected to blast loading. Mater. Des. 2013, 47, 483–488. [Google Scholar] [CrossRef]
- Wang, C.; Xu, B.; Chung Kim Yuen, S. Numerical analysis of cladding sandwich panels with tubular cores subjected to uniform blast load. Int. J. Impact Eng. 2019, 133, 103345. [Google Scholar] [CrossRef]
- Chen, D.; Jing, L.; Yang, F. Optimal design of sandwich panels with layered-gradient aluminum foam cores under air-blast loading. Compos. Part B Eng. 2019, 166, 169–186. [Google Scholar] [CrossRef]
- Helal, M.; Huang, H.; Fathallah, E.; Wang, D.; ElShafey, M.M.; Ali, M.A.E.M. Numerical Analysis and Dynamic Response of Optimized Composite Cross Elliptical Pressure Hull Subject to Non-Contact Underwater Blast Loading. Appl. Sci. 2019, 9, 3489. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, H.; Cui, C.; Zhao, B. Investigating Different Grounds Effects on Shock Wave Propagation Resulting from Near-Ground Explosion. Appl. Sci. 2019, 9, 3639. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.Q.; Hao, H. Prediction of airblast loads on structures behind a protective barrier. Int. J. Impact Eng. 2008, 35, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, F.; Nagy, N.M.; Lili, T. Numerical Evaluation of Composite Plates Performance under the Effect of Underwater Explosion. In Proceedings of the 15th International Conference on Aerospace Sciences & Aviation Technology, Military Technical College, Kobry Elkobbah, Cairo, Egypt, 29 May 2013; pp. 1–15. [Google Scholar]
- Abdel Wahab, M.M.; Mazek, S.; Abada, M.M. Effect of blast wave on lightweight structure performance. J. Eng. Sci. Mil. Technol. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Alqwasmi, N.; Tarlochan, F.; Alkhatib, E.S. Study of Mild Steel Sandwich Structure Energy Absorption Performance Subjected to Localized Impulsive Loading. Materials 2020, 13, 670. [Google Scholar] [CrossRef] [Green Version]
- Maňas, P. The Protection of Critical Infrastructure Objects—Technical Principles. In Durability of Critical Infrastructure, Monitoring and Testing; Springer: Singapore, 2017; pp. 239–248. [Google Scholar]
- Li, J.; Wu, C.; Hao, H.; Liu, Z. Post-blast capacity of ultra-high performance concrete columns. Eng. Struct. 2017, 134, 289–302. [Google Scholar] [CrossRef]
- Wang, H.; Wu, C.; Zhang, F.; Fang, Q.; Xiang, H.; Li, P.; Li, Z.; Zhou, Y.; Zhang, Y.; Li, J. Experimental study of large-sized concrete filled steel tube columns under blast load. Constr. Build. Mater. 2017, 134, 131–141. [Google Scholar] [CrossRef]
- Elshafey, M.M.; Braimah, A.; Abd El Halim, A.O.; Contestabile, E. Aluminum Foam-Lined Suppressive Shields for Safe Transport of Explosives: Experimental Investigation. Transp. Res. Rec. 2012, 2288, 91–102. [Google Scholar] [CrossRef]
- Braimah, A.; Elshafey, M.; Halim, A.E.H.O.A.E.; Contestabile, E. Experimental Investigation of Aluminum Foam Lined Suppressive Shield Containment Vessels. Int. J. Prot. Struct. 2012, 3, 193–220. [Google Scholar] [CrossRef]
- Peña, M.E.A.C. Blast Loading Retrofit of Unreinforced Masonry Walls. Struct. Perform. Artic. 2009, 4, 16–20. [Google Scholar]
- Langdon, G.S.; Lee, W.C.; Louca, L.A. The influence of material type on the response of plates to air-blast loading. Int. J. Impact Eng. 2015, 78, 150–160. [Google Scholar] [CrossRef]
- McDonald, B.; Bornstein, H.; Langdon, G.S.; Curry, R.; Daliri, A.; Orifici, A.C. Experimental response of high strength steels to localised blast loading. Int. J. Impact Eng. 2018, 115, 106–119. [Google Scholar] [CrossRef]
- Sun, G.; Wang, E.; Zhang, J.; Li, S.; Zhang, Y.; Li, Q. Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse. Int. J. Impact Eng. 2019. [Google Scholar] [CrossRef]
- Jacob, N.; Nurick, G.N.; Langdon, G.S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads. Eng. Struct. 2007, 29, 2723–2736. [Google Scholar] [CrossRef]
- Mehreganian, N.; Fallah, A.S.; Louca, L.A. Inelastic dynamic response of square membranes subjected to localised blast loading. Int. J. Mech. Sci. 2018, 148, 578–595. [Google Scholar] [CrossRef] [Green Version]
- Zong, R.; Hao, H.; Shi, Y. Development of a New Fence Type Blast Wall for Blast Protection: Numerical Analysis. Int. J. Struct. Stab. Dyn. 2017, 17, 1–29. [Google Scholar] [CrossRef]
- Xia, Y.; Wu, C.; Zhang, F.; Li, Z.-X.; Bennett, T. Numerical Analysis of Foam-Protected RC Members under Blast Loads. Int. J. Prot. Struct. 2014, 5, 367–390. [Google Scholar] [CrossRef]
- Wu, C.; Sheikh, H. A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding. Int. J. Impact Eng. 2013, 55, 24–33. [Google Scholar] [CrossRef]
- Palta, E.; Gutowski, M.; Fang, H. A numerical study of steel and hybrid armor plates under ballistic impacts. Int. J. Solids Struct. 2018, 136–137, 279–294. [Google Scholar] [CrossRef]
- Fallon, C.; McShane, G.J. Fluid-structure interactions for the air blast loading of elastomer-coated concrete. Int. J. Solids Struct. 2019, 168, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Baker, W.E. Explosions in Air; University of Texas Press: Austin, TX, USA; London, UK, 1973. [Google Scholar]
- Cai, S.; Liu, J.; Zhang, P.; Li, C.; Cheng, Y. Dynamic response of sandwich panels with multi-layered aluminum foam/UHMWPE laminate cores under air blast loading. Int. J. Impact Eng. 2020, 138, 103475. [Google Scholar] [CrossRef]
- Liang, M.; Li, X.; Lin, Y.; Zhang, K.; Lu, F. Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading. Materials 2019, 12, 1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Zhou, T.; Wang, H.; Li, Y.; Liu, J.; Zhang, P. Numerical investigation on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading. J. Sandw. Struct. Mater. 2019, 21, 838–864. [Google Scholar] [CrossRef]
- Yazici, M.; Wright, J.; Bertin, D.; Shukla, A. Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading. Compos. Struct. 2014, 110, 98–109. [Google Scholar] [CrossRef]
- Xue, Z.; Hutchinson, J.W. A comparative study of impulse-resistant metal sandwich plates. Int. J. Impact Eng. 2004, 30, 1283–1305. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hebert, R.; Wright, J.T.; Shukla, A.; Kim, J.-H. Dynamic response of corrugated sandwich steel plates with graded cores. Int. J. Impact Eng. 2014, 65, 185–194. [Google Scholar] [CrossRef]
- Abdel Wahab, M.; Mazek, S.; Abada, M.; Abdel Shafy, M. Blast hazard impact on V-shape composite panel performance. J. Eng. Sci. Mil. Technol. 2018, 2, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Hussein, A.; Heyliger, P.; Mahmoud, H. Blast response of a thin oriented strand board wall. Eng. Struct. 2019, 201, 109835. [Google Scholar] [CrossRef]
- Goswami, A.; Adhikary, S.D. Retrofitting materials for enhanced blast performance of Structures: Recent advancement and challenges ahead. Constr. Build. Mater. 2019, 204, 224–243. [Google Scholar] [CrossRef]
- Bulson, P.S. Explosive Loading of Engineering Structures; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Fekry, M.; Mahmoud, G.; Elshafey, M. Protective Panels Design against Blast Loads. Aust. J. Basic Appl. Sci. 2017, 11, 143–156. [Google Scholar]
- Fedorova, N.; Valger, S.; Fedorov, A. Simulation of blast action on civil structures using ANSYS Autodyn. In Proceedings of the AIP Conference Proceedings, Perm Krai, Russia, 27 June–3 July 2016; pp. 1–10. [Google Scholar]
- Zheng, C.; Kong, X.-S.; Wu, W.-G.; Xu, S.-X.; Guan, Z.-W. Experimental and numerical studies on the dynamic response of steel plates subjected to confined blast loading. Int. J. Impact Eng. 2018, 113, 144–160. [Google Scholar] [CrossRef]
- Wu, C.; Lu, Y.; Hao, H. Numerical prediction of blast-induced stress wave from large-scale underground explosion. Int. J. Numer. Anal. Methods Geomech. 2004, 28, 93–109. [Google Scholar] [CrossRef]
Parameters | C1/MPa | C2/MPa | r1 | r2 | w |
---|---|---|---|---|---|
Value | 3.7377 × 105 | 3.7471 × 103 | 4.15 | 0.9 | 0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alogla, A.; Helal, M.; ElShafey, M.M.; Fathallah, E. Numerical Analysis for Critical Structures Protection against Blast Loading Using Metallic Panels. Appl. Sci. 2020, 10, 2121. https://doi.org/10.3390/app10062121
Alogla A, Helal M, ElShafey MM, Fathallah E. Numerical Analysis for Critical Structures Protection against Blast Loading Using Metallic Panels. Applied Sciences. 2020; 10(6):2121. https://doi.org/10.3390/app10062121
Chicago/Turabian StyleAlogla, Ageel, Mahmoud Helal, Mohamed Mokbel ElShafey, and Elsayed Fathallah. 2020. "Numerical Analysis for Critical Structures Protection against Blast Loading Using Metallic Panels" Applied Sciences 10, no. 6: 2121. https://doi.org/10.3390/app10062121
APA StyleAlogla, A., Helal, M., ElShafey, M. M., & Fathallah, E. (2020). Numerical Analysis for Critical Structures Protection against Blast Loading Using Metallic Panels. Applied Sciences, 10(6), 2121. https://doi.org/10.3390/app10062121