Wireless Epidermal Six-Axis Inertial Measurement Units for Real-Time Joint Angle Estimation
Abstract
:1. Introduction
2. Method
2.1. Design
2.2. Manufacturing Process
3. Results
3.1. Implementation Results
3.2. Performance Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, D.; Lu, N.; Ma, R.; Kim, Y.; Kim, R.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; et al. A Graphene-Based Electrochemical Device with Thermoresponsive Microneedles for Diabetes Monitoring and Therapy. Nat. Nanotechnol. 2016, 11, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, A.; Lee, S.; Cooray, N.F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; et al. Inflammation-Free, Gas-Permeable, Lightweight, Stretchable On-Skin Electronics With Nanomeshes. Nat. Nanotechnol. 2017, 12, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Salvo, P.; Pingitore, A.; Barbini, A.; Di Francesco, F. A Wearable Sweat Rate Sensor to Monitor the Athletes’ Performance during Training. Sci. Sports 2017, 33, e51–e58. [Google Scholar] [CrossRef]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible Electronics Toward Wearable Sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef]
- Liu, Y.; Norton, J.J.S.; Qazi, R.; Zou, Z.; Ammann, K.R.; Liu, H.; Yan, L.; Tran, P.L.; Jang, K.; Lee, J.W.; et al. Epidermal Mechano-Acoustic Sensing Electronics for Cardiovascular Diagnostics and Human-Machine Interfaces. Sci. Adv. 2016, 2, e1601185. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Liu, Y.; Zhao, Y.; Ren, Z.; Guo, C.F. Flexible Electronics: Stretchable Electrodes and Their Future. Adv. Funct. Mater. 2019, 29, 1805924. [Google Scholar] [CrossRef]
- Lim, S.; Son, D.; Kim, J.; Lee, Y.B.; Song, J.; Choi, S.; Lee, D.J.; Kim, J.H.; Lee, M.; Hyeon, T.; et al. Wearable Electronics: Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures. Adv. Funct. Mater. 2014, 25, 375–383. [Google Scholar] [CrossRef]
- Teufl, W.; Lorenz, M.; Miezal, M.; Taetz, B.; Frohlich, M.; Bleser, G. Towards Inertial Sensor Based Mobile Gait analysis: Event-Detection and Spatio-Temporal Parameters. Sensors 2019, 19, 38. [Google Scholar] [CrossRef] [Green Version]
- Kan, Y.-C.; Kuo, Y.-C.; Lin, H.-C. Personalized Rehabilitation Recognition Model upon ANFIS. Proc. Eng. Technol. Innov. 2020, 14, 22–28. [Google Scholar]
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified Self and Human Movement: A Review on the Clinical Impact of Wearable Sensing and Feedback for Gait Analysis and Intervention. Gait Posture 2014, 40, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Novak, D.; Riener, R. A Survey of Sensor Fusion Methods in Wearable Robotics. Robot. Auton. Syst. 2015, 73, 155–170. [Google Scholar] [CrossRef]
- Casson, A.J. Wearable EEG and Beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Khurelbaatar, T.; Kim, K.; Lee, S.; Kim, Y.H. Consistent Accuracy in Whole-Body Joint Kinetics During Gait Using Wearable Inertial Motion Sensors and In-Shoe Pressure Sensors. Gait Posture 2015, 42, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, J.S.; Purevsuren, T.; Khuyagbaatar, B.; Lee, S.; Kim, Y.H. New Method to Evaluate Three-Dimensional Push-off Angle during Short-Track Speed Skating Using Wearable Inertial Measurement Unit Sensors. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 233, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Purevsuren, T.; Khuyagbaatar, B.; Lee, S.; Kim, Y.H. Biomechanical Factors Leading to High Loading in the Anterior Cruciate Ligament of the Lead Knee During Golf Swing. Int. J. Precis. Eng. Manuf. 2020, 21, 309–318. [Google Scholar] [CrossRef]
- Van den Bogert, A.J.; Geijtenbeek, T.; Even-Zohar, O.; Steenbrink, F.; Hardin, E.C. A Real-Time System for Biomechanical Analysis of Human Movement and Muscle Function. Med. Biol. Eng. Comput. 2013, 51, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Kun, L.; Inoue, Y.; Shibata, K.; Enguo, C. Ambulatory Estimation of Knee-Joint Kinematics in Anatomical Coordinate System Using Accelerometers and Magnetometers. IEEE Trans. Biomed. Eng. 2011, 58, 435–442. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S. Implementation of Six-Axis Inertial Measurement Unit on a Stretchable Platform Using “Cut-and-Paste” Method for Biomedical Applications. Sens. Mater. 2019, 31, 1397–1405. [Google Scholar]
- Lee, J.; Kim, K.; Lee, S. Stretchable, Patch-Type, Wireless, 6-axis Inertial Measurement Unit for Mobile Health Monitoring. Proc. Eng. Technol. Innov. 2020, 14, 16–21. [Google Scholar]
- Qi, Y.; Soh, C.B.; Gunawan, E.; Low, K.S.; Maskooki, A. A Novel Approach to Joint Flexion/Extension Angles Measurement Based on Wearable UWB Radios. IEEE J. Biomed. Health Inf. 2014, 18, 300–308. [Google Scholar]
- Gallagher, A.J.; Ni Anniadh, A.; Bruyere, K.; Otténio, M.; Xie, H.; Gilchrist, M.D. Dynamic Tensile Properties of Human Skin. In Proceedings of the 2012 International Research Council on the Biomechanics of Injury Conference, Dublin, Ireland, 12–14 September 2012; Volume 40, pp. 494–502. [Google Scholar]
- Euston, M.; Coote, P.; Mahony, R.; Kim, J.; Hamel, T. A Complementary Filter for Attitude Estimation of a Fixed-Wing UAV. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 340–345. [Google Scholar]
- Notch Docs. Available online: https://docs.wearnotch.com (accessed on 28 February 2020).
- Qi, Y.; Soh, C.B.; Gunawan, E.; Low, K.-S.; Thomas, R. Lower Extremity Joint Angle Tracking with Wireless Ultrasonic Sensors during a Squat Exercise. Sensors 2015, 15, 9610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Center of Rotation Plate | End of Rotation Plate (30 cm from Center) | |||||
---|---|---|---|---|---|---|
Axes | x | y | z | x | y | z |
Maximum RMS error | 1.41° (X-axis rotation) | 1.60° (Y-axis rotation) | 1.84° (Z-axis rotation) | 1.94° (X-axis rotation) | 3.31° (Y-axis rotation) | 2.91° (Z-axis rotation) |
Maximum angle difference | 3.06° (X-axis rotation) | 0.78° (X-axis rotation) | 0.27° (X-axis rotation) | 2.25° (X-axis rotation) | 1.10° (X-axis rotation) | 1.07° (X-axis rotation) |
0.97° (Y-axis rotation) | 2.71° (Y-axis rotation) | 1.05° (Y-axis rotation) | 1.02° (Y-axis rotation) | 3.79° (Y-axis rotation) | 1.23° (Y-axis rotation) | |
0.67° (Z-axis rotation) | 0.79° (Z-axis rotation) | 2.39° (Z-axis rotation) | 1.63° (Z-axis rotation) | 1.53° (Z-axis rotation) | 3.38° (Z-axis rotation) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.K.; Han, S.J.; Kim, K.; Kim, Y.H.; Lee, S. Wireless Epidermal Six-Axis Inertial Measurement Units for Real-Time Joint Angle Estimation. Appl. Sci. 2020, 10, 2240. https://doi.org/10.3390/app10072240
Lee JK, Han SJ, Kim K, Kim YH, Lee S. Wireless Epidermal Six-Axis Inertial Measurement Units for Real-Time Joint Angle Estimation. Applied Sciences. 2020; 10(7):2240. https://doi.org/10.3390/app10072240
Chicago/Turabian StyleLee, Jae Keun, Seung Ju Han, Kangil Kim, Yoon Hyuk Kim, and Sangmin Lee. 2020. "Wireless Epidermal Six-Axis Inertial Measurement Units for Real-Time Joint Angle Estimation" Applied Sciences 10, no. 7: 2240. https://doi.org/10.3390/app10072240
APA StyleLee, J. K., Han, S. J., Kim, K., Kim, Y. H., & Lee, S. (2020). Wireless Epidermal Six-Axis Inertial Measurement Units for Real-Time Joint Angle Estimation. Applied Sciences, 10(7), 2240. https://doi.org/10.3390/app10072240