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Abstract: Coastal dune habitats have been declining globally over the last several decades due to
rapid urbanization. Within remaining dune systems, dune fixation has resulted in further losses of
mobile dunes with negative impacts on their associated species. Some studies suggest vegetation
removal can initially promote habitat heterogeneity, and increase availability of suitable habitats
for psammophile, xeric and endemic mobile dune species, but longer-term responses are generally
unknown. We investigated the temporal trends of four taxonomic groups to determine the effect
of vegetation removal on dune assemblages over a 12-year period at an LTER site. Three different
forms of removal are investigated here—removal in a grid form on fixed dunes, removal of the
wind-facing slope vegetation on semi-fixed dunes and opportunistic off-road driving on disturbed
dunes. Results were varied across taxa, highlighting the need for multi-taxa monitoring in conservation
and restoration management. Overall, fixed dune treatment had very little effect, while a stronger
response was found in semi-fixed treatments in particular for mobile dune indicator species, which
showed evidence of recolonization within a few years following treatment. Disturbed dunes were
most similar to mobile dunes for animal taxa indicating that pulse removal may not be as effective
as continuous press disturbance. Nevertheless, a less destructive form of disturbance such as
re-introduction of grazing might be preferable and requires further investigation.

Keywords: dune stabilization; restoration; coastal dune; vegetation removal; multi-taxa; biodiversity;
LTER; temporal dynamics; shrub encroachment

1. Introduction

In the last 70 years there have been extensive losses of coastal habitats and naturally functioning
coastal dune systems globally [1–7]. This is due to dramatic population expansion and urban
development along coastal plains, coupled with changes in land-use practices and climate-related
changes in aeolian processes. [1,8–10]. Globally this has led to substantial increases in dune fixation
(stabilization) and a significant loss of naturally mobile (shifting) dunes [11–16]. Restoration strategies
for coastal dune systems are complex because sandy dunes are exposed to multiple dynamic processes
that operate on different temporal and spatial scales [17,18]. Moreover, dune restoration methods
are varied and sometimes conflicting. These range from re-establishment of vegetation, to removal
of vegetation and eliminating exotics; the strategy usually depends on the management objectives
(reviewed by [2,19]). Many dune management regimes around the world have focused on promoting
dune fixation through the introduction of (sometimes non-native) grasses and nourishment in order
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to enhance flood protection and wave erosion defences. These activities have further added to the
loss of dune mobility in coastal systems, and their associated specialist species [20–25]. In this study
we test the effect of vegetation removal to see whether it can be used as a tool to restore mobile
dune biodiversity.

Flora and fauna found on mobile dunes are often psammophilic, endemic species, highly adapted
to harsh, xeric sandy conditions, and often form unique assemblages [6,26–31]. Several researchers
recognize that dune fixation, whether through succession or intentional re-establishment, can result in
adverse consequences for mobile dune species [14,24,25,32,33]. In fact, a review of coastal management
actions reported that dune fixation always had a negative impact on coastal species diversity, either
through species loss or increase (e.g., invasive species), or changes in composition [19].

Most open habitats in Europe are semi-natural, including dry sandy grasslands and coastal
dune systems, which have been traditionally maintained by anthropogenic activities for thousands
of years [34]. Some argue that pastoral human activity simply replaced natural dynamic dune
characteristics such as wind erosion, wildlife grazing and trampling, which had existed prior to the
advancement of civilization [1,35]. Contemporary coastal researchers now advocate actively restoring
mobile dunes by removing vegetation and introducing disturbance, in order to reactivate sand mobility
and imitate natural disturbances [4,6,7,15,33,36–44].

A disturbance can generally be defined as any event that disrupts the assemblage or population
structure, or changes the resource pool, substrate availability or physical environment [45,46]. It can
therefore refer to either natural or anthropogenic events. Three main types of disturbances are
commonly recognized; i) pulse disturbances are short-term and sharply delineated in time (e.g., natural
flood, wildfire, or deforestation); ii) press disturbances may arise sharply and then reach a constant level
that is maintained (e.g., grazing, persistent pollution, or off-road vehicle use), and iii) accumulating
ramp disturbances, which occur when the strength of the disturbance steadily increases over time
(e.g., drought or build-up of toxic waste; [47,48]. We investigate two pulse disturbances and one stress
disturbance in this study.

Mobile coastal dunes are naturally exposed to high degrees of press disturbance in the form of wind
erosion and sand burial, as well as pulse disturbances, such as blow-outs and sea storms [15,49,50].
As dunes shift inland, weakening of these processes allows perennial species, such as Artemisia
monosperma, to establish. Once established, nutrients build up in the sand around their bases,
facilitating the establishment of successional species, and in turn, leading to dune fixation [5,51,52].
New embryonic dunes forming at the beach would usually replace fixed dunes in a continuous cycle.
Established dunes can also alternate between mobile and stable states following climatic perturbations
or other disturbances in longer cycles [24,53]. Removal of disturbances from the system, such as
removal of human activity or changes in wind and sand deposition, can lead to loss of this cycle.
In Wales, rapid dune fixation occurred over the last 60 years after rabbits that had maintained dune
perturbation were nearly all wiped out due to extermination and disease [15]. In New Zealand and
California, shrub encroachment by invasive species resulted in extensive dune fixation [25,32].

Removal of perennial vegetation has been shown to be an effective tool for reinstating the
geomorphological traits of naturally occurring mobile dunes [15,24,40,54–56]. This restoration approach
may seem unconventional because a) it involves the intentional introduction of an anthropogenic
disturbance, b) it aims to restore an earlier successional state, as opposed to passively allowing natural
vegetation succession to continue. However, it is argued that sand dynamics in most coastal dune
ecosystems no longer function naturally due to restrictions of sand movement along the beachfront
and inland [57]. Therefore, human intervention and introduction of disturbance is needed to restore
the dunes.

In general, ecological restoration projects are widely reported, but are rarely evaluated
systematically, particularly on mid- and long-term temporal scales [2,58,59]. Lack of clearly defined
and measurable restoration targets also makes evaluation of manipulation responses difficult [2,60–62].
Restoration can involve abiotic and biotic manipulations; if the goal of a restoration project is to restore
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biodiversity and improve ecosystem functioning, the recovery of biotic components of ecosystem
processes across multiple trophic levels must be understood [63–66]. Restoration of coastal dune
systems should therefore consider the response of both faunal and floral species.

Biotic responses are often not reported in landscape restoration, and rarely for animal taxa [59,67].
Most coastal restoration projects only consider geomorphological and vegetation components, and
usually are only monitored over a short time frame. Only a handful of coastal restoration studies
evaluate more than one taxon concurrently, and a recent review [2] found that 88% of coastal restoration
studies only considered plant responses, usually only in terms of vegetation cover or species richness,
not composition. There is a clear need for a coastal restoration studies involving vegetation removal to
consider responses of species composition over a long timeframe and across multiple taxa (particularly
faunal taxa). We found only one study that investigated composition responses of multiple taxa
(arthropods and plants) to disturbance in coastal dunes [49], while Kutiel et al. [68] are the only authors
to consider animal and plant responses to vegetation removal concurrently. The Nizzanim Dune
Nature Reserve (NDNR), on the southern Mediterranean coast of Israel, provides a rare opportunity to
conduct a restoration study considering all these components.

Livestock grazing and firewood collection by nomadic tribes was prevalent for hundreds of years
in what is now NDNR [69–71]. Exclusion of this anthropogenic presence since the middle of the last
century has led to substantial shrub encroachment and dune fixation across the reserve [69,72]. It is
expected that in the absence of disturbance, the dunes in NDNR will eventually homogenize and
become fixed, which will result in the loss of mobile dunes and their associated species, and an overall
loss of β- and γ-diversity across the reserve [26].

To mitigate the threat of dune fixation in NDNR, the Nizzanim Long Term Ecological Research
(LTER) project implemented two restoration experiments involving perennial vegetation removal as a
form of pulse disturbance. The goal of these trials was to restore the heterogeneity of dune states and
increase γ-diversity by providing a suitable habitat for mobile dune species [69]. This is the largest
landscape scale restoration program undertaken in Israel, and the long-term responses have been
monitored as part of the LTER program since 2005.

Parallel to the trials, off-road vehicles (ORV) have been utilizing several dunes in the reserve
providing an opportunity to examine the effect of a continuous press disturbance on species composition.
In this study, we investigate the effect the two controlled pulse removals and the un-controlled ORV
press disturbance, in order to determine whether these different types of vegetation removal recreate
suitable habitat for mobile dune species. Restoration can take several years, even decades, and
can rarely precisely replicate an original status [2,73]. Therefore, it was expected that by removing
vegetation and creating disturbance, the dunes would become more suitable for mobile-dune obligate
species, and less suitable for fixed-dune species.

Employing the terminology of Lake [73], we used a M-RCI experimental design; comparing
multiple repeated replicates in Reference (mobile), Control (un-treated) and Intervention (treated) dunes.

We addressed the following questions:

i. How do species compositions of different taxa respond to different removal treatments?
ii. Can indicator species represent assemblage level responses?
iii. Can the different forms of removal contribute to successful coastal dune management?

Hypotheses Tested

First, we tested the hypothesis that in control and reference dunes, fixed dunes would support a
greater abundance (H1) and species diversity (H2) under productivity theory [74].

Next, we tested the responses to treatment predicting that:
H3: Reduction of primary productivity through mechanical removal will shift a) abundance, and

b) diversity towards reference dune levels
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H4: Composition of treated dunes will shift away from the control dune composition towards
reference (mobile) dune composition for each taxon

Over time, responses in composition could therefore be expected to either:
H4a: Gradually become more similar to the reference dune state (turnover)
H4b: Present an initial shift and then gradually return to control state (resilience)
or
H4c: Remain the same and not shift away from the control state (resistance)
Natural coastal dunes are dynamic habitats exposed to a variety of press (wind erosion/sand burial,

grazing) disturbances, which creates assemblages of highly adapted mobile-dune species. Therefore,
we predicted that:

H5: Mechanical press disturbance (ORV disturbance) will be more effective than a single
mechanical pulse disturbance (removal by bulldozer), at creating community composition similar to
the reference dune.

Finally, we considered the impacts of treatment on individual Indicator Species (IS). Since IS
will tend to be highly affiliated to their specific habitat type, species abundance should increase with
habitat availability.

H6: Treatment of semi-fixed and fixed dunes will result in an increase in abundance of species
that are affiliated to mobile dune habitat, while species that prefer semi-fixed and fixed habitats
will decrease.

2. Materials and Methods

2.1. Study Site

The Nizzanim LTER is an on-going collaborative project established in 2004 to monitor plants,
arthropods, small mammals and reptiles [26]. The study was conducted at the Nizzanim LTER site in
Nizzanim Dunes Nature Reserve (NDNR), Israel (31◦42’–31◦44’N, 34◦35’–34◦36’E) covering an area
of 20 km2 along the Mediterranean coastline. Annual average temperature is 20 ◦C, and rainfall is
400-500 mm per annum, falling mainly during winter (November–April). The common wind direction
is south-west with a very low Drift Potential Index [70].

Sand dunes in NDNR are a globally distinct ecosystem situated at the intersection between desert
and Mediterranean coastal dune systems [69]. The edaphic conditions and the physiognomy of the
sand dunes enable numerous Saharan taxa to range northward in spite of the temperate climate that
favors Mediterranean species [75], creating an unusual and highly diverse assemblage compared to
other Mediterranean coastal systems [76]. Three distinct fixation states of dunes are recognized in
NDNR, each state with its own characteristic species diversity and composition [26,77]. Following the
declaration of the reserve, livestock grazing and wood harvesting by local communities (predominantly
Bedouin) were prohibited and rapid dune fixation occurred, increasing the shrub cover from 4% to
20% of the landscape over a period of 60 years [27,72,78].

The Nizzanim LTER site consists of mobile, semi-fixed, and fixed dunes separated by inter-dune
depressions [79]. The three fixation states can be categorized based on the gradient of perennial
percentage vegetation cover (PPC), aeolian sand movement, and visual indicators such as dune
geomorphic structure, plant distribution, dominant perennial species and soil color [27,56,79–81].

Mobile dunes have 5–15% PPC, mainly Ammophila arenaria, and make up approximately 20%
of the reserve [27]. Wind-driven shifting sands result in frequent burial and exposure of perennial
plants on mobile dunes. Semi-fixed dunes have 16–30% PPC, are dominated by wormwood (Artemesia
monosperma) and desert broom (Retama raetam), and cover approximately 70% of the area. Lastly, fixed
dunes vary between 30–50% PPC, and compose approximately 10% of the area of the reserve.
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2.2. Removal Experiments

Three separate treatments were tested (Figure 1). For each set of treated dunes, there were
paired untreated control dunes and mobile dunes were considered as the restoration reference for all
treatments (Figure 1e) (other dunes were monitored under the LTER but were not included in this
study). A summary table of the overall experimental design has been included in the supplementary
information (Table S1).
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Figure 1. Dune treatments investigated in Nizzanim Long Term Ecological Research (LTER); (a) Fixed
untreated (control) dune; (b) Fixed treated (c) Semi-fixed untreated (control); (d) Semi-fixed treated; (e)
Mobile dune (reference) dune; (f) Off-road vehicle disturbance. Semi-fixed and Fixed Treated dunes
were paired with un-treated Semi-fixed and Fixed untreated control dunes respectively. All treated
dunes were compared to their un-treated control pair and Mobile dunes as the restoration reference.
Disturbed dunes were exposed to illegal, un-quantified off-road vehicle disturbance. They were
compared to both Mobile and Semi-fixed untreated dunes to examine their relative composition.
Frames of the different dune types shown are colour consistent throughout all figures.

i. Fixed Dune Treatment: In October 2005, perennial vegetation was removed from the entire fixed
dune in a grid formation using a bulldozer, to accurately reach the desired amount of remaining
vegetation (Figure 1b). The removal reduced the vegetation from 31–50% to approximately
15–20% for each dune [69]. Three dunes were treated and three control dunes were monitored
in parallel.

ii. Semi-Fixed Treatment: In November 2012, an experiment was conducted on four semi-fixed
dunes, which had a range of 16–30% average PPC prior to treatment. This time, the experiment
involved removal of all vegetation from the wind-facing slope of four semi-fixed treated dunes.
The vegetation remaining on the crest and slip-face was left intact (Figure 1d). This experimental
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design was chosen in order to leave some vegetation needed for animal survival, while more closely
emulating the distribution of natural vegetation found on mobile dunes [see 77]. Four untreated
semi-fixed dunes were selected as controls (Figure 1c).

iii. Disturbed Dunes Treatment: Off-road vehicle (ORV) disturbance has been occurring illegally in
the reserve for many years (Figure 1f), which began prior to the initiation of the experimental
plots. We began monitoring these dunes in 2012, in order to study the impact of ORVs on
dune biodiversity. We consider these dunes as ‘treated’ with an unquantified press disturbance.
The exact natural state of these dunes prior to the disturbance is unknown; on the one hand,
one might assume they were similar to mobile dunes based on historical aerial photos from
1965 and 1999 [69]. On the other hand, most dunes in the immediate vicinity are semi-fixed.
Disturbed dunes were therefore compared with both mobile and un-treated semi-fixed dunes as
the reference dunes. Annual plants are almost entirely absent from disturbed dunes and as such
this taxon was not monitored on these dunes.

2.3. Data Collection

2.3.1. Rodents

Rodents were monitored in autumn (September–October) from 2005–2016, using 27 Sherman
traps per dune in three rows of nine traps each, placed alternately in open and bush patches spaced
approximately 10 m apart. Trapping took place over two consecutive nights, using mark recapture
to calculate the estimated abundance for each species. We used the Chapman estimator, which is an
adjusted form of the Lincoln–Petersen Index [82].

2.3.2. Reptiles

Reptiles were sampled in autumn 2005–2016 using a combination of several methods, including
ten pitfall traps (10 L buckets), two track transects (100 m long), four activity transects (100 m long)
and opportunistic sightings. Ranked abundance for each species was then calculated using a max-log
algorithm across all sampling methods with a range of 0 (absent) to 5 (highly abundant). For full
calculation methods see Shacham and Bouskila’s work [28].

2.3.3. Beetles

Ground-dwelling beetles were monitored in spring (March–May), between the years 2006–2016
(not all years were sampled). Beetles were collected using dry pitfall traps of 12 cm depth and 10 cm
diameter, in a regularized pattern of 10 traps on each dune section (windward slope, crest and slip-face),
alternating between open and shrub patches. Pitfall traps remained open for 36 hours. The 30 traps
were then pooled to give one dune sample.

Beetles were trapped live, identified to morphospecies (sensu [83]), and released where possible or
collected and later identified by experts. Some species remained as morphospecies or were identified
to genus or family, i.e., to the best Recognizable Taxonomic Unit (RTU) possible. Since data was
collected using only one method, we were able to use a direct measure of abundance for beetles
(compared to the rank abundance used with the mixed methods for reptiles, or estimated abundance
for mark-recaptured rodents).

2.3.4. Annual Plants

Annuals were monitored in spring (March–May) 2006–2016, using 40 × 40cm quadrats. As for
beetles, all three sections of the dune were sampled, resulting in a total of 72 quadrats per dune. In each
slope a 100 m2 plot was marked out, and within each plot 12 open and 12 bush quadrats were randomly
placed. Total dune cover was then standardized based on the area contribution of each slope to the
whole dune.
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2.4. Data Analysis

For all analyses we tested each taxon separately. First, species with a total abundance of
<5 individuals (or 5% cover for annuals) across all years and all dunes were removed. We also
removed all species that had been found in less than three years, irrespective of their total abundance.
Each experimental treatment type was then examined separately; for each we compared the treated
dunes to the respective control dunes (e.g., treated and un-treated fixed dunes) and the reference dunes
(mobile). In a similar manner, for the disturbed dunes we consider un-treated semi-fixed dunes as the
control pair, and mobile dunes as the reference. All analyses were performed in R version 3.4.3 [84].

2.4.1. Assemblage Abundance and Richness

To understand the effects of treatment on assemblages, we examined the response of assemblage
abundance, species richness and composition. First, we compared control dunes (untreated semi-fixed
and fixed dunes) with the restoration reference (mobile dunes). Then we used these differences to set
the expectations for restoration effects. For example, if there were no differences between control and
reference states, we expected no difference between treatment and control, or treatment and reference
states (effectively H1 would be the same as Ho). Conversely, if there were differences between control
and reference, then treated dunes were expected to become significantly different from the control, and
would either become more similar to the reference, or different from both control and reference.

For each treatment we tested the treated dunes against their untreated control and against the
mobile dune reference. Estimated species richness, abundance of rodents, and percentage cover of
annuals are all continuous, numerical variables. Therefore, to test differences in these parameters we
used linear mixed-effect models as described in Laird and Ware [85]. Since dune sampling was not
balanced across all years, we set year as a random intercept effect without interactions for any models,
using the nlme package [86].

Generalized Linear Mixed Models (GLMM) allow the introduction of random effects in hierarchical,
non-linear, count data [87]. Species richness of all taxa, total abundance of beetles, and rank abundance
of reptiles are count data. Therefore, we tested these parameters for differences among dune states
using GLMM with Penalized Quasi-Likelihood (GLMM-PQL) with the MASS R package [88], with
dune state specified as a fixed effect and year as a random intercept effect, under a Poisson distribution.

2.4.2. Composition

To test the effect of treatments on dune composition we used Redundancy Analysis (RDA) in the
R package vegan [89], in a constrained model with year specified as a conditional factor:

rda(species matrix) ~ dune.treat * year + Condition(year) (1)

This allowed us to examine the effect of dune type (i.e., treated, reference and control dunes) after
the effect of year had been removed as a covariable. We then used the scores along the first RDA axis
(RDA1) to calculate the treatment effect as a proportion of total distance between control and reference
dunes, shown by directional arrows. ). Finally, we used pairwise Permanova to test the effects of
treatment on the centroids of treated dunes compared to their control pairs only (i.e., without mobile
dunes), with years as replicates. Multivariate methods were redundant for examining rodents (since
there are effectively only two species), but we included ordination plots for consistency in comparison
with other taxa.

To visualize the multivariate changes over time, we plotted the RDA ordination as a function of
year and used the mean scores for each dune type on the first RDA axis (RDA1). This is conceptually
related to the Principal Response Curves approach (PRC) [90], but here our analysis is conducted
without standardizing to a baseline. We did this because we wanted to be able to see the fluctuation in
all dune types in response to environmental stochasticity.
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Since the data were unbalanced, we could not run a standard PRC permutation test, so to test
for temporal effects on treated dunes, we used Permutational Multivariate Analysis of Variance
(Permanova). These tests were conducted for each year separately, with the treated dune type
set as the reference dunes with which to compare both the control pair and the reference (mobile)
dunes simultaneously.

2.4.3. Indicator Species

We identified Indicator Species (IS) for each taxon in two stages. First, we identified species
that are highly affiliated to a single dune state (mobile, semi-fixed or fixed dunes) using the IndVal
method. This method was proposed by Dufrêne and Legendre [91] to identify the ecological preference
of a given species among a set of alternative site groups. An Indicator Value (IV) is a measure of
association ranging from 0% (individuals are spread equally between the dune types) to 100% (all
individuals of a species are observed in all dunes of only one dune state i.e., the indicated dune state).
IVs were calculated for each species with the indicspecies package in R [92]. To avoid rare species
that were unlikely to be captured or useful for monitoring, we only included common species with
total abundance of 20% or more of the average species abundance within each taxon. Note this was
in addition to the species that were already removed from the whole study as described earlier in
Section 2.4. IVs were tested against a null distribution using a permutation test [93]. IVs that were
significantly different from the permuted random distribution (p < 0.01) were considered as strong
candidates to be indicator species.

The value of IV is the degree of affinity of each species to a given dune state, but it does not
indicate the vegetation cover that the species is associated with. To understand this association, we
calculated a second measure which reflects the percentage of vegetation in which a species is most
commonly active; this is effectively PPC weighted by abundance (wPPC) such that:

wPPCi =

∑i
1

(
ni j × PPCi

)
∑ j

i

(
ni j

) (2)

where n is the total abundance over time of species i in dune j, and PPCj is the average perennial plant
cover in dune j. Thus, a highly obligate mobile dune species would have a high IV and a low wPPC,
while a highly obligate fixed dune species would have a high IV and a high wPPC.

Theoretically, wPPC can range from 0% to 100%, but the dunes in the Nizzanim TER varied from
10% to 36% cover, so these are the minimum and maximum possible values in this study, respectively.
Equation (2) forms the preliminary steps for calculating the Species Sandiness Index (SSI) in Rubinstein
et al. [77], but the range of SSI is dependent on the range of plant cover included in the study and is
designed to provide a scale where sandiness in mobile dunes has higher values than in dunes with
high vegetation cover. The value of wPPC for each species is comparable across other habitats, and the
positive direction reflecting increasing PPC is more informative in the context of this study.

For each taxon, we objectively selected the two IS with the lowest and highest wPPC, to reflect the
species most affiliated to mobile and fixed dune states respectively. This stage was done using data
from control dunes only. These IS are expected to be the most specialized, adapted or obligate species
for the respective dune states. That said, on the fixed dunes they could also be generalist species that
are at the edge of their natural (e.g., inland) range and unable to inhabit the more dynamic dune states.

We then tested whether effect of the treatments on the eight selected IS was according to the
expectations, i.e., away from the control dunes towards the reference dunes. According to the H1

hypothesis, we should expect that mobile IS would increase in abundance in the treated dunes, while
fixed IS would decrease.

The abundance of each IS was tested using GLMM-PQL (reptiles and beetles) and LME (rodents
and annuals) models similar to those used for assemblage abundances [26]. We assessed the temporal
trends of each IS using a permuted Empirical Cumulative Distribution Function (ecdf ) in the R stats
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package [84]. This simple permutation approach generates a p-value for the null hypothesis of zero
difference in abundance of a species between two habitats. It allows us to consider unbalanced data
with zero-inflated distributions that are not testable under ANOVA. We conducted each test on pairwise
treatment and control, or treatment and reference dunes for each year separately.

3. Results

Overall, across a 12-year study in 21 dunes, we analyzed data from 19 reptile species (n = 1265
records), five rodent species (n = 824), 48 beetle morphospecies (n = 6207), and 66 annual plant species,
after removal of rare species.

3.1. Abundance & Richness

We tested assemblage-level abundance and species richness to determine whether these parameters
were affected by vegetation removal. We considered any result with p < 0.05 as significant Full results
and p-values are given in Supplementary Tables S2 and S3. We plotted the results as boxplots where the
upper and lower edges of the box correspond to the 25% and 75% quartiles (Figures 2 and 3). The upper
whiskers extend from the edge of the box to the highest value, excluding outliers. Data beyond 1.5 of
the 25–75% inter-quartile range are outliers and plotted as points. Note that for many of the rodent
samples, either one or two species was found. Therefore, for some dune types, the boxplot appears
as a single line with no variation. On its own, boxplots for the rodent data would normally not be
the most appropriate way to present these results. However, we felt it pertinent to maintain the same
graphics across taxa to make them more easily comparable.
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Figure 2. Boxplots of average abundance for each taxon (see taxonomic icons by row) for (a–d)
control dunes, (e–h) semi-fixed dune treatment, (i–l) fixed dune treatment, and (m–o) off-road sport
vehicle disturbance. Each treated dune type was tested against its untreated pair (control) and mobile
(reference) dunes. Disturbed dunes were not monitored for annuals, and untreated semi-fixed dunes
were used as the control. Significant differences were tested with generalized mixed models for beetles
and reptiles (Poisson), and linear mixed models for rodents and annuals. p < 0.05 for treated dunes
compared to * control and + reference dunes.
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Figure 3. Boxplots of species richness for each taxon (see taxonomic icons for each row for (a–d) control
dunes, (e–h) semi-fixed dune treatment, (i–l) fixed dune treatment, and (m–o) off-road sport vehicle
disturbance. Each treated dune type was tested against its untreated pair and reference (mobile) dunes.
Disturbed dunes were not monitored for annuals and un-treated semi-fixed dunes were used as the
control. Significant differences were tested with generalized mixed models for beetles and reptiles
(Poisson), and linear mixed models for rodents and annuals. p < 0.05 for treated dunes compared to *
control and + reference dunes, respectively.

We first tested un-treated fixed control and semi-fixed control dunes against the reference mobile
dunes, to set up the expectations for treatment effects. There was no difference between control and
reference dunes for any of the faunal taxa (Figure 2a–c). This meant we rejected H1 that abundance of
animals increases with increasing primary productivity. For annual plants, increasing perennial cover
led to increased annual cover as expected (Figure 2d).

These findings in control dunes established the expectations for responses to treatment (H3): For
annuals, we expected treatment to result in a decrease in cover, while for animal taxa, no difference
was found between control and reference dunes, so no difference would be expected in response
to treatment.

For the semi-fixed treatment, there was no significant difference in abundance between treated
and untreated semi-fixed dunes or mobile dunes for all three faunal taxa (as expected based on the
expectations set up in the previous statement (Figure 2b,e–g). In the fixed dune treatment, rodents
maintained similar (not significantly different) abundance to un-treated control and mobile dunes, as
expected (Figure 2i), while reptile abundance was significantly lower in treated fixed dunes than their
control pairs (Figure 2j). Conversely, beetle abundance was significantly higher in treated fixed dunes
than both control and reference dunes (Figure 2k). Thus, for reptiles and beetles, treatment did have an
effect, despite there being no expectation for any treatment effect.

Disturbed dunes exposed to off-road vehicle disturbance were also expected to be more similar
to mobile and less similar to untreated semi-fixed control dunes. There was no effect of vehicular
disturbance on rodent abundance (Figure 2m). However, reptile abundance was significantly lower on
these dunes compared to both mobile and semi-fixed control dunes (Figure 2n). In contrast, beetle
abundance was significantly higher in disturbed dunes than in mobile and semi-fixed control dunes
(Figure 2o).
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Cover of annuals increased with increasing dune fixation so, treatment was expected to reduce %
cover of annuals, making the treated dunes more similar to mobile dunes. However, on semi-fixed
dunes, annual % cover did not significantly decrease in response to treatment, with % cover remaining
similar to semi-fixed controls and significantly higher than in mobile dunes (Figure 2h). In treated
fixed dunes, the % cover was significantly higher than both mobile and fixed control dunes, which
meant the direction of response was opposite to expectations (Figure 2l).

As with abundance, we tested the control dunes for differences in species richness (Figure 3a–d).
For rodents and beetles there was a gradient of declining species richness with increasing perennial
cover (fixation state) in control dunes (Figure 3a,c), which opposes the productivity-diversity theory
(H2). Thus, the expectations for treatment would be an increase in richness following removal, if
treatment was successfully replicating mobile dune conditions and therefore biodiversity structure.
Note that for beetles, the decline in richness was only significant between mobile and fixed dunes, so
the semi-fixed treatment was expected to remain similar to both control and reference. Conversely,
reptile and annual plant richness increased with increasing dune fixation (Figure 3b,d), supporting
the theory that productivity increases diversity. The expectations for these latter taxa were thus that
species richness would decrease in response to treatment.

In semi-fixed dunes, no response of richness was seen in reptiles (Figure 3f) and annuals (Figure 3h)
which meant an absence of expected effect, while beetle richness remained unchanged in response to
treatment as expected (Figure 3g). In fixed dunes, rodent and annual richness showed no difference
between treated and untreated fixed dunes, both remaining significantly different from mobile dunes
(Figure 3i,l) and contradicting the expectations for a decrease (rodents) and increase (annuals) in
response to treatment. The apparent reduction in reptile richness in treated dunes became similar to
(i.e., not significantly different from) to mobile dunes (Figure 3j), but the decline was not large enough
to become significantly different from the untreated control dunes (p = 0.10) so the expected result was
only half met. Beetles showed a small increase in treated fixed dunes towards mobile dunes compared
to untreated fixed dunes, and thus beetle species richness did not differ significantly from the reference
or the control (Figure 3k).

Lastly, dunes disturbed by ORV had significantly higher rodent species richness compared
to untreated semi-fixed dunes, similar to mobile dunes (Figure 3m). Reptiles were found to have
significantly lower species richness on disturbed dunes compared to semi-fixed control dunes, but
were not significantly lower than mobile dunes (Figure 3n). Beetle richness in treated semi-fixed dunes
remained similar to richness in both untreated semi-fixed dunes and mobile dunes (Figure 3o).

3.2. Composition

To examine the effect of treatments on composition we used constrained multivariate ordination.
Firstly, we conducted a redundancy analysis (RDA) of all dune states together, in order to compare
the relative composition of all dunes in the study, and to visualize the relative magnitude of the effect
across press and pulse treatment types (Figure 4a–d). We then tested the treatment effect in each dune
state separately, in order to meet the assumptions for the statistical tests (Figures 5–7). For all taxa,
composition was a good indicator of dune state as expected under hypothesis H2, as seen by the strong
clustering and gradient from fixed control to mobile dunes in all taxa along the first RDA axis (RDA1).
Explained variation was much higher in RDA1 than RDA2 for all taxa (Figure 4).

Rodent assemblages in Nizzanim coastal dunes were heavily dominated (98%) by two gerbil
species Gerbillus pyramidum and G. andersoni allenbyi. Therefore, ordination formed an arc effect along
the first axis (Figure 4a) as the ratio between the two species shifted from only G. allenbyi in fixed
dunes, to only G. pyramidum in disturbed dunes. The disturbed dune centroid was located beyond
(further left) the mobile dune’s along RDA1 (yellow arrow, Figure 4a), since both species are present in
the latter.
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Figure 4. Overall summary of redundancy analysis (RDA) analyses with all dune types included for (a)
rodents; (b) reptiles (c) beetles and (d) annual plants. Arrows depict direction of treatment effect along
RDA1. Significance testing was performed in each dune type separately (see Figures 5–7).

Figure 5. Redundancy analysis for (a) rodents, (b) reptiles, (c) beetles and (d) annual plants in treated
semi-fixed dunes (pale blue triangle) compared to un-treated semi-fixed (control) dunes (dark blue
square) and Mobile dunes (orange square) which are the treatment reference. Distance bars along the
1st RDA axis show the treatment effect (blue arrow) as a percentage of total distance between control
and reference (black dashed). Significant differences were tested using pairwise Permanova. * and +

represent p < 0.05 for treated dunes compared to control and reference dunes, respectively.
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Figure 6. Redundancy analysis for (a) rodents, (b) reptiles, (c) beetles and (d) annual plants in treated
fixed dunes compared to untreated fixed (control) and mobile dunes (reference). Distance bars along
the 1st RDA axis show the treatment effect (green arrow) as a percentage of total distance between
control and reference (black dashed). Significant differences were tested using pairwise Permanova. *
and + represent p < 0.05 for treated dunes compared to control and reference dunes, respectively.

Both semi-fixed and fixed dunes showed minor shifts towards mobile dunes (the expected
direction for our restoration goals), as a result of treatment for faunal taxa (blue and green arrows in
Figure 4a–c), which supported hypothesis H4. A small and insignificant shift in the opposite direction
was seen for annuals (green arrow; Figure 4d). Annuals in both semi-fixed control and treated dunes
were similar to mobile dune in RDA1 (Figure 4d). ORV disturbed dune composition was virtually
identical to mobile dune composition for beetles (Figure 4c), and was similar for reptiles along RDA1,
but was distant along RDA2 (yellow arrow; Figure 4b). Overall, press treatment (ORV) appeared to be
more similar to reference dunes, compared to pulse treatments, in accordance with hypothesis H5.

Changes in response to treatment were tested for each dune type separately, comparing each
treatment to the reference (mobile) dunes, and their control dunes for semi-fixed (Figure 5), fixed
(Figure 6) and disturbed dunes (Figure 7). Pairwise Permanova results are given in Table S4. Rodent
composition shifted 30% along RDA1 towards the reference as a response to treatment (Figure 5a).
Their composition was significantly different between treated and control dunes for semi-fixed dunes.
In other words, the ratio between the two rodent species changed significantly as a result of the
semi-fixed treatment. Reptiles and beetles shifted along the 1st RDA by 17% and 12% respectively,
towards the reference centroid in response to treatment in semi-fixed dunes (Figure 5b,c). The annual
plants’ centroid shifted away from the reference centroid by 9% along RDA1 (Figure 5d). The centroid
shifts detected for these three taxa were not significant in pairwise Permanovas. The 2nd RDA axis
for all taxa explained a very low percentage of the variance (0.7–3.3%) compared to the first axis
(11.3–49.5%).
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Figure 7. Redundancy analysis for (a) rodents, (b) reptiles and (c) beetles in disturbed dunes (off-road
vehicle disturbance) compared to semi-fixed untreated (control) and mobile dunes (reference). Distance
bars along the 1st RDA axis show the treatment effect (yellow arrow) as a percentage of total distance
between control and reference (black dashed); the % is calculated under the scenario that pre-disturbance
state was semi-fixed. Significant differences were tested using pairwise Permanova. * and + represent p
< 0.05 for treated dunes compared to control and reference dunes, respectively.

Rodent composition on control fixed dunes consisted of just one species (G. a. allenbyi) and
the second species did not reappear on treated dunes within the timeframe of the study (Figure 6a).
Fixed dune treatment produced a minor shift in the intended direction towards the reference for reptiles
(2%) and beetles (6%) (Figure 6b,c), while a greater shift (17%) away from mobile dunes was detected
for annuals (Figure 6d). Treated dunes’ centroids were not significantly different from controls in any
taxa in pairwise Permanovas (see Table S4). The composition of rodents in disturbed dunes shifted
from two species found on both mobile and untreated semi-fixed dunes, to one psammophilic species
forming an arch-effect in ordination (Figure 7a). Species composition was significantly different to
both mobile and un-treated semi-fixed dunes for rodents and reptiles (Figure 7a,b). The centroids for
both of these taxa on disturbed dunes were beyond (left of) the centroids of mobile dunes.

The pre-disturbance state for ORV dunes could have been mobile or semi fixed. Under the latter
conditions, one could infer a 155% and 261% shift from control to reference along the 1st RDA axis for
rodents and reptiles respectively. For beetles, the composition shift along the 1st RDA axis was 88% of
the distance between control and reference dunes and was only significantly different from semi-fixed
controls in Permanova (Figure 7c). Note that for reptiles, significant differences between disturbed
and mobile dunes were found along the primary RDA axis (Figure 7b), while these differences were
reflected in the second RDA axis in the overall ordination shown in Figure 4b. This is because the
relative difference in composition between disturbed and mobile dunes is much smaller than the
difference between mobile and untreated semi-fixed or fixed dune states, irrespective of treatment type.

3.3. Temporal Trends in Composition

To visualize the multivariate changes over time, we plotted the mean scores for each dune type
on the first RDA axis (RDA1) from Figures 5–7 as the y-axis, as a function of year along the x-axis
(Figure 8). Rodents on treated semi-fixed dunes were significantly different from their untreated pairs
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in 2014 (Figure 8a). Beetle composition in treated semi-fixed dunes changed incrementally over time
towards the mobile dune centroid, and was eventually significantly different from untreated semi-fixed
dunes in 2016 (Figure 8g). A small shift was seen for reptiles and rodents from untreated to treated
semi-fixed dunes in 2016, but it was not significant (Figure 8a,d). These findings could be seen as
partial support for hypothesis H4a.
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Figure 8. Temporal Redundancy Analysis (RDA) curves for each treatment type (see column titles)
for (a–c) rodents, (d–f) reptiles, (g–i) beetles, and (j–k) annual plants. Scores on the first axis (RDA1)
in constrained redundancy analysis with year as a covariable are plotted over time. Data points are
the scores for centroids of each dune type in a given year for each taxon. p < 0.05 for all significant
results; * Treated semi-fixed dunes were significantly different to untreated semi-fixed control dunes in
specified years. ** Disturbed dunes were significantly different to un-treated semi-fixed control dunes
in all years for all taxa. + Disturbed dunes were significantly different to reference Mobile dunes in
specified years. ++ Treated dunes were significantly different to the reference in all years for all taxa.

All faunal taxa had significantly different composition in treated semi-fixed dunes and reference
(mobile) dunes across all years (Figure 8a,d,g). The same was true for treated fixed dunes (Figure 8b,e,h).
In summary, none of the treated dunes fully reached the reference state in any year for faunal taxa.

For annuals, the semi-fixed treatment had no effect on RDA1 (Figure 8j). Fixed dune treatment
appeared to have no effect on RDA1 for any taxa (Figure 8b,e,h,k) supporting the resistance hypothesis
H4c. Conversely, disturbed dunes were significantly different from untreated semi-fixed dunes across
all years (Figure 8c,f,i) suggesting turnover (H4a). In addition, disturbed dunes were significantly
different from mobile dunes in all years for reptiles (Figure 8f), in 2012 and 2015 for rodents (Figure 8c)
and in 2015 for beetles (Figure 8i). In all other years, rodents and beetles were similar to (i.e., not
significantly different from) mobile dunes, in RDA1.

Lastly, we conducted a final RDA ordination for each taxon, this time including all dune types
across all years (Figure 9). This allowed us to visualize the relative differences in composition across all
dune sites within the study area. Irrespective of treatment, semi-fixed dune composition was more
similar to fixed dunes than mobile dunes for rodents and beetles (Figure 9a,c), and relatively similar to
mobile dunes compared to fixed dunes, for annuals and reptiles (Figure 9b,d). While disturbed dunes
were significantly different to mobile dunes in many samples (Figure 8c,f,i), these dunes were still the
most similar to mobile dunes relative to other treatments for all faunal taxa (Figure 9a–c).
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Figure 9. Temporal Redundancy Analysis (RDA) curves (a) rodents, (b) reptiles, (c) beetles and (d)
annual plants, for all dune types together showing relative contribution to the first axis from 2006–2016,
with year as a covariable. Data points are the scores for centroids of each dune type in a given year.

Figure 10 summarizes the overall findings for abundance, richness and community level responses
across all treatment described above.
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Figure 10. A summary of the responses for three dependent parameters to the three independent
treatments, across four different taxa. Note some parameters showed no significant change, which
could still be the ‘desired’ response if there was no difference between control and reference dunes. The
comparative strengths of the responses are not depicted.



Appl. Sci. 2020, 10, 2310 17 of 33

3.4. Indicator Species

Twenty-eight species were identified as suitable candidates to be indicator species (IS) based on
the IndVal analysis, including two rodents, seventeen annuals, nine beetles, and four reptiles (Table 1).
The Indicator Value or IV (a measure of habitat affinity) ranged from 61% to 98% across all taxa.
Weighted PPC (wPPC) ranged from 11% for the ground beetle Scarites striatus to 34% for the annual
Bromus rigidus. Only one reptile (Stenodactylus sthenodactylus) and five annual species were identified
as potential IS for semi-fixed dunes. Most annuals (n = 11) were fixed dune affiliates with high SSI.
Only one annual plant species (Cutandia memphitica) was identified as a potential IS for mobile dunes,
although it had a relatively low IV of 64% and relatively high wPPC of 18%.

Table 1. Candidate species identified as potential indicators, using the IndVal function, the dune type
they are affiliated to, the Indicator Value (IV) and the weighted Perennial Percentage Cover (wPPC) for
each species. Species highlighted with the lowest and highest wPPC were chosen for further analysis
as * Mobile dune Indicator Species (MIS) and ** Fixed dune Indicator Species (FIS) respectively.

Taxa Species Affiliated Dune
Type

IV %
(Affinity) wPPC%

Rodents Gerbillus pyramidum * Mobile 91.29 11.43
Gerbillus andersoni allenbyi ** Semi-Fixed 61.67 23.81

Reptiles Acanthodactylus scutellatus * Mobile 76.05 13.38
Stenodactylus sthenodactylus Semi-Fixed 61.10 18.77

Chalcides ocellatus Fixed 70.68 25.28
Acanthodactylus schreiberi ** Fixed 84.92 29.18

Beetles Scarites striatus * Mobile 95.90 10.91
Mecynotarsus bison Mobile 98.13 10.89
Cardiophorus reitteri Mobile 60.97 12.72
Eurycaulus henoni Mobile 69.49 15.07

Tentyrina orbiculata Mobile 63.70 19.26
Erodius dejeani Fixed 62.61 24.11
Cheirodes spp. Fixed 60.77 25.66

Mesostena angustata Fixed 59.41 27.04
Graphopterus sharonae ** Fixed 79.17 33.00

Annuals Cutandia memphitica * Mobile 64.42 18.64
Ifloga spicata Semi-Fixed 69.78 18.89

Lotus halophilus Semi-Fixed 64.34 19.86
Crepis aculeate Semi-Fixed 68.24 20.62

Polycarpon succulentum Semi-Fixed 66.85 20.70
Rumex pictus Semi-Fixed 65.60 25.06

Erodium laciniatum Fixed 65.50 29.89
Daucus glaber Fixed 72.58 31.56

Hormuzakia aggregata Fixed 70.76 31.62
Geranium robertianum Fixed 73.60 32.13

Lupinus palaestinus Fixed 62.36 32.46
Asphodelus tenuifolius Fixed 70.71 32.89

Maresia pulchella Fixed 64.19 33.02
Anagallis arvensis Fixed 77.99 33.17

Brassica tournefortii Fixed 83.86 33.99
Rumex bucephalophorus Fixed 92.59 34.11

Bromus rigidus ** Fixed 63.51 34.20

The species with the highest and lowest wPPC were selected as IS for further analysis, such that
every taxonomic group had one Mobile dune Indicator Species (MIS) and one Fixed dune Indicator
Species (FIS) (species in bold in Table 1). The FIS for rodents is actually an indicator for semi-fixed
dunes, as identified by the IV analysis, but we refer to it as an FIS for convenience to compare with
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other taxa since no true FIS was identified. Full model outputs for both MIS and FIS are given in
Supplementary material Tables S5 and S6.

As expected, the abundances of MIS were much lower (or absent) on untreated semi-fixed dunes
compared to the mobile dunes (which is what defines them as good IS with high IV). No change in
abundance was visible for the gerbil G. pyramidum (Figure 11a) in treated semi-fixed dunes. A small
increase in abundance for the lizard A. scutellatus was also observed in treated semi-fixed dunes,
becoming more similar to levels found in mobile dunes, but the increase was not great enough to
become significantly different from untreated semi-fixed dunes (Figure 11b). Meanwhile a significant
increase in abundance was observed for S. striatus in treated compared to untreated semi-fixed dunes,
although it did not reach reference levels (Figure 11c). The annual MIS, C. memphitica had a large range
of cover across samples, and cover in treated semi-fixed dunes was not significantly different to mobile
or untreated semi-fixed dunes (Figure 11d).

Figure 11. Boxplots of (a–d) Mobile dune Indicator Species (MIS) and (e–h) Fixed dune Indicator
Speices (FIS) for each taxon (see icons by row), showing the 25% and 75% percentiles of the measure
of abundance (Y axis units e.g., rank abundance/ % cover) on each dune type for rodents, reptiles,
beetles and annuals. Dune types were tested for significant differences between treated dunes, their
control pair and reference mobile dunes, using mixed effect models. Disturbed dunes were tested
against semi-fixed control dune and mobile dunes. Significant results (p < 0.05) are shown for treated
dunes compared to *control and +reference dunes (dune type abbreviations refer to the Nizzanim LTER
coding system for continuity).

While not significantly different from control, we calculated that both the rodent and reptile MIS
abundance increased by 15% of the difference between control and reference levels overall (Table 2i a
and b). This can be considered as 15% of the desired response, if the treated dunes were expected to
become identical to mobile dunes (H6). For beetles the increase was 27%, and for annuals there was
overcompensation in the MIS abundance, with a 114% increase compared to reference (Table 2).
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Table 2. Effectiveness of treated dunes on abundance of Mobile and Fixed-dune Indicator Species (IS).
Calculated as the change (either increase or decrease) in abundance (faunal taxa) or % cover (annuals)
from control to treated dune, as a percentage of the difference in abundance between control and
reference dunes for each species.

Indicators Taxa Species ST CT DT

(i) Mobile IS (a) Rodent G. pyramidum 126% 15% 0%
(b) Reptile A. scutellatus 67% 15% 4%
(c) Beetle S. striatus 42% 27% 0%

(d) Annual C. memphitica - 114% −181%

(ii) Fixed IS (a) Rodent G. a. andersoni 158% 12% 30%
(b) Reptile A. schreiberi 180% 36% −2%
(c) Beetle G. sharonae 127% 30% 33%

(d) Annual B. rigidus - 42% 21%

The abundances of the MIS G. pyramidum and A. scutellatus on disturbed dunes were also
significantly higher than their abundances in semi-fixed control dunes and were similar to the
abundances found on mobile dunes (Figure 11a,b), increasing by 126% and 68% of the expected
abundance respectively (Table 2). The abundance of S. striatus was significantly higher on disturbed
dunes compared to semi-fixed control dunes (42% increase), but it was still significantly lower than on
mobile dunes (Figure 11c). None of the MIS responded to fixed dune treatments rejecting H6; they
remained absent on treated fixed dunes (Figure 11a–d).

FIS was not found to show any significant response to fixed dune treatment in any taxa
(Figure 11e–h) leading us to reject H6. Although the abundance of G. a. allenbyi significantly
decreased in treated semi-fixed dunes compared to their untreated pair, the response was not enough
to become similar to mobile dunes (Figure 11e). Lastly, disturbed dunes had a significantly lower
abundance of this rodent than both mobile and untreated semi-fixed dunes, while the beetle FIS was
only found to be significantly lower than untreated semi-fixed dunes, being almost entirely absent
from mobile dunes (Figure 11g).

Mean abundance of rodent and beetle FIS declined by 30% and 33% of the desired reduction
respectively (Table 2). Annual FIS % cover declined by 21%, and there was no change in fixed dunes
for reptile FIS. In addition, mean abundance decreased for all FIS in semi-fixed treated dunes by 30%,
36%, 30% and 42% in rodents, reptiles, beetles and annuals respectively, towards the reference.

We plotted the abundance of each species (mean for each dune type) over time to show populations
fluctuations (Figure 12). These abundances were tested yearly in a pairwise permuted distribution test.
The significance of these tests should be interpreted with caution due to the small sample sizes and
multiple testing. Nevertheless, some interesting trends were apparent across the different taxa.

All MIS abundances fluctuated stochastically on the mobile dunes over time (Figure 12a–d).
They were all observed with relatively low to zero abundance on semi-fixed control dunes, with the
exception of the lizard A. scutellatus, with intermediate abundance in semi-fixed dunes. All MIS were
effectively absent from fixed control dunes. In semi-fixed treated dunes, the abundances of both the
rodent G. pyramidum and the beetle S. striatus were similar to untreated semi-fixed dunes (i.e., low
abundance) and were significantly different from AC, until 2016. In the final year of monitoring, the
abundances of both these species increased and they became similar (not significantly different from)
mobile dunes and significantly different from untreated semi-fixed dunes (Figure 12a,c). The same
was partially true of the annual C. memphitica, which was similar to untreated semi-fixed dunes until
the final year 2016, but was not consistent across years in comparison to mobile dunes (Figure 12d).
The lizard A. scutellatus showed a small but similar trend in the final year of monitoring in treated
semi-fixed dunes, but it remained significantly different from mobile dunes for all years, and similar to
untreated semi-fixed dunes in all years except 2013 (Figure 12b).



Appl. Sci. 2020, 10, 2310 20 of 33

Figure 12. Temporal changes in abundance of (a–d) Mobile Indicator Species (MIS) and (e–h) Fixed
Indicator Species (FIS) on different dune types for rodents, reptiles, beetles, annuals (see icons by row).
Dune types were tested for significant differences between treated dunes, their un-treated control pair
and the reference mobile dunes each year. * and + represent p<0.05 for treated dunes compared to
control and reference dunes, respectively. Not all significant results are shown given for intelligibility.
See Supplementary Tables S7 and S8 for full results.

In the fixed dunes, none of the MIS were found to have differences in abundance between treated
and un-treated fixed dunes (i.e., they remained absent or in very low abundance), and all the faunal
MIS remained significantly different from mobile dunes in all years (Figure 12a–c).

In the disturbed dunes, G. pyramidum had similar abundances to mobile dunes in all years except
2014 (Figure 12a). The abundance of S. striatus was significantly lower in disturbed than in mobile
dunes in all years except 2014, although there did appear to be a trend of increasing abundance in
disturbed dunes over time (Figure 12c). In addition, the latter species was observed in disturbed dunes
in all monitored years, while it remained absent from un-treated semi-fixed dunes throughout the
study. In fact, both G. pyramidum and S. striatus had significantly higher abundances in disturbed
dunes, compared to untreated semi-fixed dunes in all years (Table S7). Abundance of A. scutellatus
on disturbed dunes was most similar to mobile dunes in all years except 2015, and was significantly
different to untreated semi-fixed dunes in 2013 and 2014 (Figure 12b).

Next, we considered the effect of each treatment on FIS (Figure 12e–h). In semi-fixed dunes, the
rodent G. a. allenbyi initially had similar abundances in treated and untreated semi-fixed dunes, which
were significantly higher than in mobile dunes, but later in the study, the abundance of this species
declined and became more similar to mobile dunes and less similar to untreated semi-fixed dunes
(Figure 12e). The abundance of the lizard A. schreiberi was similar across mobile, treated and untreated
semi-fixed dunes (i.e., low to medium abundance), except in 2012 where it was absent in mobile dunes,
but remained present in both treated and untreated semi-fixed dunes (Figure 12f). The abundance
of ground beetle G. sharonae was initially similar (low abundance) in mobile, treated and untreated
semi-fixed dunes. Then in later years, abundances in treated semi-fixed dunes became different to
mobile dunes, but remained similar to untreated semi-fixed dunes (both increasing slightly) in 2015



Appl. Sci. 2020, 10, 2310 21 of 33

and 2016 (Figure 12g). The annual plant B. rigidus had generally very low cover in all dune types
(Figure 12h). The cover in treated semi-fixed dunes was similar to mobile dunes in all years (i.e., absent)
and similar to untreated semi-fixed dunes in all years except 2014, when some presence was observed
on untreated semi-fixed dunes, while remaining absent from treated semi-fixed dunes.

In the treated fixed dunes, abundance of G. a. allenbyi was initially different to mobile dunes but
became similar in the later years of the study (Figure 12e). However, abundance of this species in DC
also showed declines until 2009, and abundance in treated and untreated fixed dunes was similar in all
years except 2005 and 2008. Unfortunately, data is lacking for the period between 2009–2016 on treated
fixed dunes, and trends in the interim years are unknown. The other FIS, A. schreiberi, G. sharonae, and
B. rigidus had similar abundances on treated and untreated fixed dunes throughout all years, despite
stochasticity (Figure 12f–h). A marked increase in cover was observed in the last year of the study for
B. rigidus, but this was detected in both treated and untreated fixed dunes, so overall, no difference was
found. Both G. sharonae and B. rigidus were absent from mobile dunes in all years. All three FIS were
significantly different from mobile dunes in all years (Figure 12e–g), excluding years where B. rigidus
was absent in both treated and untreated fixed dunes and mobile dunes (Figure 12h).

In the disturbed dunes, all FIS were effectively absent, with the exception of G. a. allenbyi, whose
abundance was low to medium on both disturbed and mobile dunes in most years (Figure 12e).
This species was not detected in disturbed dunes in 2013, while it was still observed in mobile dunes.
The abundance of this species in untreated semi-fixed dunes was significantly higher than in disturbed
dunes for all years. A. schreiberi was present occasionally in low abundances on mobile and untreated
semi-fixed dunes over the course of the study, but remained absent in disturbed dunes in all years
monitored (Figure 12f). G. sharonae was effectively absent on both disturbed and mobile dunes in
all years, and only occasionally appeared in low abundances on untreated semi-fixed dunes. Thus,
abundance of this FIS in disturbed dunes was found to be similar to both mobile and untreated
semi-fixed dunes in all years (Figure 12g).

4. Discussion

Coastal dune habitats have declined globally over the last several decades due to urbanization.
Within remaining dune systems, substantial dune fixation has resulted in further losses of mobile
dunes with negative impacts on their associated species [15,19,25,27,36,49,78,94]. Some studies suggest
vegetation removal can initially promote habitat heterogeneity, and increase availability of suitable
habitats for psammophile, xeric and endemic mobile dune species, but longer term responses are
generally unknown [15,24,28,40,54]. We investigated the temporal trends of four taxonomic groups
(including fauna) to determine the effect of vegetation removal on dune assemblages over a 12-year
period. Detecting community level responses to restoration can be difficult. Indeed, two studies in
Californian coastal dunes were unable to show significant assemblage level responses for terrestrial
arthropods [32] or plants [24] despite intensive vegetation removal. Our study found only marginal
restoration effects in most cases.

This large-scale project across multiple taxa and multiple treatments meant that our samples sizes
were relatively small, and some caution is needed to interpret the results. Nevertheless, some inferred
conclusions can be made. Comparison of control dunes only supported H1 for annual plants (% cover
increases with perennial cover) and H2 for annuals and reptiles (richness increases with perennial
cover). Composition level parameters showed only small shifts away from the control dune, suggesting
high levels of resistance at the community level. Although many of these changes were not statistically
significant, they were usually in the direction desired by the manipulation, towards mobile dune status.
Semi-fixed dune responses were more pronounced than fixed dune responses. The ORV-disturbed
dunes shared more aspects with mobile dunes for faunal taxa compared to both semi-fixed and fixed
treated dunes, while annuals were effectively absent. Most mobile dune indicator species also showed
some trends in the intended direction in response to most treatment types suggesting that treatment
did increase habitat availability for these species, while not removing suitable habitat for fixed dune
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species. Our results suggest that more pronounced responses might occur given a longer time frame,
and that press disturbance is more effective than pulse disturbance for restoring mobile dune habitat.

Overall, abundance and richness measures were not appropriate indicators for treatment success
(since there were few differences between control dune states). Richness did correlate with the gradients
of increasing PPC across control dune dunes, but the effects of treatment detected for this parameter
were marginal. Both abundance and richness are important to monitor in restoration projects, but they
are more appropriate for assessing whether any unexpected artefacts resulted from the intervention.
Composition is known to a better parameter for detecting changes [26,28]. The indicator species
that were selected also were highly suitable for detecting changes. Both composition and indicator
species showed a temporal trend in treated semi-fixed dunes, away from the control dunes towards the
reference dunes over time; this trend was more consistent in the faunal taxa. Over a period of 12 years,
we found that the response at the assemblage level was between −9% to 30% in semi-fixed treatment,
compared to just −17% to 6 % in fixed dunes.

4.1. Effect of Treatment on Semi-Fixed Dunes

Establishing dune dynamics on the wind facing slope can lead to a rejuvenation of the landscape
through reactivation of sand, leading to burial of any newly developing vegetation [31]. This
intervention enables pioneer species found in mobile dunes to recolonize [4]. Rodents responded well
to treatment in semi-fixed dunes with a significant shift in composition detected, achieving 30% of the
desired Euclidean ordination distance towards reference, as expected by Hypothesis H4. In addition,
though the change was not significant for reptiles or beetles, the response to treatment was consistently
in the desired direction towards mobile-dune composition. For annuals the shift was minor, but away
from the desired composition, becoming less similar to mobile dunes, and H4 was rejected.

At the temporal scale, rodents showed significant differences in some years. The change in reptile
and beetle composition was more pronounced in the final years of the study, and became significant
for beetles in the last year. Similar temporal responses were also detected at the indicator species (IS)
level, particularly for “mobile-dune indicator species” (MIS). These results indicate some support for
Hypothesis H4a, where the composition turnover is due to recolonisation by MIS.

The IS were selected objectively based first on their affinity to fixed and mobile dunes, and
secondly as the species with the lowest and highest weighted PPC. Three MIS (all except the reptile), as
well as the rodent “fixed-dune indicator species” (FIS) appeared to respond desirably in the direction
intended for restoration. Given that the beetle S. striatus was almost entirely absent from control
dunes and increased over time in treated dunes, we can infer that its increased abundance was due
to colonization rather than competitive release. The small increase detected for rodents and reptiles
was not significant when looking at averages across years, but the gerbil G. pyramidum did respond
favorably over time, showing significant increases in the final year of the study. This increase may
be due to the overall decline in abundance of the subordinate G. a. allenbyi populations, since these
two species compete sympatrically at the patch scale [95–97]. Further investigation is needed, since
the trends of the two species were not consistent over time. The annual MIS C. memphitica also had
relatively high cover in some years on treated dunes, while remaining much less prevalent in control
dunes. This was most likely a response to competitive release following the removal of perennial
vegetation. Over time, this species was erratic in both mobile and treated dunes and the temporal
trends were not synchronized, making it a poor IS, as expected due to the relatively low IV.

Given similarities between control and reference dunes in terms of reptile and beetle species
richness, there was no expectation for treated dunes to elicit any response. However, control and
reference dunes were different for annual plants, so for this taxon, a lack of response can be seen as
lack of desired treatment effect. Only rodents increased in richness as expected under Hypothesis H3b
(from one to two species) and H3a was rejected for all taxa in semi-fixed treated dunes. These results
highlight the importance of examining composition rather than univariate measures when studying
restoration effects on biodiversity.
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The composition shift in semi-fixed treated dunes may continue towards a mobile state with more
species responding positively, but without a press disturbance, we may observe a return to the control
state. In the Netherlands, aeolian activity increased after an intervention, up to a climax in the third
year, and then started to decline because of vegetation development on bare spots [4]. Arens et al. [40]
suggested that follow-up removal of roots is needed for three to five years and it is not clear whether
the dunes will remain mobile in the long term.

4.2. Effect of Fixed-Dune Treatment

A recent review of coastal restoration projects revealed that fixed dunes are the most frequently
restored dune type (54%), followed by semi-mobile dunes (30%), mobile dunes (27%) and dune slacks
(16%; [2]. However, the most frequently used restoration mechanism was revegetation (42%), while
destabilization or vegetation removal only accounted for less than 5% of restoration projects. Removal
methods varied among removal experiments.

The extensive and intrusive removal of perennial vegetation in a grid formation on fixed dunes had
virtually no effect on most of the parameters monitored, rejecting hypothesis H3b, H4a, and H6 for this
treatment type. The only consistent effect was a reduction in the average abundance of all taxa (H3a);
richness and composition were not affected. That said, at the temporal scale, some weak responses
of reptiles were observed both for the IS and for composition in the first two years after treatment,
suggesting some support for resilience under Hypothesis H4b. All other taxa showed very limited
response to fixed dune treatment, indicating strong resistance to change (supporting Hypothesis H4c).
Detachment from mobile dune assemblages may explain this lack of response. In addition, the dunes
from which vegetation was removed are surrounded with dense interdune vegetation, including tall
sycamore trees, which reduce wind speed, preventing sand migration and potential recolonization
from neighboring areas. Thus, sand deposition in the treated dunes was minimal, and sand enriched
with nutrients and organic matter remained present after the vegetation removal. Throughout Europe,
several coastal dune management schemes involving vegetation removal achieved partial success in
restoring dune mobility, from a geomorphological perspective [6,15,31,40].

Evidence suggests that soil processes in fixed dunes have changed the soil irreversibly [19].
In experimental dune restorations, removal of vegetation and topsoil in the slacks and inner dunes often
fail to restore aeolian activity due to the groundwater table and the usually moist conditions at the surface,
which prevent saltation [4]. In Mediterranean coasts, wind-related variables may only be of minor
importance compared to soil properties [98]. Encroachment and intended establishment by grasses,
shrubs and woody plants have accelerated in response to high rates of nitrogen deposition [33,99–102].
Top-soil inversion has become a popular method for restoration of inland dunes in recent years, where
topsoil is buried under a layer of subsoil, so that the original layers are intact but their position in the
profile is changed [103,104]. Results indicate that inversion can successfully lower surface soil fertility
and reduce competition, creating a nutrient-poor space for the establishment of early-successional
stage species in calcareous grasslands and sand dunes [104,105]. Ploughing and topsoil inversion
enhanced lichens and annual plants, lowered organic matter and increased rabbit activity compared to
control plots in grass heath habitats [106,107]. Thus, topsoil removal within the grid formation applied
on Nizzanim fixed dunes may have created a better response at the community level.

4.3. Effect of ORV Disturbance

Off-road vehicle (ORV) disturbance is an anthropogenic press disturbance that is increasingly
threatening coastal ecosystems [108,109]. In general, recreational disturbances result in a decrease
of species diversity [19,110–112]. Motorbikes, 4 × 4 vehicles and quad bikes are driven on beaches
and dunes for recreation purposes [113]. These vehicles can cause more widespread damage than
human trampling [109,114,115], another disturbance that is a widely reported issue for fragile coastal
biodiversity [110–112,115–117]. The negative impacts ORVs cause include damage of the physical
properties and stability of the substrate, destruction of vegetation, and disturbing, injuring or killing
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fauna [108,114,118–121]. In California, dunes exposed to ORV disturbance showed significant decline
in Coleoptera diversity and species evenness [122].

The effect of disturbance on species composition depends on whether the disturbance exacerbates
or reduces environmental harshness, and the conditions that favor specialization (Attum 2006).
Since recreational driving in the dunes reduces perennial shrub cover and facilitates sand remobilization,
this disturbance could theoretically benefit dunes. The situation is complex because we were not able
to quantify the start date, frequency, or intensity of vehicular usage. It is speculated that dunes used by
ORVs are most likely to have been mobile dunes, but we do not know what trends would have occurred
naturally without disturbance over this time period. However, by comparing the disturbed dunes
with both mobile and control (un-treated) semi-fixed dunes, we were able to quantify the outcomes of
ORV disturbance on species composition.

While disturbed dunes were significantly different to mobile dunes in many samples, these dunes
were still the most similar to mobile dunes relative to other treatments for all faunal taxa. Nevertheless,
there was undoubtedly a negative impact of ORV disturbance in Nizzanim reserve; firstly, annuals
were almost entirely absent due to the intensity of disturbance preventing seedling establishment.
Secondly, a significant reduction in total abundance and overall richness of reptile species was seen
compared to both mobile and semi-fixed states.

Reptiles are known to be particularly sensitive to the presence of vehicular disturbance, affecting the
relative abundance and proportional use of preferred microhabitats in coastal systems of Argentina [123].
Rocha and Bergallo [124] found that a gradual reduction in beach vegetation over a decade was
accompanied by population declines of a lizard in coastal Brazil. Luckenbach & Bury [120] reported
heavy impacts of ORVs on lizards, mammals and arthropods in California. We also found that the
populations of the ground beetle S. striatus were significantly lower than on mobile dunes.

If the state of disturbed dunes prior to disturbance was more similar to semi-fixed dunes, then the
ORV disturbance achieved a much greater shift in composition on these dunes (towards reference) than
either of the pulse treatments achieved. Indeed, if the restoration goal was to increase the abundance
of MIS, the response to ORV disturbance in the study site could be perceived as positive.

The abundance of the desert gerbil G. pyramidum was significantly higher in ORV disturbed
dunes, compared with both semi-fixed control and mobile dunes. Thus, the overall rodent assemblage
was almost entirely composed of this species. Plausibly, the ‘hypermobile’ conditions created are
only inhabitable by highly adapted sand specialist species. Both gerbils are found in sandy habitats,
but G. pyramidum is better adapted to exposed, harsh conditions, while G. a. allenbyi needs some
shrub cover for protection [97,125]. Population levels of the beetle S. striatus were also significantly
higher in ORV dunes than in semi-fixed dunes, although still somewhat lower than numbers found in
mobile dunes. This species is also highly adapted to sandy desert conditions. Compared to untreated
semi-fixed dunes, ORV usage resulted in an increase in highly adapted MIS, but overall alpha diversity
was reduced.

In a review of coastal restoration projects [19] only two studies did not find a significant impact
of recreation disturbance, and both were conducted in Israel’s Mediterranean dunes in other coastal
reserves [114,115]. Despite the differences from mobile dunes, the overall composition in ORV-disturbed
dunes in Nizzanim remained the most similar to the reference mobile dunes, compared with the two
press disturbances for all three faunal taxa. Thus, we found evidence supporting Hypothesis H5 that
press disturbance is more effective than a single pulse. That said, richness in these dunes was generally
lower. Therefore, widespread, pervasive ORV disturbance in NDNR will likely result in an overall
decrease in γ-diversity. The LTER experimental design was not balanced across dune types or years,
therefore these comparisons should be taken as inferred rather than proven.

4.4. Implications for Conservation Management

Disturbance is a fundamental part of natural coastal dune processes, and encroachment by
grasses, shrubs and woody plants has most likely occurred due to the removal of this process [4,33].
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Geomorphologists increasingly recommend that remobilization of inner dunes should consider the
dune–beach system as a whole, arguing for an integrated dynamic approach that recreates the natural
disturbances such as wind erosion and sand burial [15,24,40,126]. Our results provide support to
the growing body of evidence that restoration attempts should promote, not diminish, the degree of
disturbance in coastal dune systems. e.g., [31,38,49].

When comparing the pulse treatments, vegetation removal of the wind-facing slopes of semi-fixed
dunes appeared to be more effective than grid formation removal of fixed dunes, but since the
experiments are not equivalent this can only be inferred. An initial pulse disturbance is likely
needed to remove perennial vegetation, but continued press disturbance appeared to more closely
match conditions found on mobile dunes, at least for faunal taxa. While the unregulated use
of ORVs as a method for maintaining dune mobility is certainly not recommended, previous
evidence has demonstrated the benefit of press disturbances to plant and arthropod species [15,31,49].
ORV disturbance has severe impacts on annual plant species, so other forms of press disturbance such
as grazing could be more beneficial.

Grazing has been successful in increasing both plant and arthropod diversity on coastal
dunes [49,127]. However, domestic grazers may affect the composition (of vegetation) differently than
wild grazers [128]. A review of the effects of grazing by domestic livestock showed both positive
or negative impact on diversity, often increasing diversity at the landscape level but reducing alpha
diversity at the very local scale [19].

Depending on the reference species, grazing can have a positive or negative impact on richness and
composition [34,127,129,130]. Ground beetles and reptiles are often negatively affected by management
practices such as grazing and trampling [129,131,132]. That said, populations of A. scutellatus or S.
striatus on disturbed dunes were not as low as in semi-fixed control dunes, suggesting that even
recreational driving is less damaging than passive management (allowing shrub encroachment) for
these species. Attum [133] showed that desert reptile specialists in the Egyptian desert did not
respond favorably to heavy grazing in inland sand dunes, despite predictions that they may fare
better than generalist species. Another study found arthropod assemblages were more diverse in
response to disturbance by trampling, blowouts and burning in Danish dune grasslands [44]. Grazing
management applied in coastal dune grasslands of France and Belgium was also able to control highly
competitive plant species, and may be beneficial in maintaining mobile assemblages [134]. Grazing
could be introduced either through re-wilding of the ecosystem or in the form of managed domestic
grazers [49,135].

Mountain gazelles (Gazella gazelle gazella), the only mammalian grazers in NDNR, are unlikely to
provide an adequate grazing impact in the near future [136]. Attempts to introduce camel grazing
to Nizzanim on semi-fixed dunes had little effect on the perennial vegetation [137]. Other forms of
grazing or press disturbances should be investigated. Reintroduction of small livestock herds (sheep
and goats) are currently being trialed with Bedouin shepherds, and should be monitored carefully
before further recommendations can be made with regarding to grazing.

5. Conclusions

Conservation managers must carefully consider their priorities when implementing coastal
restoration actions. Is the conservation goal a specific species that is regionally or locally endangered, or
is the goal to preserve mobile dune communities, or increase alpha or gamma diversity? These decisions
affect the desired actions and restoration strategy. The scale and extent of the introduced disturbances
for management purposes must be carefully planned to prevent erosion and detrimental effects and
should be tailored the specific goals [2].

The methods used to identify IS (IV and wPPC) appeared to be a good choice for selecting species,
and several of these species appeared to respond favorably to treatments, in particular the MIS. The MIS
are of particular interest for restoration references, since they are by definition found only on mobile
dunes and are therefore most likely to decline across the reserve as a result of widespread dune fixation.
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Therefore, the positive albeit weak response of these species is encouraging. This research highlights
the potential use of IS in assessing the impact of restoration projects, and emphasizes the importance
of long-term studies in restoration projects.

Having longer time-series for pre-restored sites would be beneficial [138]. We strongly encourage
LTER sites monitoring biodiversity trends to adopt a regularized temporal sampling regime that
enables powerful and simpler statistical analyses [73,139]. That said, empirical ecological research
projects in natural conditions are often unable to achieve perfect experimental design due to historical
and external factors affecting accessibility. Balanced sampling across multiple taxa in a long-term
study is invariably difficult for empirical data [140]. The approach to concurrently monitor treated,
control and reference dunes allowed us to make effective interpretations, despite the unbalanced
design. We hope the statistical approaches we adopted for unbalanced data will be useful for other
researchers and practitioners.

Shrub removal experiments allowed us to investigate the structural component of dune states
rather than the biological impact of the primary productivity. It is apparent that the shrubs themselves
determine biodiversity trends rather than just providing biotic resources. Each taxon responded
differently to removal, and each type of treatment had different effects. Restoration manipulations
were only partially successful in Nizzanim LTER, but rodents seemed to respond most favorably.
With respect to ecosystem functioning, “long-term” can mean anything from decades to centuries,
so realistic expectations about restoration of sand dunes could take many years [141]. Over a longer
timeframe, the response at the composition level may become more pronounced. Overall, it was
apparent that in the absence of any disturbance, gamma diversity of coastal dunes communities would
be lost as dune fixation increases.

It is likely that more ‘natural’ disturbances such as controlled grazing could be more effective and
less damaging than mechanical ORV disturbances. Indicator species can represent assemblage level
responses, although their response was often more pronounced than assemblages. Finally, it should
be remembered that long-term assessment and monitoring of restored coastal dunes should include
multiple taxa, and should examine changes in composition rather than abundance and richness alone.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/7/2310/s1,
Table S1: Experimental design for the long-term ecological research project in Nizzanim, showing the sampling
time (years) for each taxon, Table S2: Poisson (GLMM_PQL) and Linear (LME) Mixed effect Models of community
abundance (Figure 2) for each taxon, Table S3: Poisson (GLMM_PQL) and Linear (LME) Mixed effect Models of
species richness (Figure 3) for each taxon, Table S4: Pairwise Permanova of species composition among dune
states. Each treatment type was tested separately, with some data overlap (e.g., mobile and Untreated Semi-Fixed
dunes are used for both treated Semi-Fixed and Disturbed dune comparisons). Bold rows are of interest in terms
of meeting the expectations for responses to treatment, Table S5: Poisson (GLMM_PQL) and Linear (LME) Mixed
effect Models of abundance for each Mobile-dune Indicator Species (MIS). Results were used for Figure 11a–d,
Table S6: Poisson (GLMM_PQL) and Linear (LME) Mixed effect Models of abundance for each Fixed dune
Indicator Species Fixed-dune Indicator Species. Results were used for Figure 11e–h. Table S7: Permuted Empirical
Cumulative Distribution Function (ecdf) models for Mobile dune Indicator Species (MIS) in each treatment type
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Indicator Species (FIS) in each treatment type (Figure 12e–h).

Author Contributions: Conceptualization, A.B., E.G. and P.B.K.; data curation, T.L.F.B., A.B., E.G. and P.B.K.;
formal analysis, T.L.F.B.; funding acquisition, A.B., E.G. and P.B.K.; investigation, T.L.F.B., A.B., E.G. and P.B.K.;
methodology, T.L.F.B., A.B., E.G. and P.B.K.; project administration, T.L.F.B. and P.B.K.; resources, A.B., E.G. and
P.B.K.; supervision, A.B., E.G. and P.B.K.; visualization, A.B., E.G. and P.B.K.; writing—original draft, T.L.F.B.;
writing—review and editing, A.B., E.G. and P.B.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by The Israel Nature & Parks Authority.

Acknowledgments: Immense that’s are due to Yael Zilka, Arnon Tsairi, Boaz Shacham, Zehava Siegal, Ittai Renan,
Adi Ramot and the numerous team heads, graduate and undergraduate students from Ben Gurion University for
their assistance in collecting monitoring data across the years. Special thanks to Michael Dorman, who provided
substantial time and advice on the initial analyses and use of R coding. We thank the entomologists at the
Steinhardt Museum of Natural History for their help with identify of beetles, in particular Prof. Chicatunov &
Laibale Friedman. Thanks to the Shikmim Field Study Center (Society for the Protection of Nature in Israel),
for their hospitality during our fieldwork sessions over the years. We also acknowledge contribution from the

http://www.mdpi.com/2076-3417/10/7/2310/s1


Appl. Sci. 2020, 10, 2310 27 of 33

Ministry of Science and Technology (MOST) and the International Arid Land Consortium (IALC). Finally, we
thank Yehoshua Shkedi, Yariv Malihi and Israel Nature & Parks Authority (INPA) rangers for continuous support
and assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Carboni, M.; Dengler, J.; Mantilla-Contreras, J.; Venn, S.; Török, P. Conservation value, management and
restoration of Europe’s semi-natural open landscapes. Hacquetia 2015, 14, 5–17. [CrossRef]

2. Lithgow, D.; Martínez, M.L.; Gallego-Fernández, J.B.; Hesp, P.A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.;
Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L.L. Linking restoration ecology with coastal
dune restoration. Geomorphology 2013, 199, 214–224. [CrossRef]

3. Small, C.; Nicholls, R.J.R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19,
584–599.

4. Arens, S.M.; Geelen, L.H.W.T.; Slings, R.; Wondergem, H. Restoration of Dune Mobility in the Netherlands,
Proceedings of the Dunes and Estuaries 2005—International Conference on Nature Restoration Practices in European
Coastal Habitats, Koksijde, Belgium, 19–23 September 2005; Herrier, J.L., Mees, J., Salman, A., Seys, J.,
Nieuwenhuyse, H., Van, I.D., Eds.; VLIZ Special Publication 19, XIV: Koksijde, Belgium, 2005; pp. 129–138.

5. Grootjans, A.P.; Geelen, H.W.T.; Jansen, A.J.M.; Lammerts, E.J. Restoration of coastal dune slacks in the
Netherlands. Hydrobiologia 2002, 478, 181–203. [CrossRef]

6. Houston, J.A.; Rooney, P.J.; Edmondson, S.E. Coastal Dune Management: Shared Experience of European
Conservation Practice; Liverpool University Press: Liverpool, UK, 2001; ISBN 0853238545.

7. Doody, J.P. Coastal Conservation and Management: An Ecological Perspective; Springer: Berlin/Heidelberg,
Germany, 2001; ISBN 1402072481.

8. Feagin, R.A.; Sherman, D.J.; Grant, W.E. Coastal erosion, global sea-level rise, and the loss of sand dune
plant habitats. Front. Ecol. Environ. 2005, 3, 359–364. [CrossRef]

9. del Vecchio, S.; Prisco, I.; Acosta, A.T.R.; Stanisci, A. Changes in plant species composition of coastal dune
habitats over a 20-year period. AoB Plants 2015, 7, 7. [CrossRef]
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