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Abstract: The passivity-based control (PBC) is a new direction of nonlinear control, but the method is
basically a qualitative method. A quantifiable design method in combination with PBC is provided in
this paper. To solve the partial differential equation (PDE) for PBC, the nonlinear system must first be
transformed into a Hamiltonian model. The PDE for the Hamiltonian system is then quantifiably
solved with an electromagnetic levitation example. The resulting control law is presented and
discussed. The proposed method provides a practical design tool for nonlinear control.

Keywords: passivity-based control; interconnection and damping assignment; Hamiltonian system;
nonlinear control; electromagnetic levitation system

1. Introduction

Due to many advantages of magnetic levitation system, including absence of contact, low noise,
low energy consumption, it has been widely used, such as magnetic levitation bearings [1], magnetic
levitation trains [2], magnetic levitation wind turbines [3], magnetic levitation vehicle operation
lines [4]. Magnetic levitation system is highly nonlinear unstable system, it is a strong need to
control the suspension gap. In recent years, various research methods have been proposed, such as
Proportional-Integral-Derivative (PID) control [5,6], Linear Quadratic Regulator (LQR) control [7],
and sliding mode controller [8], fuzzy control is presented in [9]. When PID controller is designed,
the system has to be linearized, sliding mode control has chattering effect. As for fuzzy control,
the membership function is selected entirely by experience.

In recent years, Ortega proposed a passivity-based design method for nonlinear system control
based on the concept of energy variation in control systems [10,11]. The superiority of this design
method has been recognized and gradually applied to various fields. Liu et al. [12,13] presented
passivity-based controller to solve low-frequency voltage oscillation. Ortega et al. [14] applied
sensorless passivity-based control to solve the trajectory tracking task associated with the bidirectional
DC/DC Buck power converter-inverter-DC motor system. Zhang et al. [15] addressed the problem of
stabilization of port-Hamiltonian systems via the ubiquitous PID controller. Jung et al. [16] designed
a passivity-based robust switching controller for the posture stabilization of wheeled mobile robots
with model uncertainty. Passivity-based theory and Lyapunov’s stability theory can be used to study
system stability. The passivity-based theory has unique advantages. For example, the storage function
in passivity-based theory is related to the physical characteristics of the system, which is easy to obtain
according to the structure of the system. Jung et al.’s method [16] is based on Lyapunov’s method,
has a complicated design process and needs to switch between two controllers. The passivity-based
design idea is different from the traditional idea, it is based on (error) signal and (frequency) response.
It retains more nonlinear characteristics. The physical meaning of the design process is clear, especially
the structure of the system, Moreover, the structure of the controller is simple and easy to implement.
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Passivity-based control needs to solve a partial differential equation. In order to solve the problem
easily, the mathematical model of the system needs to be transformed into the Hamilton model.
However, passivity-based control is generally more focused on qualitative considerations and is more
difficult to apply to specific designs. In this paper, passivity-based control is combined with the
bias-based feedback control and the response characteristics of the system, combines qualitative and
quantitative methods. The magnetic levitation system gap control (suspended at the expected value) is
presented as an example to illustrate the detailed design process, and a practical design method for
passivity-based control of nonlinear systems is provided.

The rest of paper is organized as follows. Section 2 briefly introduces passivity-based control.
In Section 3, we briefly introduce sensitivity function. Passivity-based control for magnetic levitation
systems is presented in Section 4. In Section 5, we analysis the role of the interconnection and damping
assignment. The concluding remarks are contained in Section 6.

2. Passivity-Based Control

If there is a non-negative storage function H that satisfies the following equation, the system is
said to be passive.

H[x(t)] −H[x(0)] ≤
∫ t

0
uT(s)y(s)ds (1)

where u ∈ Rm is the control input of the system, y ∈ Rm is the output of the system.
Equation (1) can also be written as an energy balance equation

H[x(t)] −H[x(0)] =
∫ t

0
uT(s)y(s)ds− d(t) (2)

where the left term of Equation (2) represents the energy stored by the system, the integral term of the
right term represents the energy supplied, and d(t) is the energy dissipated.

If select a control action u = β(x) + v, and let β(x) satisfies the following equation about function
Ha(x)

−

∫ t

0
βT[x(s)]y(s)ds =Ha[x(t)] + n0 (3)

where n0 is the integral constant. Substituting the above u into Equation (2), we have that

Hd[x(t)] −Hd[x(0)] =
∫ t

0
vT(s)y(s)ds− d(t) (4)

where Equation (4) shows that under this control, the new input v to output y mapping is still passive.
Then, the new energy function is written as

Hd(x) , H(x) + Ha(x) (5)

If Equation (5) has a minimum value at the desired working point x0, then when v ≡ 0, x0 is
a stable equilibrium point, and Hd(x) is the Lyapunov function. Note that Hd(x) is configurable as
required, and the dissipative term d(t) can also be reconfigured. This is the basic idea of passivity-based
control (PBC).

In general, Equation (3) needs to solve a partial differential equation (PDE). But for a general
nonlinear passive system

∑
1, ∑

1

:
{ .

x = f(x) + g(x)u
y = h(x)

(6)
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This PDE is not easy to solve, so under the premise of the above PBC design, Equation (6) of the
system need to be organized into a port-controllable Hamilton system,

∑
2 [10],

∑
2

:
{ .

x = [J(x) −R(x)] ∂H
∂x (x) + g(x)u

y = gT(x) ∂H
∂x (x)

(7)

where H(x) is the energy function of the system, J(x) = −JT(x) represents the interconnection structure
of the system, and R(x) = RT(x) ≥ 0 is the dissipative matrix, which represents the dissipative structure
of the system, damping in English, which means that the energy is dissipated and quickly stabilized.

For the Hamilton system, its partial differential equations are easier to solve, because J and R can
reflect the structural characteristics of the system and facilitate PBC design. Such a design is called
interconnection and damping assignment PBC, abbreviated as IDA-PBC.

Let the Hamilton system
∑

2 [Equation (7)] select static feedback u = β(x), then the equation for
the state x of the system can be written as

.
x = [J(x) −R(x)]

∂H
∂x

(x) + g(x)β(x) (8)

The following partial differential equation what is required now is

[J(x) −R(x)]
∂Ha

∂x
(x) = g(x)β(x) (9)

If β(x) can be solved from Equation (9), and according to Equation (5), then Equation (8) can be
rewritten as

.
x = [J(x) −R(x)]

∂Hd
∂x

(x) (10)

is that there is a new energy function, Hd(x) = H(x) + Ha(x). If it is guaranteed that Hd(x) can be
minimized at the equilibrium point, then this state feedback u = β(x) will stabilize the system at that
equilibrium point.

In fact, J(x) and R(x) in Equation (10) do not have to remain unchanged, and the dynamic
characteristics of the closed-loop system can be changed as required

.
x = [Jd(x) −Rd(x)]

∂Hd
∂x

(x) (11)

is that the Hamilton system’s interconnect relationship Jd(x) = −Jd
T(x) and the dissipative term

Rd(x) = Rd
T(x) ≥ 0 can be reconfigured. This is IDA-PBC. IDA-PBC not only increases the freedom of

design, but also makes the solution of partial differential equations more flexible due to the addition of
some new parameters.

According to Equations (8) and (11), the partial differential equation in this IDA-PBC problem
now is

[Jd(x) −Rd(x)]
∂Ha

∂x
(x) = −[Ja(x) −Ra(x)]

∂H
∂x

(x) + g(x)β(x) (12)

where
Ja(x) , Jd(x) − J(x), Ra(x) , Rd(x) −R(x)

The partial differential Equation (12) is generally not easy to solve directly. In order to solve
∂Ha/∂x, the literature [10] proposes some additional conditions such as integrable, equilibrium point
conditions and Lyapunov stability conditions. But such a solution often causes the solution to lose its
physical meaning. In fact, for some less complicated occasions, Equation (12) can be solved directly.
The directly obtained solution has a clear physical concept and is convenient for IDA-PBC design,
making it easier to determine specific parameters. The following is a detailed description in conjunction
with a design example.
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3. Performance: Sensitivity Function

The feedback control system block diagram is shown in Figure 1, where r is the reference input, e is
the error signal, K is a controller, u is control law, G is the plant requiring control, y is the system output.
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The sensitivity function S of the system is defined as:

S =
d ln T
d ln G

=
dT/T
dG/G

=
G
T

dT
dG

=
1

1 + KG

where T is the closed-loop transfer function of the system. We can know that the system sensitivity
quantitatively represents the degree of sensitivity of the closed-loop transfer function T relative to the
plant parameter changes. If the system sensitivity is low, the design is robust to plant modeling errors.
If S is seen as the transfer function, it is characterized by the capability of the system to track the input
signal (the transfer function from the reference input r to the error signal e is equal to the sensitivity)
and the disturbance rejection ability (if there is a disturbance at the output, the transfer function from
the disturbance to the system output y is also equal to the sensitivity). It is thought that the sensitivity
should be as small as possible. The design should be such that the system achieves the goal of better
feedback features, specifically, low sensitivity and good disturbance rejection ability. In addition to the
description above, the sensitivity function also reflects the other important features of the system, and it
is a very important design indicator. When an actual system is designed, it is necessary to reasonably
design the peak value of the sensitivity function and the frequency of the peak value. However,
the sensitivity function cannot be arbitrarily specified in the design. In the comprehensive design of a
system, one important problem often encountered is the degree to which the system performance can
be achieved [17]. The gap of the magnetic levitation system is generally small. If the anti-interference
ability or the robustness is poor, collisions are likely to occur and the system cannot run stably. If it
is in a magnetic levitation train, then a serious accident will occur. Reduced sensitivity is necessary.
The optimal sensitivity function characteristics are given in the paper. In Section 4, in order to obtain a
better sensitivity function, c1,α, Rα is reasonably selected. α (in Equation (30)) provides the coupling of
displacement and velocity to the flux linkage, making system (29) a passive system, Rα is added to the
dissipative matrix (31) to increase the dissipation of energy and improve the response speed, negative
feedback −c1x̃1 (39,40) is applied to the flux linkage that forms the electromagnetic force to stabilize.

4. Passivity-Based Control for Magnetic Levitation System

Magnetic levitation system are often used to verify control algorithms [18–20]. The simplified
magnetic levitation control system model is shown in Figure 2 [21], m is the mass of the suspended
magnet, i is the current of the electromagnet coil, u is the input voltage, f is the electromagnetic
levitation force, z is the distance between the electromagnet and the track, N is the number of coil
windings, R0 is the coil resistance, A is the effective area of the magnetic pole, RT is the air gap resistance,
and ΦT is the main pole flux.
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Neglecting the leakage flux and the magnetic reluctance of the guide rail and the magnetic core,
the magnetic resistance of the magnetic circuit formed by the electromagnet and the guide rail is mainly
concentrated on the air gap between the two, so the effective air gap resistance RT is written as

RT =
2z
µ0A

(13)

where µ0 is the permeability of vacuum, and µ0 = 4π× 10−7 H/m. The flux linkage of electromagnet
is written as

λ = NΦT = Li (14)

According to Equations (13) and (14), the inductance of the electromagnet winding satisfies

L(z) =
NΦT

i
=

N
i
×

Ni
RT

=
µ0N2A

2z
(15)

According to Equation (15), the energy storage of the magnetic field is as follows

E(z, i) =
1
2

L(z)i2 =
1
2
µ0N2A

2z
i2 (16)

Therefore, the electromagnetic force can be calculated from Equation (16) as follows (the derivative
of energy versus displacement z)

f (z, i) = −
∂E
∂z

=
µ0N2A

4

[ i
z

]2
(17)

Assuming that the degree of freedom of the dissipative system is n, the general form of the
Lagrange equation is

d
dt

 ∂L
∂

.
r j

− ∂L
∂r j

= −
∂G
∂

.
r j

+ Q j j = 1, . . . . . . , n (18)

where j is the label of the generalized coordinate, L is the Lagrange function, r and
.
r are the generalized

coordinate and the generalized velocity, respectively, G is the dissipative function of the system, Q j is a
generalized and nonpotential force (except the dissipative force).

In the magnetic levitation system, let r1 = z and r2 = q are generalized coordinates, and
.
s and

.
q = i are the corresponding generalized velocities.

The kinetic energy of the system can be written as

T =
1
2

m
.
z2

+ E(z, i) (19)
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The potential energy can be written as

V = −mgz (20)

Using Equations (19) and (20), we can formulate Lagrange function of the system as

L = T −V =
1
2

m
.
z2

+ E(z, i) + mgz (21)

The system’s dissipation function is given by

G =
1
2

R0i2 (22)

For generalized coordinates r1 and r2, the following equations hold

Q1 = 0, Q2 = u (23)

Substituting Equations (21)–(23) into Equation (18), nonlinear model of the system will be

..
z = −

ki2

4mz2 + g (24)

.
i =

2z
k
(−R0i + u) +

i
z

.
z (25)

According to Equations (14), (15), (24), and (25), we obtain Equation (26)

∑
3

:


..
z = − λ

2

km + g
.
λ = − 2R0

k λz + u
(26)

whereλ is the flux linkage of electromagnet, k is a constant, and k = µ0AN2 = 0.0010 H ·m. The nominal
working point of the system is z0 = 4 mm, i0 = 3.0538 A and λ0 = 0.3851 V · sec.

Then the inductance of the system is L(z) = k/2z, the magnetic energy is λ2/2L(z) = λ2z/k,
so the total energy H(λ, z,

.
z) of the system can be written as

H(λ, z,
.
z) =

λ2z
k
−mgz +

1
2

m
.
z2

where the second term in the formula is potential energy, in this example, the positive direction
of z points downward. The third term in the formula is kinetic energy. Taking the state variable
x = (λ, z,

.
z)T, the energy function can be written as

H(x) =
x2

1x2

k
−mgx2 +

1
2

mx2
3 (27)

The partial derivative of Equation (27) is as follows

∂H
∂x

(x) =
[

2x1x2

k
,

x1
2

k
−mg, mx3

]T

(28)

According to Equation (28), Equation (26) can be organized into a port-controllable Hamilton
model, as shown in Equation (7)
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.
x = [J(x) −R(x)] ∂H

∂x (x) + g(x)u

=




0 0 0
0 0 1/m
0 −1/m 0

−


R0 0 0
0 0 0
0 0 0


∂H
∂x (x) +


1
0
0

u
(29)

Note that the original system Equation (29) is not a passive system, so the interconnection matrix
needs to be configured into

Jd(x) = J(x) + Ja(x) =


0 0 α
0 0 1/m
−α −1/m 0

 (30)

where α provides the coupling of displacement and velocity to the flux linkage, making it a passive
system, as discussed in Figure 3 below. In addition, it is also necessary to add Rα to the dissipative
matrix to increase the dissipation of energy and improve the response speed, that is

Rd(x) = R(x) + Ra(x) =


R0 0 0
0 Rα 0
0 0 0

 (31)

Substituting Equations (30) and (31) into Equation (12) to obtain the partial differential equation
of this example is 

−R0 0 α
0 −Rα 1/m
−α −1/m 0

∂Ha
∂x (x)

= −


0 0 α
0 −Rα 0
−α 0 0




2x1x2
k

x1
2

k −mg
mx3

+


1
0
0

β(x)
(32)

After Equation (32) is expanded, we obtain

−R0
∂Ha

∂x1
+ α

∂Ha

∂x3
= −αmx3 + β(x) (33)

−Rα
∂Ha

∂x2
+

1
m
∂Ha

∂x3
= Rα

(
x1

2

k
−mg

)
(34)

− α
∂Ha

∂x1
−

1
m
∂Ha

∂x2
=

2α
k

x1x2 (35)

where Equation (33) can be used to determine the control action u = β(x), Equation (34) and (35) are
the partial differential equations that need to be solved. Note that the energy function Hd(x) of the
final closed-loop system is a Lyapunov function and there should be no totals for x1 (flux linkage)
and x2(distance), so according to Equation (5), we should use Ha to subtract these two terms of H(x)
[Equation (27)]. According to Equations (34) and (35), it can be known that Ha(x) should also have
the following function term Φ, and use the equality of the left and right terms to solve this system of
equations. In this way, the final solution is written as

Ha(x) = −
x2

1x2

k
+ mgx2 −

g
α

x1 +
x3

1

3αmk
+ Φ

(
−

1
α

x1 + mx2 + m2Rαx3

)
(36)
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where the function Φ in Equation (36) should have the synthesized function Hd(x), a minimum at the
equilibrium point (x10, x20, 0), so that Hd(x) becomes the Lyapunov function, so let Φ be a square form

Φ
(
−

1
αx1 + mx2 + m2Rαx3

)
= q

(
−

1
α (x1 − x10) + m(x2 − x20) + m2Rαx3

)2

= q
(
−

1
α x̃1 + mx̃2 + m2Rαx3

)2
(37)

where q is a constant, the tilde indicates increment, x̃1 = x1 − x10, x̃2 = x2 − x20.
After adding feedback, the new energy function of the closed-loop system is

Hd(x) = H(x) + Ha(x) =
1
2

mx2
3 +

x3
1

3αmk
−

g
α

x1 + q
(
−

1
α

x̃1 + mx̃2 + m2Rαx3

)2
(38)

Substituting the function Φ of Equation (37) into Equation (36) of Ha(x), and then in accordance
with Equation (33), the control action can be obtained

u = β(x)
= −R0

∂Ha
∂x1

+ α∂Ha
∂x3

+ αmx3

= R0
( 2x1x2

k

)
+ R0

α

(
g−

x2
1

mk

)
− c1x̃1 + αmc1x̃2 + αm(1 + mRαc1)x3

(39)

where
c1 = q

(2R0

α2 + 2m2Rα
)

(40)

This control action u can be explained as follows. The first term of Equation (39) is equal to
R0i, which is used to compensate for the voltage drop across resistor R0, the second term is the
acceleration

..
z [see Equation (26)]. Therefore, it can be seen from Equation (39) that the control action

after compensating for the voltage drop is equivalent to the conventional deviation control with respect
to the equilibrium point (x10, x20, 0). Specifically, first, negative feedback −c1x̃1 is first applied to the
flux linkage that forms the electromagnetic force to stabilize, and the rest are displacement (x̃2), velocity
(x3), and acceleration (

..
z). It can be seen that the design results for this passivity can be explained.

The difference is that this passivity-based design provides a new, clear physical concept (referred to as
energy concept) design idea for the control of nonlinear systems, as further explained below.

In this example, the first term of the control action Equation (39) compensates for the nonlinear
term in the flux linkage loop, so the nonlinear term in the equation

∑
3 of the system leaves only the

square of the electromagnetic force generated by the flux linkage λ

..
z = −

λ2

km
+ g (41)

Equation (41) can be linearized, so the parameter relationship in the control action is first analyzed
from the linearization system. Finally, the configuration of the inline structure Jd and the dissipative
matrix Rd in IDA-PBC is discussed based on this relationship.

Linearizing f = λ2/k in Equation (41), take one degree term

∂ f
∂λ

∣∣∣∣∣
0
∆λ =

2λ0

k
∆λ = 763.45∆λ (42)

After the voltage drop is compensated, and the control action Equation (39) is added, according to
Equation (42), the signal flow diagram under the small deviation linearization of the system as shown
in Figure 3.
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Figure 3. Signal-flow diagram of the (PBC) system.

For the sake of discussion, the parameters in the system are specifically taken as c1 = 200, α = 16,
Rα = 0.0005. Under this set of parameters, the acceleration loop of R0/α has less influence in the
system analysis, so it is omitted. Thus, the open loop characteristic of the system corresponding to
Figure 3 is written as

G(s) =
763.45αc1

s[s(s + c1) + 763.45α(1 + mRαc1)]
(43)

We obtain the natural frequency of the inner loop (rate loop) obtained by Equation (43)

ωi =
√

763.45α(1 + mRαc1) = 175 rad/ sec

The low frequency band approximation of G(s) is

G(s) ≈
c1

(1 + mRαc1)s
=

80
s

is that the system crosses the frequency of the 0 dB line. Figure 4 shows the Bode diagram of
this example.
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5. Discussion

From the signal flow diagram and the above data, it can be seen that the roles of the interconnection
and damping assignment is:

(1) α exists in the feedback gains of z and
.
z, indicating that α is configured in Jd(x) to provide

channels for z and
.
z. With these two channels, the entire system is likely to become a passive system.

(2) The feedback gains of λ, z and
.
z are all related to c1, so the value of c1 directly determines the

response speed of the system. This can be seen Equation (40), c1 contains the dissipation coefficients R0

and Rα, especially Rα is added to the dissipative matrix Rd(x). The role of the dissipative matrix is to
accelerate the energy dissipation, so that make it quickly converge to the equilibrium point.

(3) It can be seen from Equation (38) that the relative relationship between the variables in the
quadratic term is consistent with the relative relationship between the feedback gains of λ, z,

.
z in

Figure 3, indicating that the gain of the feedback loop is closely related to the composition of the
Lyapunov function Hd(x).

The performance of the IDA-PBC system can be seen from this example that the nonlinear term
in Ha(x) [Equation (36)] is mainly used to cancel a part of the nonlinear characteristics of the object,
and the other function Φ is a quadratic form. Therefore, u = β(x) obtained by using Equation (39)
and the increments are linear. Therefore, although it is a nonlinear object, due to the linear feedback,
the nonlinear influence of the forward link is weakened by the feedback, so that the whole system
exhibits approximately linear characteristics. Figure 5 is a graph showing the sensitivity characteristics
of the output of the system in this example. This set of curves is obtained by simulation of the actual
nonlinear model. It is based on the curve of the ratio of the sinusoidal output to the sinusoidal input
at different frequencies. The amplitude of the signal during the test was 0.1 mm, 0.5 mm, 0.8 mm,
and 1 mm. As the amplitude of the signal increases, the sensitivity

∣∣∣S( jω)
∣∣∣ peak shifts slightly to the left.

This is because the squared term causes the gains in the positive and negative directions to be different,
resulting in a decrease in the equivalent gain. In general, however, the sensitivity characteristics at
different amplitudes does not change significantly. The time domain response of the system is shown
in Figure 6.
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6. Conclusions

(1) In this paper, the passivity-based control of magnetic levitation system clearly reveals the
relationship between the internal matrix and the dissipative matrix and the performance of the system,
IDA-PBC is biased towards structural, or qualitative considerations of system design. If IDA-PBC
is combined with the conventional idea of (error) signal response (see Figures 3 and 4), it can be an
effective method for control design of nonlinear systems. It also reveals the connection between the
construction of the Lyapunov function and the feedback control. It also provides a basis for quantitative
design for passivity-based control.

(2) The control action derived from passivity-based control is basically linear, so the nonlinear
system uses passivity-based control to obtain the response characteristics of an approximate
linear system.
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