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Abstract: Quantum secret sharing (QSS) can usually realize unconditional security with entanglement
of quantum systems. While the usual security proof has been established in theoretics, how to
defend against the tolerable channel loss in practices is still a challenge. The traditional (t, n)
threshold schemes are equipped in situation where all participants have equal ability to handle
the secret. Here we propose an improved (t, n) threshold continuous variable (CV) QSS scheme using
weak coherent states transmitting in a chaining channel. In this scheme, one participant prepares
for a Gaussian-modulated coherent state (GMCS) transmitted to other participants subsequently.
The remaining participants insert independent GMCS prepared locally into the circulating optical
modes. The dealer measures the phase and the amplitude quadratures by using double homodyne
detectors, and distributes the secret to all participants respectively. Special t out of n participants
could recover the original secret using the Lagrange interpolation and their encoded random numbers.
Security analysis shows that it could satisfy the secret sharing constraint which requires the legal
participants to recover message in a large group. This scheme is more robust against background
noise due to the employment of double homodyne detection, which relies on standard apparatuses,
such as amplitude and phase modulators, in favor of its potential practical implementations.

Keywords: quantum secret sharing; weak coherent state; homodyne detector

1. Introduction

Secret sharing is a branch of cryptography [1], in which the dealer distributes a secret to all
participants and only legitimate participants can reconstruct the shared secret in the cooperation
fashion. The dealer distributes a secret message s to n participants which at least t ≤ n participants
combine to recover the secret. It is known as a (t, n)-threshold scheme [2–9]. Quantum secret sharing
(QSS) is an extension of classical secret sharing via quantum states. Compared with the classical secret
sharing, QSS protocols can achieve unconditional security based on the quantum no-cloning theorem
and the Heisenberg uncertainty principle [10].

Quantum secret sharing (QSS) can be categorized into discrete variable QSS (DVQSS) [11–14]
and continuous variable QSS (CVQSS) [15–22] based on the carriers used. In DVQSS, the discrete
variable quantum states are used for the secret sharing, in which it carries information via weak laser
pulses or the single photons. Owing to the low channel capacity and the difficulty of the preparation
of single photons, it is difficult to implement in practices. In order to avoid these shortages, the
continuous variable quantum states, such as coherent states and squeezed states, can be used for the
information carriers, resulting in the CVQSS. Coherent states can be generated and operated by linear
optical components and squeezed states can be generated from them through non-linear interactions.
Furthermore, both of them increase the channel capacity.
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In the traditional QSS schemes, most of them are (n, n)-threshold schemes, in which only all the n
participants work together can recover the secret message from dealer, but any part of participants
are impossible to restore the secret. For example, Cleve et al. proposed an initial (t, n) threshold
DVQSS protocol in theoretics [11]. Correspondingly, the CVQSS was proposed with its interferometric
realization that depends on infinite squeezing [23]. After that, the (2,3) threshold scheme was designed
using entangled system [16]. Thereafter, the (n, n)-threshold protocol was dished with weak coherent
state [24]. However, most of QSS protocols are based on squeezed states which are difficult to prepare
in the laboratory, compared with coherent states. Moreover, all participants have equal ability to
recover the initial secret from the dealer in traditional (t, n) threshold schemes. They cannot satisfy
the practical conditions which needs some specifically designated participants to share message and
accomplish tasks in a large group.

Currently, the Gaussian modulated coherent state (GMCS) has been elegantly applied in
continuous variable quantum cryptography [25–27]. The Gaussian modulation encodes the key
information by modulating the quadratures the amplitude X and the phase P of few-photon coherent
states with a centered Gaussian distribution, where X and P quadratures can be measured by a
heterodyne detector or homodyne detector [28–31]. The GMCS-involved scheme has been proved
to be secure against collective attacks and coherent attacks. Motivated by the elegant characteristics
of the GMCS-involved system, we suggest an approach for establishing the GMCS-based CVQSS
system. An improved (t, n) threshold scheme will be proposed with weak coherent states. The main
feature is that, instead of all participants have equal ability to recover the secret, it requires specially
designated participants for the secret sharing. Each participant imports the locally prepared GMCS
into a circulating optical mode with a beam splitter, which can be implemented with current optical
technologies. Compared with modulating quantum state of the passing-through photon, this can make
our protocol flexible and avoid obstruction from the eavesdroppers in the quantum state preparation.

The paper is organized as follows. In Section 2, we present the GMCS-involved (t, n) scheme
for the CVQSS system. In Section 3, we demonstrate the security analysis of the proposed CVQSS
scheme. In Section 4, performance analysis are shown with numerical simulation results of practical
parameters. Finally, the conclusions are drawn in Section 5.

2. The GMCS-Involved (t, n) Scheme for CVQSS

Enlightened by the characteristics of the GMCS-involved quantum key distribution (QKD) [19]
and the topological structure of the (n, n)-threshold scheme using weak coherent states [24], we
propose an improved (t, n) threshold scheme for the practical CVQSS.

As shown in Figure 1, all participants and the dealer are linked by a single fibre-based quantum
channel for transmission. The first participant B1 generates Gaussian random numbers and modulates
actively the output of a local laser using phase and amplitude modulators to prepare a coherent state
|x1 + ip1〉. Here, two variables x1 and p1 are independent Gaussian random numbers with zero mean
and a variance of V1N0, where N0 is the shot-noise variance, and V1 represents the modulation variance
determined by B1. Then, the coherent state |x1 + ip1〉 is sent to the adjacent participant and passes
through a highly asymmetric beam splitter of B2. Meanwhile, B2 prepares the other GMCS and couples
it into the spatiotemporal mode as the same as B1 by using the second beam splitter. B2 could realize
phase-space displacements of {x2, p2} by adjusting the modulation variances and the reflectivity of
the asymmetric beam splitter. The remaining participants execute the similar procedure. Finally, the
quantum state of dealer can be expressed as |∑n

j=1
√

Tjxj + i ∑n
j=1

√
Tj pj〉, where Tj is the channel

transmittance from the jth participant to the dealer. The dealer achieves {xh, ph} by measuring the
amplitude and phase quadratures of the end quantum state via double homodyne detection.
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Figure 1. The state preparation of participants and the dealer. L is laser, M represents modulator, BS
is beam splitter, DHD expresses double homodyne detector, and {xj, pj} are independent Gaussian
random numbers retained by the jth participant Bj with j ∈ {1, 2, · · · , n}.

Stage 1. Preparation Processing :

1. The first participant B1 generates the coherent state |x1 + ip1〉 based on its Gaussian random
numbers {x1, p1}, laser and modulator, and sends it to the next participant B2.

2. Each of the remained participants couples the locally prepared GMCS into the spatiotemporal
mode at the same time as B1 by using the highly asymmetric beam splitter.

3. The dealer obtains {xh, ph} by measuring the amplitude and phase quadratures of the
received quantum state via double homodyne detection. The resulting {xh, ph} is saved as
raw data.

4. Repeat above steps until the dealer gets enough raw data.
5. A subset of the raw data is randomly chose and the dealer demands all the participants to

publish the corresponding Gaussian random numbers. Combined with the corresponding
measurement results, the transmittance {T1, T2, · · · , Tn} can be achieved [32]. All participants
abandon the disclosed data.

6. The dealer randomly chooses a subset of remaining raw data after step 5. The dealer
presumes each participant except Bm is dishonest and demands them to publish their
corresponding Gaussian random numbers.

7. The dealer replaces the measurement result by xF = xh − ∑n
j=1,j 6=m

√
Tjxj and pF = ph −

∑n
j=1,j 6=m

√
Tj pj. In this case, {xF, pF} and the raw data of Bm are same subsets. Therefore,

the dealer and Bm can gain a lower bound of secure key rate Rm of the GMCS-based quantum
croptography.

8. Repeat the step 7 for n times. Finally, the dealer gets secure key rates {R1, R2, · · · , Rn} [18].

Stage 2. Implementation Processing :

1. Legitimate t participants are sorted by an agreed rule using Cl j for l ∈ {1, 2, · · · , t} and
j ∈ {1, 2, · · · , n}.

2. Supposing that the sequence of t participants is shown in Figure 2, the dealer randomly
chooses a subset of the remained raw data and demands all participants except C12 to
publish the corresponding Gaussian random numbers. The dealer obtains {x121 , p121} with
x121 = xh −∑n

j=1,j 6=2
√

Tjxj and p121 = ph −∑n
j=1,j 6=2

√
Tj pj.

3. Repeat the step 2 for t times. Each of subset {xl jl , pl jl} of the dealer is the same as {xj, pj} of
Bj, for l ∈ {1, 2, · · · , t} and j ∈ {1, 2, · · · , n}.
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4. The dealer emerges the secure key S from raw data. Distribution of the secure key S can be
described as follows

Z1 = S mod x1j1 ,

Z2 = S mod x2j2 ,

· · ·
Zt−1 = S mod xt−1jt−1 ,

Zt = S mod xtjt .

(1)

5. The polynomial prepared by the dealer can be expressed as

f (x) = S + Z1x + Z2x2 + · · ·+ Zt−2xt−2 + Zt−1xt−1. (2)

The dealer calculates f (x) and obtains { f (x1j1), f (x2j2), · · · , f (xtjt)}.
6. The dealer recodes the f (xl jl ) by Pauli operation. Simultaneously, it prepares some decoy

particles and randomly inserts them to the coding sequence. The dealer remembers the initial
state and position of each decoy particles. The dealer selects the secure key rate R of the
proposed protocol as the minimum of {R1j1 , R2j2 , · · · , Rtjt}, Rl jl = Rj [18] and sends them
to all the participants according to the sequence of Cl j. After affirming Cl j has received the
coding sequence, the dealer announces the initially inserted state and position of each decoy
particles to Cl j. Then {xj, f (xl jl )} becomes the private key of Cl j.

7. Legitimate participants restore the secret S by the Lagrange interpolation.

f (x) = f (x1j1)ψ1 + f (x2j2)ψ2 + · · ·+ f (xtjt)ψt

= S + Z1x + Z2x2 + · · ·+ Zt−1xt−1,
(3)

where

ψk =
t

∏
l=1,l 6=k

x− xl jl
xkjk − xl jl

, (4)

with xl jl equal to xj for k, l ∈ {1, 2, · · · , t} and j ∈ {1, 2, · · · , n}.

Here, procedures of the GMCS-involved CVQSS is introduced in detail. Legitimate participants
can share message from the dealer based on it. Furthermore, the security is a critical factor for a QSS
scheme. The security analysis of QSS is typically more involved than that of QKD. The general security
proof against eavesdroppers in the channels and dishonest participants who have only appeared
recently. However, dishonest participants have more superiorities to undermine the secret sharing
than eavesdroppers from outside. Consequently, the following security analysis primarily focuses on
both eavesdroppers and dishonest participants.
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Figure 2. The data-processing of legitimate t participants and the dealer. L is laser, M represents
modulator, BS is beam splitter, DHD expresses double homodyne detector, {xj, pj} are independent
Gaussian random numbers retained by participant Bj, {xj, f (xl jl )} is the private key of Cl j , l ∈
{1, 2, · · · , t}, j ∈ {1, 2, 3, · · · , n}.

3. Security Analysis

In the following, we consider the security of the GMC-involved CVQSS against intercept-and-
resend attack, collective attack, dishonest participants attack and entangle attack.

3.1. Intercept-and-Resend Attack

Intercept-and-resend attack has two situations. One is that an eavesdropper, Eve, intercepts
quantum information form the dealer and copied it. Then she sends the copied quantum information
to legitimate participants. Because of quantum no-cloning theorem, the copied quantum information
can not happen for the GMCS-involved CVQSS system. The other is that eavesdroppers intercept
quantum information form the dealer and send false quantum information to the legitimate participants
rather than copy it. In this case, the GMCS-based (t, n)-threshold scheme protects quantum states
by randomly inserting some decoy particles to the coding sequence. Every decoy particle is selected
randomly from CV quantum states. Eavesdroppers can not determine the initial state and position of
each decoy particles. We assume that the coding sequence has Ω decoy particles. The attack is found
with the probability 1− ( 3

4 )
Ω. For Ω→ ∞, the probability will converge to 1 [33].

3.2. Collective Attack

Based on the polynomial and Lagrange interpolation, we find that restoring the secret requires
t legitimate participants. We assume that the dealer and one of legitimate participants are honest.
The rest of participants are illegal user in this secret sharing in the large group. However, t− 1 dishonest
legitimate participants can not obtain the secret S by using collective attack, since they cannot carry
out collective attack. The above-mentioned situation is similar to GMCS-based quantum cryptography.
Suppose that the dealer demands t− 1 legitimate participants to publish their private key while the
last participant holds its Gaussian random numbers and f (x) from the dealer. Therefore, the last
participant owns all data of legitimate participants to recover the secret key. Since the dealer is honest
and attempts to generate a secret key against all the other t− 1 participants. In this case, it is the same
as the GMCS-based quantum key distribution (QKD) and the secure key rate of the GMCS-involved
CVQSS protocol can be evaluated by standard security proofs of QKD [25–27]. Because the secure
key of CVQSS ought to secure against any group of t− 1 participants, the dealer needs to select the
smallest one among secure key rates of legitimate participants and the dealer. The secure key rate of
the GMCS-based QKD can be calculated between the dealer and a selected participant while other
t− 1 legitimate participants are dishonest [24,34]. In order to show the performance of the CVQSS
protocol, we execute simulations using concrete parameters and analyze the results in the next section.
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3.3. Dishonest Participants Attack

When dishonest participants try to intercept other legitimate participants information to restore
the secret by themselves, they can be seen as eavesdroppers. Because participants except legitimate
t participants are illegal user in the large group, it has no effect even through they are dishonest.
Next we discuss how to analyze security of the proposed protocol when dishonest participants appear
in legitimate t participants and put error private key into the process of recover secret key. Under the
circumstances, it occurs two probability, i.e., the polynomial can be restored and the polynomial
can not be restored. For the first case, we assume a dishonest participant Cl j make {x,

j, f (xl jl )
,} as its

private key, where f (xl jl )
, 6= S+ Z1x,

j + Z2(x,
j)

2 + · · ·+ Zt−2(x,
j)

t−2 + Zt−1(x,
j)

t−1. Using the Lagrange
interpolation, the polynomial can be expressed as

f (x), = f (x1j1)ψ1 + f (x2j2)ψ2 + · · ·+ f (xl jl )
,ψ,

l + · · ·+ f (xtjt)ψt

= S, + Z,
1x + Z,

2x2 + · · ·+ Z,
l x

l + · · ·+ Z,
t−1xt−1,

(5)

where S, is the recovered secret key. After testing and verifying, S, and Z,
τ do not satisfy the

constraint in Equation (1) for τ ∈ {1, 2, · · · , t}. It seems that the dishonest participant can be
found by the legal participants. For the second case, supposing that a dishonest participant
substitutes {xj, f (xl jl )}with {x∗j , f (xl jl )

∗}, where f (xl jl )
∗ = S + Z1x∗j + Z2(x∗j )

2 + · · ·+ Zt−2(x∗j )
t−2 +

Zt−1(x∗j )
t−1. The polynomial can be represented as

f (x)∗ = f (x1j1)ψ1 + f (x2j2)ψ2 + · · ·+ f (xl jl )
∗ψ∗l + · · ·+ f (xtjt)ψt

= S + Z1x + Z2x2 + · · ·+ Zl xl + · · ·+ Zt−1xt−1.
(6)

Obviously, the restored polynomial is equal to the primitive polynomial, and S is the secret key
from the dealer. However, it does not satisfy the constraint Zl = S mod x∗j . By the above-mentioned
measurements, we can detect the dishonest participant. If the number of dishonest participant is more
than one, they can be detected with more possibility [35–38].

3.4. Entanglement Attack

In this kind of attack, Eve does not change quantum information, but disturbs the channel with
entanglement attack. In the preparation stage, the dealer sends f (xl jl ) to legitimate participants based
on the sequence of Cl j. When Eve does not know it, she can not deal with f (xl jl ) corresponding to Cl j.
So it is significant to get xj from each legitimate participant for eavesdropping. In the implementation
stage, the dealer randomly chooses a subset of the remained raw data and demands all participants
except Cl j to publish the corresponding Gaussian random numbers. Cl j keeps its Gaussian random
numbers and gets xj as the private key of Cl j. In this case, xj does not need to be transmitted in the
fiber channel. Therefore, Eve can not obtain it by attacking the entangled channel.

4. Numerical Simulation

In numerical simulations of practical implementations, groups of t legitimate participants from
all participants are designated with different values and geographical positions. We assume that the
distance of the dealer and the farthest legitimate participant is h̄ and all the other t− 1 participants are
randomly distributed. The minimum secure key rate is seen as the secure key rate of the proposed
CVQSS system.

Because there exists the excess noise ε for every participant, the farthest legitimate participant is
the one that achieves the minimum secure key rate of the dealer. The secret rate can be derived as [31]

K = κ IAB − χBE, (7)
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where κ is the reconciliation efficiency, IAB expresses the Shannon mutual information shared between
Alice and Bob, and χBE represents upper bound information accessible to Eve (including the other
t− 1 participants and eavesdropper) on Bob’s secret key.

The channel transmittance of the lth participant can be defined as

Tl = 10−
γρl h̄

10 , (8)

where γ is the attenuation coefficient of the quantum channel, ρl represents the fiber length ratio of the
lth participant and the farthest participant to the dealer. In addition, the excess noise of all legitimate t
participants is given by [29,39]

εt =
t

∑
l=1

Tl
Th̄

ε, (9)

with Th̄ = 10−
γh̄
10 . Using the channel input from Alice as reference, Tl

Th̄
ε represents the lth

participant’s excess noise. In this case, the excess noise is connected with the channel transmittance.
The channel-added noise can be described as

χ f =
1
Th̄
− 1 + εt. (10)

Consequently, the total noise referred to the channel input between Alice and Bob can be given by

χtot = χ f +
χh
Th̄

, (11)

with χh = [1 + (1− η) + 2υel ]/η, where η is an efficiency and υ denotes the noise owing to detector
electronics. Moreover, the mutual information of Alice and Bob is given by

IAB = log2
V + χtot

1 + χtot
, (12)

where V = VA + 1 and VA is the modulation variance of Alice.
The maximum information accessible to Eve on Bob’s secret key is the Holevo quantity, which

can be derived as

χBE =
2

∑
i=2

G(
λi − 1

2
)−

5

∑
i=3

G(
λi − 1

2
), (13)

where G(x) = (x + 1)log2(x + 1)− xlog2(x). The symplectic eigenvalues λ1,2 can be calculated as

λ1,2 =

√
∆±
√

∆2 − 4D
2

, (14)

where ∆ = V2(1− 2Th̄) + 2Th̄ + T2
h̄ (V + χ f )

2 and D = T2
h̄ (Vχ f + 1)2. Furthermore, the symplectic

eigenvalues λ3,4 can be calculated as

λ3,4 =

√
A±
√

A2 − 4B
2

, (15)

with the notations

A = {∆χ2
h + D + 1 + 2χh[V

√
D + Th̄(V + χ f )] + 2Th̄(V2 − 1)}/[Th̄(V + χtot)]

2,

B = (
V +
√

Dχh
Th̄(V + χtot)

)2.
(16)
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The last symplectic eigenvalue λ5 is equal to 1.
As mentioned above, the channel transmittance of the lth legitimate participant changes with

different fiber length to the dealer. Since the secret key rate is relevant to distance between each
legitimate participant and the dealer, different kinds of distribution have a great effect on calculating
the secure key rate. Because ρl represents the fiber length ratio of the lth participant and the farthest
participant to the dealer, different kinds of distribution can be described by different kinds of ρl . As
shown in Figure 3, we achieve the relation of the secure key rate and the fiber length at different kinds
of distribution and identical number of legitimate participants t = 20. In Figure 3, the secret key
rates of different kinds distribution of legitimate participants are the same when the fiber length is
short. The longer of the fiber length means more influence of different kinds distribution of legitimate
participants. Different of secure key rates increases for the same fiber length.
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Figure 3. The secure rates of different kinds distribution of legitimate participants for ρ1
l = 1− e−0.2l ,

ρ2
l = l

t , ρ3
l =

√
2
π e−

l2
200 , l ∈ {1, 2, · · · , t} and t = 20. The parameters are given by VA = 6, γ = 0.2 dB/km,

ε = 0.01, κ = 0.98, η = 0.6, and vel = 0.01.

In practical implementations, various tasks need different number of legitimate participants to
accomplish for the secret sharing. The number of legitimate participants of one task is determined
by the dealer, and the possibility of each participant to participate the task is equal. In this case, the
relation of the secure key rate and the fiber length at different number of legitimate participants t
out of identical all participants n = 25 is shown in Figure 4. For t = 5, the secret key rate decreases
with the fiber length increasing. With the number of legitimate participants increasing at the same for
n = 25, the secret key rate reduces gradually at the same fiber length. When the number of legitimate
participants reaches the upper limit for t = n = 25, the secret key rate is the smallest at the same fiber
length. In this case, it becomes the (n, n)-threshold CVQSS scheme. This scheme can be conducted at 4
km with 25 legitimate participants for ε = 0.01. Figure 5 shows the relations of the secret key rate and
the fiber length for different numbers of legitimate participants t = 5, 50, 100 and 200 out of identical
all participants n = 200. For ε = 0.001, the number of legitimate participants can be determined
randomly between 2 and 200. We find that this scheme can be conducted at 10 km with 200 legitimate
participants.
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Figure 4. The secure rates of different number of legitimate participants for n = 25. The parameters are
given by VA = 6, γ = 0.2 dB/km, ε = 0.01, κ = 0.98, η = 0.6, and vel = 0.01.
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Figure 5. The secret rates of different numbers of legitimate participants for n = 200. The parameters
are given by VA = 6, γ = 0.2 dB/km, ε = 0.001, κ = 0.98, η = 0.6, and vel = 0.01.

The reconciliation efficiency ranges from 0 when no information was extracted to 1 for a perfect
reconciliation scheme. It is connected with the Shannon mutual information shared between Alice
and Bob. The relation of the secure key rate and the fiber length at different number of legitimate
participants t and reconciliation efficiency out of identical all participants n = 50 is shown in Figure 6.
Here, we choose t = {15, 30, 45}, and values of κ are 0.98 and 0.9. The numeral relation can be
displayed in Figure 6. It is obviously that by using the higher reconciliation efficiency the secure
key rate under the same number of legitimate participants t is increased in comparison to the lower.
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The attenuation coefficient has influence on the channel transmittance of all participants. We use a
similar analytical approach to illustrate the effect of the attenuation coefficient γ on the secure key
rate with different number of legitimate participants t. Figure 7 shows that the higher secure key rate
and longer maximum transmission distance can be achieved by tuning the value of parameter γ to
be smaller.

0 5 10 15 20 25 30 35

Fiber length(km)

10-5

10-4

10-3

10-2

10-1

100

S
ec

ur
e 

ke
y 

ra
te

(b
its

/p
ul

se
)

t=15, κ=0.98
t=15, κ=0.9
t=30, κ=0.98
t=30, κ=0.9
t=45, κ=0.98
t=45, κ=0.9

Figure 6. The secret rates of different numbers of legitimate participants and reconciliation efficiency
for n = 50. The parameters are given by VA = 6, γ = 0.2 dB/km, ε = 0.005, η = 0.6, and vel = 0.01.
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Figure 7. The secret rates of different numbers of legitimate participants and attenuation coefficient for
n = 50. The parameters are given by VA = 6, ε = 0.005, κ = 0.98, η = 0.6, and vel = 0.01.
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5. Conclusions

We have suggested an improved approach for the GMCS-involved (t, n) threshold CVQSS.
The secret sharing scheme combines weak coherent states with double homodyne detectors, making it
available for practical implementations due to the fact that the GMCS can be prepared and modulated
with current technologies. Compared with the traditional (t, n) threshold QSS protocols, only the
designated participants could recover the original secret using the Lagrange interpolation with
their encoded random variables instead of all participants dealing with equal ability. Since each
participant imports a locally prepared quantum state into a circulating optical mode, it improves
the security of the CVQSS system in practices. We consider the security of the proposed protocol
against intercept-and-resend attack, collective attack, dishonest participants attack and entanglement
attack. In addition, the proposed protocol could fit particular condition in which it needs some special
participants for the secret sharing in a large group.
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