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Abstract: Single-channel singing voice separation has been considered a difficult task, as it requires
predicting two different audio sources independently from mixed vocal and instrument sounds
recorded by a single microphone. We propose a new singing voice separation approach based on the
curriculum learning framework, in which learning is started with only easy examples and then task
difficulty is gradually increased. In this study, we regard the data providing obviously dominant
characteristics of a single source as an easy case and the other data as a difficult case. To quantify the
dominance property between two sources, we define a dominance factor that determines a difficulty
level according to relative intensity between vocal sound and instrument sound. If a given data is
determined to provide obviously dominant characteristics of a single source according to the factor,
it is regarded as an easy case; otherwise, it belongs to a difficult case. Early stages in the learning
focus on easy cases, thus allowing rapidly learning overall characteristics of each source. On the
other hand, later stages handle difficult cases, allowing more careful and sophisticated learning.
In experiments conducted on three song datasets, the proposed approach demonstrated superior
performance compared to the conventional approaches.

Keywords: audio source separation; singing voice separation; weighted loss function; curriculum
learning; recurrent neural network; U-Net

1. Introduction

Single-channel singing voice separation aims to separate instrument sounds and vocal sounds
from a given music data recorded by a single microphone. This problem has been considered as
a difficult separation task in comparison with multi-channel signal separation that handles data
recorded by two or more microphones. In recent years, deep neural network (DNN)-based modelling
approaches such as convolutional neural network (CNN) [1–3], recurrent neural network (RNN) [4–6],
and U-Net [7–10] have been adopted to overcome this difficulty. Although the conventional
DNN-based approaches have reported improvement of separation performance, most of them
have difficulties in obtaining a reliable convergence and they requires tremendous learning time.
To overcome these limitations, we propose a new single-channel singing voice separation approach
based on curriculum learning [11].

Curriculum learning is a type of learning method, in which learning is started with only easy
examples and then task difficulty is gradually increased. Thus, it is capable of learning a model by
gradually adjusting the difficulty of training data according to learning stages. Several successful
applications of the curriculum learning include image classification [12], object detection [13,14],
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and optical flow estimation [15]. The difficulty level of the training data can be determined either
by humans [14,15] or automatically [16]. The curriculum learning used in the proposed method is
implemented by adjusting the weight of the loss function in RNN according to the relative dominance of
one source to the other. Giving different weights according to the dominance allows reducing learning
time, as the dominant data tend to converge rapidly to a vicinity of the dominant region. In addition,
it can make sophisticated learning, as higher weights given to less dominant data lead to fine-tuning
of the models. This paper is organized as follows—in Section 2, the conventional DNN-based singing
voice separation approaches are addressed. Section 3 explains the proposed curriculum learning-based
approach. In Section 4, several experimental results are described. And Section 5 concludes this paper.

2. Related Work

Figure 1 shows a typical framework of singing voice separation using a DNN [4–6]. First,
the input mixture in the time-domain is transformed to magnitude and phase spectra using short-time
Fourier transform (STFT). DNNs take the magnitude spectra of the mixed sound as input to obtain
the spectral magnitudes of both vocal and instrument sounds. The inverse STFT is performed by
combining the magnitude spectra predicted by the DNN model and the phase spectra of the input
mixture to get separated vocals and musical instruments. Some types of DNNs for single-channel
singing voice separation are convolutional neural networks (CNNs) [1–3], recurrent neural networks
(RNNs) [4–6], convolutional recurrent neural networks (CRNNs) [17,18], and U-Net [7–10].

Figure 1. Illustration of a typical deep neural network framework for singing voice separation.
The input and output features are the magnitude spectra of the short-time Fourier transform (STFT) of
the time-domain signals. Neural network models are applied to separate vocal and instrument sources
in the magnitude STFT domain, and the audio sounds are reconstructed by inverse STFT operations.

2.1. RNN-Based Singing Voice Separation

RNN is a network created to process sequential data using memory, in other words, hidden states
that are invisible to the outside of the network. A vanilla RNN conveying basic elements only is
defined by the following equation:

ht = g (Whhht−1 + Whxxt + b) , (1)

where t is a discrete time index, ht is a hidden state output vector at time t, xt is an input vector whose
components are magnitude spectra generated by STFT, b is a bias vector, and g is an activation function.
The input, state variable, and bias variable represented by boldface letters are all vectors. Whh is a
weight matrix from the past output (ht−1) to the current output vectors (ht), and Whx is another weight
matrix from the input feature (x) to the output. RNN can process sequences of arbitrary length in
such a way that hidden state ht−1 summarizes the information of the previous inputs, {x1, . . . , xt−1},
and combines them with the current input xt to calculate the output vector ht. According to the first
Markovian assumption in Equation (1), the vanilla RNN assumes dependency to previous output only,
so it may not be able to handle the cases where the dependency is complicated and exists over long
time. To model multiple-level dependency in time, several vanilla RNNs are connected sequentially to
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build stacked RNNs as shown in Figure 2. Stacked RNN consists of several layers of multiple RNNs,
and longer time dependencies are expected to be modeled by the cascaded recurrent paths.

Figure 2. Structure of stacked recurrent neural networks.

The dependency across both time and frequency axes can be modeled by convolutional neural
networks (CNNs) [19,20]. The CNN architecture is not well suited to sequential data such as audio
sounds because the size of its receptive field is fixed, and the convolution operation calculates the
output based only on the region within the receptive field. However, CNN has its own advantage
that most calculations can be implemented in a parallel manner, which, in terms of computational
efficiency, makes a great advantage over RNN that requires computation of all previous outputs to be
finalized before generating the current outputs. For these reasons, CNN and its variants [1–3] have
been widely used for singing voice separation. In addition, there have been attempts to combine an
RNN and a CNN. One of their combinations is a convolutional recurrent neural network (CRNN) that
has been successfully adopted to singing voice separation as well [17,18].

2.2. Loss Function of Singing Voice Separation Models

To measure the error between the ground truth and the predicted spectra, there are many distance
metrics which provide scale-invariance. One of such metrics for the STFT spectra is Itakura-Saito
divergence [21], and it was applied to nonnegative matrix factorization (NMF) [22,23] with successful
results in music sound analysis [22]. β-divergence also provides scale-invariant distance, and it was
applied to NMF as well [24,25]. However, in DNN learning, it is preferred to use simple metrics that
are easy to differentiate to derive a learning algorithm and compute gradients efficiently. In our paper,
we use mean squared error (MSE, squared L2 loss) between ground truth and predicted spectrum that
was adopted to singing voice separation recently [7,8]. The MSE between two arbitrary STFT vectors x
and y is defined as follows:

l2(x, y) =
1
F
‖x− y‖2

2 =
1
F

F

∑
f=1

(x( f )− y( f ))2 , (2)

where f is a discrete frequency index, and F is the total number of frequency bins. The advantage of
the squared L2 loss is that it is differentiable and has smoother convergence around 0. For the given
ground truths in the powerspectral domain at time t, y1,t and y2,t, and their approximates, ỹ1,t and
ỹ2,t, the prediction error is defined by the MSE averaged over all the frequency bins:
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Ep(t) = l2(y1,t, ỹ1,t) + l2(y2,t, ỹ2,t)

=
1
F

F

∑
f=1

[
(y1,t( f )− ỹ1,t( f ))2 + (y2,t( f )− ỹ2,t( f ))2

]
. (3)

The objective function should be designed to reduce the prediction error between the ground
truth and the approximate at all time and frequency units [4–6]:

J =
1
T

T

∑
t=1

Ep(t)

=
1

TF

T

∑
t=1

F

∑
f=1

[
(y1,t( f )− ỹ1,t( f ))2 + (y2,t( f )− ỹ2,t( f ))2

]
, (4)

where T is the number of samples in time. Learning using this loss is expected to yield a high signal to
interference ratio (SIR) [26].

3. Proposed Curriculum Learning Technique on RNN and U-Net

In this section, the baseline models for the singing voice separation and the proposed curriculum
learning framework are explained in detail, and the advantage of the proposed method is described.
Our proposed method can be applied to various types of models that are based on stochastic
learning. In this paper, we use a stacked RNN [4–6] and a U-Net [7] as reference baselines for
the proposed method.

3.1. Stacked RNN-based Separation Model

Assume that xt is a STFT output obtained by a vector of dimension F at time t. In order to
add temporal variation to the input feature vector, the previous and next frames are concatenated as
follows:

zt = [xt−1 xt xt+1] . (5)

The stacked RNN for the singing voice separation has three RNN layers followed by a fully
connected (FC) layer as shown in Figure 3. The hidden state output at time t and level l, denoted by
h(l)

t , is generated by passing the previous hidden state outputs, h(l−1)
t , through the RNN unit at level l,

expressed as follows:
h(l)

t = σ
(

W(l)
hh h(l)

t−1 + W(l)
hz h(l−1)

t + b(l)
)

, (6)

where σ is a sigmoid function, W(l)
hh , W(l)

hz , and b(l) are weight matrices and bias vector of the RNN at

level l. The input to the RNN at level 1 is the mixed sounds described in Equation (5), that is, h(0)
t = zt.

The outputs of the last RNN layer pass through an FC layer with rectified linear unit (ReLU) activation
function. At time t, the prediction of y of source i is expressed as

ŷi,t = max
(

W( f )
i h(3)

t + b( f )
i , 0

)
, i = {1, 2} , (7)

where W( f )
i and b( f )

i are the weight matrix and the bias vector of the fully connected layer. Figure 3
illustrates the data flow of the stacked RNN. To train the weights, the objective function in Equation (4)
is minimized with appropriate optimization method. Learning the stacked RNN is briefly summarized
in Algorithm 1. Detailed derivation of the gradients can be found in Reference [4].
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Figure 3. Stacked RNN baseline architecture. Baseline model consists of three layers of multiple RNNs
and a fully connected (FC) layer. Individual sources have their own FC layer, and the weight and bias
parameters of RNN layers are shared.

Algorithm 1 Stacked RNN Learning

N := number of training steps
l := RNN stack level index, l ∈ {1, 2, 3}
i := source index, i ∈ {1, 2}{

W(l)
hh , W(l)

hz , b(l)
}

:= weight and bias parameters of the unit RNN, at layer l{
W( f )

i , b( f )
i

}
:= weight ans bias parameters of the FC layer of source i

for n← 1 to N do
Differentiate J = 1

T ∑T
t=1 Ep(t) with respect to each set of parameters

Update W(l)
hh , W(l)

hz , b(l), W( f )
i , b( f )

i using gradient descent learning
end for

Finally, the time frequency mask is obtained by using the ratio of the outputs of the individual
FC layers, ŷ1,t and ŷ2,t. The magnitude spectrum vector of the separated sound is obtained by the
element-wise multiplication of the time frequency mask and the spectrogram of the mixed input:

ỹi,t =
|ŷi,t|

|ŷ1,t|+ |ŷ2,t|
� xt , i = {1, 2} . (8)

The original sound is reconstructed by inverse STFT on the magnitude ỹi,t and the phase
components of the mixed sound.

3.2. U-Net Baseline Model

Our U-Net baseline model is based on Reference [7]. For the mixed input signals, STFT extracts
magnitude spectrogram X of size T × F, where T is the number of frames in time domain and F is the
number of frequency bins. Each component of the 2-dimensional matrix X is a specific time-frequency
unit region,

X(t, f ) = xt( f ) , (9)
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where t and f are discrete time and frequency index variables, and xt( f ) is STFT of the input mixture
sound at time t and frequency f . The spectrogram matrix X is globally scaled so that all the values of X
should be within [0, 1] for fast and stable learning. The encoder consists of six convolution layers with
various kernel window sizes and stride values. Each convolution output is generated according to the
following formula:

E(l) =

{
X , l = 0

g
(

conv
(

E(l−1), W(l)
e , b(l)

e

))
, l ∈ {1, . . . , 6} ,

(10)

where g is an activation function, l is the layer number expressed by parenthesized superscripts,
W(l)

e is a matrix whose column vectors are convolution kernel functions, and b(l)
e is a bias vector.

The superscript and the subscript notations, {·}(l)e , indicate that the parameter set belongs to layer l of
the encoder network. The initial output is a copy of the input spectrogram, E(0) = X. The function
“conv” defines a 2-dimensional convolution operator with the given set of a kernel matrix and a bias
vector. The encoder extracts high-level features with resolution reduction from the input features.

Decoding part of the U-Net consists of five up-convolution layers with initial input as the encoder
output at the final convolution layer. The outputs of the encoder layers are concatenated to the inputs
of the decoding layers to compensate any lost information during encoding. The decoding operation
from lower layer to the upper layer is recursively defined as follows:

H(l) =

{
E(l+1) , l = 5[
E(l+1), D(l+1)

]
, l ∈ {0, . . . , 4} ,

D(l) = g
(

upconv
(

H(l), W(l)
d , b(l)

d

))
, (11)

where [·] is a concatanetion operator, W(l)
d and b(l)

d are a matrix of the deconvolution kernel functions
and a bias vector, and H(l) is an intermediate output at layer l. The initial input to the decoding
up-convolution layer is the encoder output only, that is, H(5) = E(6). The detailed configuration
including the sizes and the numbers of the kernel functions adopted in this paper is given in Table 1.
Learning the U-Net baseline is briefly summarized in Algorithm 2. Exact calculation of the gradients
can be found in Reference [7].

Table 1. U-Net architecture for singing voice separation.

Conv Upconv

Layer Number Output Size Input Output Size

0 E(0) = X 512× 128× 1 [E(1) D(1)] D(0) 512× 128× 1

1 E(1) 256× 64× 16 [E(2) D(2)] D(1) 256× 16× 16

2 E(2) 128× 32× 32 [E(3) D(3)] D(2) 128× 32× 32

3 E(3) 64× 16× 64 [E(4) D(4)] D(3) 64× 16× 64

4 E(4) 32× 8× 128 [E(5) D(5)] D(4) 32× 8× 128

5 E(5) 16× 4× 256 E(6) D(5) 16× 4× 256

6 E(6) 8× 2× 512 - - -
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Algorithm 2 U-Net Learning

N := number of training steps{
W(l)

e , b(l)
e

}
:= convolution kernels and bias of the encoder at level l ∈ {0, . . . , 5}{

W(l)
d , b(l)

d

}
:= convolution kernels and bias of the decoder at level l ∈ {1, . . . , 6}

for n← 1 to N do
Differentiate J = 1

T ∑T
t=1 Ep(t) with respect to each set of parameters

Update W(l)
e , b(l)

e , W(l)
d , b(l)

d using gradient descent learning
end for

The activation function at the final layer is a sigmoid function, and its output bounded in [0, 1] is
used as a mask for vocal sound. The size of the final output of the decoder, D(0), is T × F, and it is
element-wisely multiplied to the magnitude spectrum of the mixed sound to obtain the magnitude
spectra of the vocal and the instrument sounds as follows:

ỹ1,t( f ) = D(0)(t, f )xt( f ) ,

ỹ2,t( f ) = xt( f )− ỹ1,t( f ) =
(

1−D(0)(t, f )
)

xt( f ) . (12)

3.3. Proposed Curriculum Learning for Singing Voice Separation

Stochastic models can learn more effectively by dividing the training phase and increasing the
degree of difficulty in sequence according to the phase, as known as curriculum learning [11]. Examples
of applying curriculum learning to audio data include speech emotion recognition [27], and speech
separation [28]. However, the proposed method differs in that the difficulty is determined using the
source dominance of each time-frequency bin.

In order to apply curriculum learning to singing voice separation, the difficulty level of each data
sample is defined. Our main assumption is that if one source signal is dominant to the other, it is more
effective in describing the corresponding source. The dominance of source 1 is defined by the ratio of
source 1 to the sum of source 1 and 2, in terms of their powerspectral energies as follows:

γ1(t, f ) =
|y1,t( f )|2

|y1,t( f )|2 + |y2,t( f )|2
, (13)

and likewise, the dominance of source 2 is computed as

γ2(t, f ) =
|y2,t( f )|2

|y1,t( f )|2 + |y2,t( f )|2
. (14)

The relationship between the dominance factors of source 1 and source 2 is that γ2 = 1− γ1. The
multiplication of the two dominance factors, γ1γ2 = γ1(1− γ2), is considered to model the reciprocal
effect of the dominances of the two exclusive sources. Figure 4 shows the value of γ1γ2 according to
the change of γ1, the dominance of a single source. Same behavior is observed for γ2 as well. It shows
that if only a single source is active, γ1 = 1 or γ2 = 1, γ1γ2 becomes zero, which is the minimum,
because the other dominance factor is zero. In that case, no separation processes are required, so we
can regard this obviously the easiest case. If both sources are active by the same degree, γ1 = γ2 = 0.5,
γ1γ2 is maximum (0.25), and it is the most difficult case. To selectively give weights according to the
difficulty of the separation, we propose the following weight function:

w(t, f ) = 1 + αγ1(t, f )γ2(t, f ) , α ∈ {−1, 0, 1} , (15)
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where α is a mode selection parameter that may vary according to the curriculum. As shown in
Figure 4, γ1γ2 is limited to [0, 0.25], so w(t, f ) is limited to [1, 1 + 0.25α].

0 0.2 0.4 0.6 0.8 1
 Value of 1

0

0.1

0.2

0.25

0.3

 
1

2
 =

 
1
(1

-
1
)

Behavior of 1 2

Figure 4. γ1γ2 value with respect to γ1. This value is close to zero when one source is dominant,
and has a maximum value of 0.25 when two sources are evenly mixed.

Figure 5 shows w(t, f ) with different α values assigned. If α = 1, w(t, f ) grows as γ1 increases,
and has the maximum at γ1 = 0.5, which is the most difficult case. For α = −1, the graph is upside
down, so the easiest cases (γ = 0 and 1) will have the maximum weights. We apply the weight in
Equation (15) to the loss function in Equation (4) to obtain a new weighted loss function:

Jw =
1

TF

T

∑
t=1

F

∑
f=1

w(t, f )
[
(y1,t( f )− ỹ1,t( f ))2 + (y2,t( f )− ỹ2,t( f ))2

]
. (16)

0 0.2 0.4 0.6 0.8 1
 Value of 1

0.7

0.8

0.9

1

1.1

1.2

1.3

1+
1

2

1+
1 2

 ( =1)

1 ( =0)
1-

1 2
 ( =-1)

Figure 5. Loss weight w(t, f ) with respect to γ1 when α = 1 (solid line) and α = −1 (dashed). In the
case of α = 1, time-frequency bins which two sources are mixed equally has large weights. In the case
of α = −1, ones which one source is dominant has large weights.
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Algorithm 3 Curriculum Learning

N := number of training steps
Θ := model parameters

for t, f ← 1 to T, F do
calculate γ1(t, f ) and γ2(t, f )

end for

for α = [−1, 0, 1] do
for t, f ← 1 to T, F do

w(t, f )← 1− γ1(t, f )1γ2(t, f )
end for

for n← 1 to N/3 do
Differentiate Jw = 1

TF ∑T
t=1 ∑F

f=1 w(t, f )ep(t, f ) with respect to Θ

where ep(t, f ) = (y1,t( f )− ỹ1,t( f ))2 + (y2,t( f )− ỹ2,t( f ))2 in Equation (4)
Update Θ using gradient descent learning

end for
end for

In Equation (15), we can use α to choose where to focus during learning. The value of α is set
differently according to the learning stages to obtain the proposed curriculum learning algorithm.
Here, we can choose α ∈ {−1, 0, 1}. Figure 5 shows that when α is −1, it focuses on the parts that are
easily separable, and when α is 1, it focuses on the parts that are hardly separable. In the first stage
of training, α is set to −1 so that the model should focus on the easily separable parts. The model is
expected to quickly learn the overall characteristics of each source early in the training. In the next
stage, α is set to 0 and the model then learns the whole data evenly. In the last stage, the α is set to 1
and the model focuses on time-frequency regions that are difficult to separate. Thus, the model can be
learned more sophisticatedly with difficult samples in the later stages of the training phase to improve
the final performance of the model. Algorithm 3 summarizes the detailed procedure of the proposed
curriculum learning method.

4. Evaluation

We performed singing voice separation experiments and compared the result of the proposed
approach with that of baseline approaches. We adopted a stacked RNN [4–6] and a U-Net [7,29]
as baseline models. Separation experiments were carried out on the simulated vocal-instrument
recordings generated by mixing the sound sources from MIR-1K [30], ccMixter [31], and MUSDB18 [32]
datasets.

4.1. Separation Model Configuration

The audio file format is mono and 16 kHz PCM (pulse code modulation). To obtain spectrogram
features from audio signals, we applied STFT to each analysis frame of 64 milliseconds (1024 samples),
while making a 25% overlap with a shift size of 16 milliseconds. After STFT, only the first half of
the STFT frequency bins are used because the second half is the complex conjugate of the first one.
The number of frequency bins of the STFT spectrogram in Equation (2) is the half of the frame size,
F = 1024/2 = 512. The extracted spectrogram features are component-wisely rescaled so that all the
elements belong to [0, 1].

The first baseline model is implemented by a stacked RNN similar to that in References [4–6].
The number of layers and the number of hidden nodes in each layer are set to 3 and 1024, respectively.
ReLU activation functions are used for all layers including the output, because spectral magnitudes
are nonnegative. Hence, no further post-processing is required. The second baseline is an U-Net
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implemented by the description given in References [7,29]. Its detailed architecture is given in Table 1.
The encoder consists of six convolution layers with a kernel size of 5 and a stride of 2. Each layer uses
batch normalization [33] and leakyReLU [34] with 0.2 sloop. The encoder consists of six transposed
convolution layers with a kernel size of 5 and a stride of 2. As shown in Table 1, the number of channels
of the encoder in each layer doubles in the next layer, except layer 0. At the decoder, the number of
channels decreases by half in the next layer to reconstruct the spectrogram as the original size.

Each layer uses a batch normalization and a plain ReLU activation function [34]. The first three
layers of the decoder use dropout [35] with the drop probability of 0.5. All models are trained by Adam
optimizer [36] with its initial learning rate of 10−4 and a batch size of 128. The number of training steps
of each model is 10,000. Baseline models use the mean squared error (MSE) loss given in Equation (4),
and the proposed method uses the weighted loss function in Equation (16) with the weights computed
by Equation (15). All the experiments are performed on an Intel i5 4-core desktop computer with 64
gigabytes main memory, equipped with NVIDIA GTX 1080 GPU with 8 gigabytes memory. The batch
size (128) was determined considering that the GPU memory should hold all the weights of a single
batch to compute the gradients of the weights at the same time.

4.2. Memory and Computational Complexity Analysis

The proposed curriculum learning requires additional computation and memory space.
The parameters to be computed are

• Dominance factors: γ1(t, f ) and γ2(t, f ) in Equations (13) and (14).
• Loss function weights: w(t, f ) in Equation (15).
• Loss function adjustment: Jw in Equation (16).

To calculate γ1 in Equation (13), it requires three square operations, an addition, and a division.
γ2 = 1− γ1 requires an additional subtraction. If the unit time for basic floating-point operations is
identical, the additional number of calculations is 6 for each time-frequency bin, thus making the total
amount of operations for T frames and F frequency bins to be 6TF. Weight calculation requires two
multiplications and an addition, and loss function weighting requires a multiplication, so it totally
costs 4 unit times for each time and frequency bin. The total amount of loss function update is 4TF.
In total, the proposed curriculum learning approach requires 10TF of unit computation time for each
iteration in training of the networks. These additive computation only updates the final loss function,
so it does not depend on the network architecture. The stacked RNN has three hidden layers of
1024 output units, and they should be computed for each sample, xt. The number of weights in the
stacked RNN is roughly defined by input dimension ×10242× output dimension ×2, so the additional
computation is negligible in training. As shown in Table 1, the U-Net also requires large number of
weights but additional computation (10 units per input) slightly affects the computation time.

In terms of memory resources, the proposed learning method requires memory spaces to store
variables γ1 and w in Equations (13) and (15). Total number is 2TF, and each variable is stored as 4-byte
float data. The number of frames refers to the batch size in batch gradient learning, so T = 128 in our
experiments. F is the number of frequency bins of the spectrogram, which is a half of the STFT analysis
size, so F = 1024/2 = 512. Therefore, the required memory space for a single batch is 2TF× 4 bytes =
2× 128× 512× 4 = 512 kilobytes. We used NVIDIA GTX 1080 GPU with 8 gigabytes memory, so the
additional memory space can be disregarded in training models. Because the network architecture is
the same, there is no difference in computation and the number of model parameters, and a testing
procedure of the proposed model is same as that of the baseline model. Although the training time
varies with the model configuration, 10,000 training steps were usually conducted within an hour.

4.3. Experimental Results of MIR-1K Dataset

Singing voice separation experiments with simulated mixtures were performed on the MIR-1K
dataset [30] to verify the effectiveness of the proposed methods. This dataset consists of 1000 clips
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extracted from 110 karaoke recordings sung by 19 Chinese amateur singers. The sound files in this
dataset contain instrument and vocal sounds in the left and right channels, respectively. All the stereo
sound files are converted to mono and 16 kHz PCM format. We used clips of one male (‘Abjones’) and
one female (‘Amy’) singer for training set, and clips of the remaining 17 singers were assigned to the
test set. Input mixture signals are generated by simple additions, y[n] = y1[n] + y2[n], for each pair
of song clips. Figure 6 represents the distribution of γ1γ2 on training set of MIR-1K dataset. γ1 is
distributed highly around 0 and 1, which are from the regions where only a single source is present.

Figure 6. Distribution of γ1γ2 on training set of MIR-1K dataset. γ1γ2 is distributed between [0, 0.25].

The performance was evaluated by global normalized source to distortion ratio (GNSDR), global
source to interference ratio (GSIR), and global source to artifact ratio (GSAR) values, which are the
weighted mean of the NSDRs, SIRs, SARs, respectively, using each frame length as the weight of the
corresponding frame [4,26]. Normalized SDR (NSDR) is defined by an increase in SDR after separation.
GSIR measures how much uninterested interference is present, GSAR measures how much irrelevant
artifact sound exists in the separated results, and GNSDR considers both. The detailed definition of
SIR, SDR, and SAR metrics can be found in BSS-EVAL 3.0 [26].

Table 2 shows the results of the experiments performed on the MIR-1K dataset. Subscript m in
GSIRm, GSARm, and GNSDRm means that the target source is musical instrument sound, so they
measure the performances of instrument sound extraction from the input mixture. In the same
way, GSIRv, GSARv, and GNSDRv measure the performances of vocal sound extraction from the
mixture. For RNN, the three measures of instrument sound extraction, GSIRm, GSARm, and GNSDRm,
were all improved by the proposed curriculum learning. The interfering vocal sound was removed
quite well as shown by the GSIRm increment, from 11.72 dB to 12.30 dB. In the case of vocal sound
extraction, GSARv was increased by 0.46 dB, but GSIRv was decreased by 0.44 dB. It means that the
proposed method left more music but less unwanted artifact in the separated vocal sound. The overall
performance by GNSDRv showed 0.27 dB increment with the proposed. For U-Net, the improvements
were similar but mostly vocal extraction was better than music extraction. This might be caused by the
property of U-Net using localized convolution windows that provide positive effects to vocal sounds
in which gain and frequency characteristics change more often over time than instrument sounds.
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Table 2. Comparison of separation performance for MIR-1K dataset by global normalized source
to distortion ratio (GNSDR), global source to artifact ratio (GSAR) and global source to interference
ratio (GSIR). “Instrument” columns with subscript “m” are the evaluation results of instrument sound
extraction, and “Vocal” columns with subscript “v” are those of vocal sound extraction. The baseline
models are stacked RNN (“RNN” row) and U-Net (“U-Net” row). The rows with “proposed” header
are the models trained by the proposed curriculum learning method.

Instrument Vocal

Model GSIRm GSARm GNSDRm GSIRv GSARv GNSDRv

RNN baseline 11.72 7.02 5.23 12.19 6.79 5.03
proposed ↑ 12.30 7.08 5.43 (↓)11.75 7.25 5.30

U-Net baseline 10.67 8.31 5.91 12.72 7.38 5.84
proposed 11.10 (↓)8.25 6.03 (↓)12.41 7.68 5.99

4.4. Experimental Results of ccMixter Dataset

The ccMixter dataset [31] consists of 50 songs of various genres, the total length of which is
approximately 3 hours. This dataset provides a set of songs consisting of a vocal sound, an instrument
sound, and their mixture. Each song is sampled at 41 kHz, so it is downsampled to 16 kHz for the
separation experiments. Setups for the spectrogram extraction is the same as that of MIR-1K dataset.
We used 10 songs with singer names beginning with A to J for test, and the remaining 40 songs for
training the models.

Table 3 shows the results of the experiments performed on the ccMixter dataset [31]. In the music
results, the proposed learning improved GNSDRm by 0.27 dB with the RNN, and 0.14 dB with the
U-Net. Interestingly, GSIRm was degraded with the RNN, while it was improved with the U-Net.
In the case of GSARm, opposite results were observed. One of the reasonable explanations is that,
because U-Net focuses more on better reconstruction of the original input, removing interfering sound
should be preferred rather than eliminating unwanted artifacts. In the vocal extraction results, most
of the values were improved except slight degradation in GSIRv. The final GNSDRv increments are
0.74 dB with the RNN and 0.41 dB with the U-Net, which is much larger than the GNSDRm values.
We used only two singers in the training set of MIR-1K, but there are up to 40 different singers in the
training set of ccMixter. So more significant improvements were obtained with vocal extraction results.
However, music extraction results were generally worse with ccMixter than with MIR-1K, because of
the size of the dataset (50 songs and 110 songs).

Table 3. Separation performance comparison for ccMixter dataset. Notations are same as in Table 2.

Instrument Vocal

Model GSIRm GSARm GNSDRm GSIRv GSARv GNSDRv

RNN baseline 10.75 10.38 3.26 11.09 3.18 5.60
proposed (↓)10.41 ↑ 11.30 3.53 ⇑ 12.35 ↑ 3.73 ↑ 6.34

U-Net baseline 9.00 12.98 3.36 14.55 3.38 6.27
proposed 9.25 (↓)12.71 3.50 (↓)14.50 3.85 6.68

4.5. Experimental Results of MUSDB18 Dataset

MUSDB18 [32] is a much larger dataset than MIR-1K and ccMixter. The training set consists of
totally 100 songs, approximately 10 hours long, and the test set consists of 50 songs. This dataset
is a multitrack format consisting of five streams that are divided into mixtures, drums, bass, rest of
the accompaniment and vocals. The multitrack mixture is used as inputs, and only vocal sounds are
extracted from the mixture. The sum of all the other instrument sounds is considered as instrument
sounds in the experiments.



Appl. Sci. 2020, 10, 2465 13 of 15

Table 4 shows the results of the experiments performed on the MUSDB18 dataset [32]. The most
significant increment was observed in GSIRm in RNN, 1.69 dB, but there were decrement in GSARm

and GSIRv of U-Net. The overall performance measured by GNSDR values were all increased.
The smallest and the highest results were 0.38 dB and 1.06 dB. These results show that the proposed
method is also effective for large datasets as well.

Table 4. Separation performance comparison for MUSDB18 dataset. Notations are same as in Table 2.

Instrument Vocal

Model GSIRm GSARm GNSDRm GSIRv GSARv GNSDRv

RNN baseline 15.41 11.48 3.15 10.34 3.91 8.55
proposed ⇑ 17.10 ↑ 12.26 ⇑ 4.21 10.56 4.27 8.98

U-Net baseline 13.42 15.06 4.10 10.97 3.96 8.84
proposed ↑ 14.03 (↓)14.97 4.48 (↓)10.61 ↑ 4.73 ↑ 9.48

5. Discussion

In this paper, we propose a method of applying curriculum learning to singing voice separation
by adjusting the weight of the loss function. In order to apply curriculum learning, it is necessary to
set the difficulty level of each data. We hypothesized that the model is easy to learn characteristics
when one source component is dominant. The dominance of each source can be defined by the ratio
of one source to the other, which can be obtained from the training data. Using this definition of
source dominance, we can apply curriculum learning to singing voice separation by learning more
of the different difficulty levels for each train stage. We conducted three experiments to verify the
effectiveness of this method. GNSDR was significantly improved by at least 0.12 dB and up to 1.64 dB
for two models and three data sets. These experimental results show that the proposed curriculum
learning is effective in hard problems such as singing voice separation.
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