Predicting Students’ Behavioral Intention to Use Open Source Software: A Combined View of the Technology Acceptance Model and Self-Determination Theory
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Technological Acceptance Model
2.2. Self-Determination Theory (SDT)
2.2.1. Autonomy
2.2.2. Relatedness
2.2.3. Competence
3. Methods
3.1. Participants and Procedure
3.2. Measures
3.3. Data Analysis
4. Results
4.1. Convergent Validity
4.2. Discriminant Validity
4.3. Model Fit
4.4. Results of the Structural Equation Model
5. Discussion
6. Conclusions
6.1. Implications
6.2. Limitations
Author Contributions
Funding
Conflicts of Interest
Appendix A
Items | Source | |
---|---|---|
AUTO1 | I fell a sense of choice and freedom using OSS | [48,90] |
AUTO2 | OSS education provides me interesting options and choices | |
AUTO3 | I have more control while using OSS | |
AUTO4 | OSS gives me more chances to control my tasks | |
COMP1 | I am better in OSS than other users | [48,90,91] |
COMP2 | I have stronger capability than other users thanks OSS | |
COMP3 | I am superior to others through using OSS | |
COMP4 | After receiving an OSS training, I felt competent | |
COMP5 | I have been able to learn an interesting new skill through OSS | |
REL1 | I really like the OSS users | [90,91] |
REL2 | OSS gives me more chances to interact with others | |
REL3 | I feel close to others while using OSS | |
REL4 | I have more opportunity to be close to other though OSS | |
PEU1 | My interaction with OSS solutions is clear and under stable | [41,48] |
PEU2 | It is easy for me to become skillful at using OSS | |
PEU3 | I find OSS easy to use | |
PU1 | Using OSS enhances my effectiveness | [41,48] |
PU2 | OSS is useful for my life/job | |
PU3 | Using OSS increases my productivity | |
BI1 | I indent to use OSS in the future | [41,48] |
BI2 | I plan to use OSS in the future | |
BI3 | I predict I would use OSS in the future |
References
- Hatlevik, O.E.; Throndsen, I.; Loi, M.; Gudmundsdottir, G.B. Students’ ICT self-efficacy and computer and information literacy: Determinants and relationships. Comput. Educ. 2018, 118, 107–119. [Google Scholar] [CrossRef]
- Comi, S.L.; Argentin, G.; Gui, M.; Origo, F.; Pagani, L. Is it the way they use it? Teachers, ICT and student achievement. Econ. Educ. Rev. 2017, 56, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Gil-Flores, J.; Rodríguez-Santero, J.; Torres-Gordillo, J.-J. Factors that explain the use of ICT in secondary-education classrooms: The role of teacher characteristics and school infrastructure. Comput. Hum. Behav. 2017, 68, 441–449. [Google Scholar] [CrossRef]
- Balogh, Z.; Kuchárik, M. Predicting Student Grades Based on Their Usage of LMS Moodle Using Petri Nets. Appl. Sci. 2019, 9, 4211. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, G.M.; Collazos, C.A.; Moreira, F. All-Learning: The state of the art of the models and the methodologies educational with ICT. Telemat. Inform. 2018, 35, 944–953. [Google Scholar] [CrossRef] [Green Version]
- Tondeur, J.; Aesaert, K.; Prestridge, S.; Consuegra, E. A multilevel analysis of what matters in the training of pre-service teacher’s ICT competencies. Comput. Educ. 2018, 122, 32–42. [Google Scholar] [CrossRef]
- Vega-Hernández, M.-C.; Patino-Alonso, M.-C.; Galindo-Villardón, M.-P. Multivariate characterization of university students using the ICT for learning. Comput. Educ. 2018, 121, 124–130. [Google Scholar] [CrossRef]
- Picatoste, J.; Pérez-Ortiz, L.; Ruesga-Benito, S.M. A new educational pattern in response to new technologies and sustainable development. Enlightening ICT skills for youth employability in the European Union. Telemat. Inform. 2018, 35, 1031–1038. [Google Scholar] [CrossRef]
- Kang, D.; Park, M.J. Competitive prospects of graduate program on the integration of ICT superiority, higher education, and international aid. Telemat. Inform. 2017, 34, 1625–1637. [Google Scholar] [CrossRef]
- Perbawaningsih, Y. Plus Minus of ICT Usage in Higher Education Students. Procedia-Soc. Behav. Sci. 2013, 103, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Ebardo, R.A. Visibility and Training in Open Source Software Adoption: A Case in Philippine Higher Education. In Proceedings of the 8th International Workshop on Computer Science and Engineering, Bangkok, Thailand, 28–30 June 2018. [Google Scholar]
- Lakka, S.; Stamati, T.; Michalakelis, C.; Anagnostopoulos, D. Cross-national analysis of the relation of eGovernment maturity and OSS growth. Technol. Forecast. Soc. 2015, 99, 132–147. [Google Scholar] [CrossRef]
- Lakka, S.; Michalakelis, C.; Varoutas, D.; Martakos, D. Exploring the determinants of the OSS market potential: The case of the Apache web server. Telecommun. Policy 2012, 36, 51–68. [Google Scholar] [CrossRef]
- van Rooij, S.W. Adopting open-source software applications in U.S. higher education: A cross-disciplinary review of the literature. Rev. Educ. Res. 2009, 79, 682–701. [Google Scholar] [CrossRef]
- Gallego, M.D.; Bueno, S.; Racero, F.J.; Noyes, J. Open source software: The effects of training on acceptance. Comput. Hum. Behav. 2015, 49, 390–399. [Google Scholar] [CrossRef]
- Cheruy, C.; Robert, F.; Belbaly, N. OSS popularity: Understanding the relationship between user-developer interaction, market potential and development stage. Syst. Inf. Manag. 2017, 2, 47–74. [Google Scholar] [CrossRef] [Green Version]
- Behfar, S.K.; Turkina, E.; Burger-Helmchen, T. Knowledge management in OSS communities: Relationship between dense and sparse network structures. Int. J. Inf. Manag. 2018, 38, 167–174. [Google Scholar] [CrossRef]
- Sutanto, J.; Kankanhalli, A.; Tan, B.C.Y. Uncovering the relationship between OSS user support networks and OSS popularity. Decis. Support Syst. 2014, 64, 142–151. [Google Scholar] [CrossRef]
- Joia, L.A.; Vinhais, J.C.S. From closed source to open source software: Analysis of the migration process to Open Office. J. High Technol. Manag. Res. 2017, 28, 261–272. [Google Scholar] [CrossRef]
- Spinellis, D.; Giannikas, V. Organizational adoption of open source software. J. Syst. Softw. 2012, 85, 666–682. [Google Scholar] [CrossRef] [Green Version]
- Gamalielsson, J.; Lundell, B. Sustainability of Open Source software communities beyond a fork: How and why has the LibreOffice project evolved? J. Syst. Softw. 2014, 89, 128–145. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Huang, M.; Liu, M. How founders’ social capital affects the success of open-source projects: A resource-based view of project teams. Electron. Commer. Res. Appl. 2018, 30, 51–61. [Google Scholar] [CrossRef]
- Kuwata, Y.; Miura, H. A Study on Growth Model of OSS Projects to estimate the stage of lifecycle. Procedia Comput. Sci. 2015, 60, 1004–1013. [Google Scholar] [CrossRef] [Green Version]
- Bahamdain, S.S. Open Source Software (OSS) Quality Assurance: A Survey Paper. Procedia Comput. Sci. 2015, 56, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Kemp, R. Open source software (OSS) governance in the organization. Comput. Law Secur. Rev. 2010, 26, 309–316. [Google Scholar] [CrossRef]
- van Rooij, S.W. Higher education sub-cultures and open source adoption. Comput. Educ. 2011, 57, 1171–1183. [Google Scholar] [CrossRef]
- Palvia, P.; Baqir, N.; Nemati, H. ICT for socio-economic development: A citizens’ perspective. Inf. Manag. 2018, 55, 160–176. [Google Scholar] [CrossRef]
- Luhan, J.; Novotná, V. ICT Use in EU According to National Models of Behavior. Procedia-Soc. Behav. Sci. 2015, 213, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Areepattamannil, S.; Khine, M.S. Early adolescents’ use of information and communication technologies (ICTs) for social communication in 20 countries: Examining the roles of ICT-related behavioral and motivational characteristics. Comput. Hum. Behav. 2017, 73, 263–272. [Google Scholar] [CrossRef]
- Malaquias, R.F.; Malaquias, F.F.O.; Hwang, Y. Understanding technology acceptance features in learning through a serious game. Comput. Hum. Behav. 2018, 395–402. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, Y.; Zhang, C. A TAM-based approach to explore the effect of online experience on destination image: A smartphone user’s perspective. J. Destin. Mark. Manag. 2018, 8, 259–270. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley Reading: Boston, MA, USA, 1975. [Google Scholar]
- Chen, C.F.; Chen, P.-C. Applying the TAM to travelers’ usage intentions of GPS devices. Expert Syst. Appl. 2011, 38, 6217–6221. [Google Scholar] [CrossRef]
- Okafor, D.J.; Nico, M.; Azman, B.B. The influence of perceived ease of use and perceived usefulness on the intention to use a suggested online advertising workflow. Can. Int. J. Sci. Technol. 2016, 6, 162–174. [Google Scholar]
- Hsiao, C.H.; Yang, C. The intellectual development of the technology acceptance model: A co-citation analysis. Int. J. Inf. Manag. 2011, 31, 128–136. [Google Scholar] [CrossRef]
- Turner, M.; Kitchenham, B.; Brereton, P.; Charters, S.; Budgen, D. Does the technology acceptance model predict actual use? A systematic literature review. Inf. Softw. Technol. 2010, 52, 463–479. [Google Scholar] [CrossRef]
- Lemay, D.J.; Morin, M.M.; Bazelais, P.; Doleck, T. Modeling Students’ Perceptions of Simulation-Based Learning Using the Technology Acceptance Model. Clin. Simul. Nurs. 2018, 20, 28–37. [Google Scholar] [CrossRef]
- Sánchez-Prieto, J.C.; Olmos-Migueláñez, S.; García-Peñalvo, F.J. Informal tools in formal contexts: Development of a model to assess the acceptance of mobile technologies among teachers. Comput. Hum. Behav. 2016, 55, 519–528. [Google Scholar] [CrossRef]
- Sánchez, R.A.; Hueros, A.D. Motivational factors that influence the acceptance of Moodle using TAM. Comput. Hum. Behav. 2010, 26, 1632–1640. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Legris, P.; Ingham, J.; Collerette, P. Why do people use information technology? A critical review of the technology acceptance model. Inf. Manag. 2003, 40, 191–204. [Google Scholar] [CrossRef]
- Yoon, C. Extending the TAM for Green IT: A normative perspective. Comput. Hum. Behav. 2018, 83, 129–139. [Google Scholar] [CrossRef]
- Taherdoost, H. A review of technology acceptance and adoption models and theories. Procedia Manuf. 2018, 22, 960–967. [Google Scholar] [CrossRef]
- Arvanitis, A. Autonomy and morality: A Self-Determination Theory discussion of ethics. New Ideas Psychol. 2017, 47, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.U.; Hameed, Z.; Yu, Y.; Islam, T.; Sheikh, Z.; Khan, S.U. Predicting the acceptance of MOOCs in a developing country: Application of task-technology fit model, social motivation, and self-determination theory. Telemat. Inform. 2018, 35, 964–978. [Google Scholar] [CrossRef]
- Joo, Y.J.; So, H.-J.; Kim, H.H. Examination of relationships among students’ self-determination, technology acceptance, satisfaction, and continuance intention to use K-MOOCs. Comput. Educ. 2018, 122, 260–272. [Google Scholar] [CrossRef]
- Nikou, S.A.; Economides, A.A. Mobile-Based Assessment: Integrating acceptance and motivational factors into a combined model of Self-Determination Theory and Technology Acceptance. Comput. Hum. Behav. 2017, 68, 83–95. [Google Scholar] [CrossRef]
- Leung, L.S.K.; Matanda, M.J. The impact of basic human needs on the use of retailing self-service technologies: A study of self-determination theory. J. Retail. Consum. Serv. 2013, 20, 549–559. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Bala, H. Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef] [Green Version]
- Al-Gahtani, S.S. Empirical investigation of e-learning acceptance and assimilation: A structural equation model. Appl. Comput. Inform. 2016, 12, 27–50. [Google Scholar] [CrossRef] [Green Version]
- Faqih, K.M.S.; Jaradat, M.-I.R.M. Assessing the moderating effect of gender differences and individualism-collectivism at individual-level on the adoption of mobile commerce technology: TAM3 perspective. J. Retail. Consum. Serv. 2014, 22, 37–52. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. Intrinsic Motivation and Self-Determination in Human Behavior; Planum: New York, NY, USA, 1985. [Google Scholar]
- Ryan, R.M.; Deci, E. Self-Determination Theory. Basic Psychological Needs in Motivation, Development, and Wellness; Guilford Press: New York, NY, USA, 2017. [Google Scholar]
- Ryan, R.M.; Deci, E.L. Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemp. Educ. Psychol. 2000, 25, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Tagkaloglou, S.; Kasser, T. Increasing collaborative, pro-environmental activism: The roles of Motivational Interviewing, self-determined motivation, and self-efficacy. J. Environ. Psychol. 2018, 58, 86–92. [Google Scholar] [CrossRef]
- France, C.R.; France, J.L.; Carlson, B.W.; Frye, V.; Shaz, B.H. Applying self-determination theory to the blood donation context: The blood donor competence, autonomy, and relatedness enhancement (Blood Donor CARE) trial. Contemp. Clin. Trials 2017, 53, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enko, J. Creative writers’ experience of self-determination: An examination within the grounded theory framework. Think. Skills Creat. 2014, 14, 1–10. [Google Scholar] [CrossRef]
- Lohmann, J.; Muula, A.S.; Houlfort, N.; De Allegri, M. How does performance-based financing affect health workers’ intrinsic motivation? A Self-Determination Theory-based mixed-methods study in Malawi. Soc. Sci. Med. 2018, 208, 1–8. [Google Scholar] [CrossRef]
- Friederichs, S.A.H.; Bolman, C.; Oenema, A.; Verboon, P.; Lechner, L. Exploring the working mechanisms of a web-based physical activity intervention, based on self-determination theory and motivational interviewing. Internet Interv. 2016, 3, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Liang, J.-C.; Li, M.; Tsai, C.-C. The relationship between English language learners’ motivation and online self-regulation: A structural equation modelling approach. System 2018, 76, 144–157. [Google Scholar] [CrossRef]
- Sergis, S.; Sampson, D.G.; Pelliccione, L. Investigating the impact of Flipped Classroom on students’ learning experiences: A Self-Determination Theory approach. Comput. Hum. Behav. 2018, 78, 368–378. [Google Scholar] [CrossRef]
- Streb, J.; Keis, O.; Lau, M.; Hille, K.; Spitzer, M.; Sosic-Vasic, Z. Emotional engagement in kindergarten and school children: A self-determination theory perspective. Trends Neurosci. Educ. 2015, 4, 102–107. [Google Scholar] [CrossRef]
- Cho, H.-T.; Yang, J.-S. How perceptions of organizational politics influence self-determined motivation: The mediating role of work mood. Asia Pac. Manag. Rev. 2018, 23, 60–69. [Google Scholar] [CrossRef]
- Lin, X.S.; Chen, Z.X.; Ashford, S.J.; Lee, C.; Qian, J. A self-consistency motivation analysis of employee reactions to job insecurity: The roles of organization-based self-esteem and proactive personality. J. Bus. Res. 2018, 92, 168–178. [Google Scholar] [CrossRef]
- Sheldon, K.M.; Turban, D.B.; Brown, K.G.; Barrick, M.R.; Judge, T.A. Applying Self-Determination Theory to Organizational Research. In Research in Personnel and Human Resources Management (Research in Personnel and Human Resources Management, 22); Emerald Group Publishing Limited: Bingley, UK, 2003; pp. 357–393. [Google Scholar]
- Jowett, S.; Adie, J.W.; Bartholomew, K.J.; Yang, S.X.; Gustafsson, H.; Lopez-Jiménez, A. Motivational processes in the coach-athlete relationship: A multi-cultural self-determination approach. Psychol. Sport Exerc. 2017, 32, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Gagné, M.; Vansteenkiste, M. Self-Determination Theory’s Contribution to Positive Organizational Psychology. In Advances in Positive Organizational Psychology (Advances in Positive Organizational Psychology, 1); Bakker, A.B., Ed.; Emerald Group Publishing Limited: Bingley, UK, 2013; pp. 61–82. [Google Scholar]
- Vallerand, R.J.; Fortier, M.; Guay, F. Self-determination and persistence in a real-life setting: Toward a motivational model of high school dropout. J. Personal. Soc. Psychol. 1997, 72, 1161–1177. [Google Scholar] [CrossRef]
- Howard, J.; Gagné, M.; Morin, A.J.S.; Van den Broeck, A. Motivation profiles at work: A self-determination theory approach. J. Vocat. Behav. 2016, 95–96, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Moran, C.M.; Diefendorff, J.M.; Kim, T.-Y.; Liu, Z.-Q. A profile approach to self-determination theory motivations at work. J. Vocat. Behav. 2012, 81, 354–363. [Google Scholar] [CrossRef]
- Kuvaas, B. A test of hypotheses derived from self-determination theory among public sector employees. Empl. Relat. 2008, 31, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Kelley, J.B.; Alden, D.L. Online brand community: Through the eyes of Self Determination Theory. Internet Res. 2016, 26, 790–808. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-Regulation and the Problem of Human Autonomy: Does Psychology Need Choice, Self-Determination, and Will? J. Personal. 2006, 74, 1557–1585. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef]
- Russo, S.; Stattin, H. Self-determination theory and the role of political interest in adolescents’ sociopolitical development. J. Appl. Dev. Psychol. 2017, 50, 71–78. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. Facilitating optimal motivation and psychological well-being across life’s domains. Can. Psychol. 2008, 49, 14–23. [Google Scholar] [CrossRef] [Green Version]
- van Gelderen, M. Autonomy as the guiding aim of entrepreneurship education. Educ. Train. 2010, 52, 710–721. [Google Scholar] [CrossRef]
- Adams, C.; Khojasteh, J. Igniting students’ inner determination: The role of a need supportive climate. J. Educ. Adm. 2018, 56, 382–397. [Google Scholar] [CrossRef] [Green Version]
- Engström, J.; Elg, M. A self-determination theory perspective on customer participation in service development. J. Serv. Mark. 2015, 29, 511–521. [Google Scholar] [CrossRef]
- Cooke, A.; Fielding, K. Fun environmentalism!: Potential contributions of autonomy supportive psychology to sustainable lifestyles. Manag. Environ. Qual. Int. J. 2010, 21, 155–164. [Google Scholar] [CrossRef]
- Eyal, O.; Roth, G. Principals’ leadership and teachers’ motivation: Self-determination theory analysis. J. Educ. Adm. 2011, 49, 256–275. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, A.; Khosravi, P.; Dong, L. Motivating users toward continued usage of information systems: Self-determination theory perspective. Comput. Hum. Behav. 2017, 76, 263–275. [Google Scholar] [CrossRef]
- Roca, J.C.; Gagne, M. Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Comput. Hum. Behav. 2008, 24, 1585–1604. [Google Scholar] [CrossRef]
- Aesaert, K.; van Braak, J.; van Nijlen, D.; Vanderlinde, R. Primary school pupils’ ICT competences: Extensive model and scale development. Comput. Educ. 2015, 326–344. [Google Scholar] [CrossRef]
- Jeno, L.M.; Grytnes, J.-A.; Vandvik, V. The effect of a mobile-application tool on biology students’ motivation and achievement in species identification: A Self-Determination Theory perspective. Comput. Educ. 2017, 107, 1–12. [Google Scholar] [CrossRef]
- Niemiec, C.P.; Ryan, R.M. Autonomy, competence, and relatedness in the classroom. Applying self-determination theory to educational practice. Theory Res. Educ. 2009, 7, 133–144. [Google Scholar] [CrossRef]
- Gupta, V.; Kapur, P.K.; Kumar, D. Modeling and measuring attributes influencing DevOps implementation in an enterprise using structural equation modelling. Inf. Softw. Technol. 2017, 92, 75–91. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.; Hwang, Y. Relating motivation to information and communication technology acceptance: Self-determination theory perspective. Comput. Hum. Behav. 2015, 51, 418–428. [Google Scholar] [CrossRef]
- Sørebø, Ø.; Halvari, H.; Gulli, V.F.; Kristiansen, R. The role of self-determination theory in explaining teachers’ motivation to continue to use e-learning technology. Comput. Educ. 2009, 53, 1177–1187. [Google Scholar] [CrossRef]
- Sharmeen, F.; Arentze, T.; Timmermans, H. An analysis of the dynamics of activity and travel needs in response to social network evolution and life-cycle events: A structural equation model. Transp. Res. Part A Policy Pract. 2014, 59, 159–171. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D. A Practical Guide to Factorial Validity Using Pls-Graph: Tutorial and Annotated Example. Commun. ACM 2005, 16, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Limayem, M.; Cheung, C.M.K. Understanding Information Systems Continuance: The Case of Internet-Based Learning Technologies. Inf. Manag. 2008, 45, 227–232. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Jöreskog, K.G.; Sörbom, D. Lisrel 8.80 for Windows (Computer Software); Scientific Software International, Inc.: Lincolnwood, IL, USA, 2006. [Google Scholar]
- Reisinger, Y.; Turner, L. Structural equation modeling with Lisrel: Application in tourism. Tour. Manag. 1999, 20, 71–88. [Google Scholar] [CrossRef]
- Lei, P.W. Evaluating estimation methods for ordinal data in structural equation modeling. Qual. Quant. 2009, 43, 495–507. [Google Scholar] [CrossRef]
- Skrondal, A.; Rabe-Hesketh, S. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models; Chapman & Hall/CRC: Boca Ratón, FL, USA, 2004. [Google Scholar]
- Reeve, J. Self-determination theory applied to educational settings. In Handbook of Self-Determination Research; Deci, E.L., Ryan, R.M., Eds.; University of Rochester Press: Rochester, NY, USA, 2002; pp. 183–203. [Google Scholar]
Characteristic | Statistic (%) |
---|---|
Gender | |
Male | 217 (61.64%) |
Female | 135 (38.35%) |
Age | |
Less than 20 years old | 131 (37.5%) |
Between 21 and 25 | 100 (28.40%) |
More than 25 years old | 120 (34.09%) |
OSS Frequency of use | |
All software I use | 113 (32.10%) |
Minimum Once a day | 138 (39.20%) |
Minimum Once a week | 35 (18.46%) |
Rarely | 36 (10.22%) |
Construct | Mean | Std. Dev. | Factor Loading | Lambda Stand. | Composite Reliability | AVE | Cronbach’s α | |
---|---|---|---|---|---|---|---|---|
Autonomy (AUTO) | AUTO1 | 2.97 | 1.337 | 0.907 | 0.900 | 0.95 | 0.826 | 0.949 |
AUTO2 | 2.99 | 1.368 | 0.902 | 0.901 | ||||
AUTO3 | 2.75 | 1.339 | 0.931 | 0.934 | ||||
AUTO4 | 2.77 | 1.327 | 0.891 | 0.900 | ||||
Competence (COMP) | COMP1 | 2.64 | 1.315 | 0.939 | 0.941 | 0.972 | 0.867 | 0.96 |
COMP2 | 2.69 | 1.275 | 0.929 | 0.932 | ||||
COMP3 | 2.50 | 1.274 | 0.916 | 0.917 | ||||
COMP4 | 2.73 | 1.265 | 0.917 | 0.921 | ||||
Relatedness (REL) | REL1 | 3.01 | 1.225 | 0.908 | 0.910 | 0.955 | 0.841 | 0.955 |
REL2 | 2.91 | 1.278 | 0.923 | 0.922 | ||||
REL3 | 2.83 | 1.226 | 0.936 | 0.931 | ||||
REL4 | 2.80 | 1.237 | 0.903 | 0.906 | ||||
Perceived Ease to USE (PEU) | PEU1 | 3.13 | 1.248 | 0.931 | 0.936 | 0.952 | 0.87 | 0.951 |
PEU2 | 3.11 | 1.253 | 0.958 | 0.952 | ||||
PEU3 | 3.18 | 1.258 | 0.905 | 0.909 | ||||
Perceived Usefulness (PU) | PU1 | 2.94 | 1.227 | 0.907 | 0.912 | 0.939 | 0.837 | 0.94 |
PU2 | 2.99 | 1.328 | 0.903 | 0.926 | ||||
PU3 | 2.92 | 1.296 | 0.906 | 0.907 | ||||
Behavioral Intention to USE (BI) | BI1 | 3.18 | 1.301 | 0.935 | 0.938 | 0.969 | 0.912 | 0.96 |
BI2 | 3.21 | 1.342 | 0.955 | 0.955 | ||||
BI3 | 3.24 | 1.356 | 0.974 | 0.972 |
AUTO | COMP | REL | PEU | PU | BI | |
---|---|---|---|---|---|---|
Autonomy (AUTO) | 0.970 | |||||
Competence (COMP) | 0.660 | 0.930 | ||||
Relatedness (REL) | 0.668 | 0.675 | 0.920 | |||
Perceived Ease to Use (PEU) | 0.662 | 0.588 | 0.686 | 0.980 | ||
Perceived Usefulness (PU) | 0.742 | 0.616 | 0.753 | 0.770 | 0.910 | |
Behavioral Intention to Use (BI) | 0.630 | 0.531 | 0.642 | 0.714 | 0.827 | 0.980 |
Fit Indexes | Values | Recommended Value |
---|---|---|
χ2/grade of freedom | 0.0206 | ≤3.00 |
Normed Fit Index (NFI) | 0.966 | ≥0.90 |
Non-normed Fit Index (NNFI) | 0.981 | ≥0.90 |
Comparative Fit Index (CFI) | 0.984 | ≥0.90 |
Adjusted Goodness-of-Fit Index (AGFI) | 0.894 | ≥0.80 |
Root Mean Square Error of Approximation (RMSEA) | 0.0489 | ≤0.05 |
Goodness-of-Fit Index (GFI) | 0.918 | ≥0.90 |
Incremental Fit Index (IFI) | 0.984 | ≥0.90 |
Hypothesis (Path) | Path Coefficient | t-Value 1 | Supported |
---|---|---|---|
H1: PEU→PU | 0.35 | 7.196 *** | Yes |
H2: PEU→BI | 0.197 | 3.392 *** | Yes |
H3: PU→BI | 0.742 | 11.529 *** | Yes |
H4: AUTO→PU | 0.276 | 6.007 *** | Yes |
H5: AUTO→PEU | 0.32 | 5.513 *** | Yes |
H6: REL→PU | 0.306 | 9.411 *** | Yes |
H7: REL→PEU | 0.415 | 6.481 *** | Yes |
H8: COMP→PU | 0.0853 | 1.950 | No |
H9: COMP→PEU | 0.0973 | 1.742 | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racero, F.J.; Bueno, S.; Gallego, M.D. Predicting Students’ Behavioral Intention to Use Open Source Software: A Combined View of the Technology Acceptance Model and Self-Determination Theory. Appl. Sci. 2020, 10, 2711. https://doi.org/10.3390/app10082711
Racero FJ, Bueno S, Gallego MD. Predicting Students’ Behavioral Intention to Use Open Source Software: A Combined View of the Technology Acceptance Model and Self-Determination Theory. Applied Sciences. 2020; 10(8):2711. https://doi.org/10.3390/app10082711
Chicago/Turabian StyleRacero, F. José, Salvador Bueno, and M. Dolores Gallego. 2020. "Predicting Students’ Behavioral Intention to Use Open Source Software: A Combined View of the Technology Acceptance Model and Self-Determination Theory" Applied Sciences 10, no. 8: 2711. https://doi.org/10.3390/app10082711
APA StyleRacero, F. J., Bueno, S., & Gallego, M. D. (2020). Predicting Students’ Behavioral Intention to Use Open Source Software: A Combined View of the Technology Acceptance Model and Self-Determination Theory. Applied Sciences, 10(8), 2711. https://doi.org/10.3390/app10082711