
applied
sciences

Article

Cooperative Multi-Agent Reinforcement Learning
with Conversation Knowledge for
Dialogue Management

Shuyu Lei * , Xiaojie Wang and Caixia Yuan

Center for Intelligence of Science and Technology (CIST), Beijing University of Posts and Telecommunications,
Beijing 100876, China; xjwang@bupt.edu.cn (X.W.); yuancx@bupt.edu.cn (C.Y.)
* Correspondence: leishuyu@bupt.edu.cn

Received: 25 March 2020; Accepted: 9 April 2020; Published: 15 April 2020
����������
�������

Abstract: Dialogue management plays a vital role in task-oriented dialogue systems, which has
become an active area of research in recent years. Despite the promising results brought from deep
reinforcement learning, most of the studies need to develop a manual user simulator additionally.
To address the time-consuming development of simulator policy, we propose a multi-agent dialogue
model where an end-to-end dialogue manager and a user simulator are optimized simultaneously.
Different from prior work, we optimize the two-agents from scratch and apply the reward shaping
technology based on adjacency pairs constraints in conversational analysis to speed up learning
and to avoid the derivation from normal human-human conversation. In addition, we generalize
the one-to-one learning strategy to one-to-many learning strategy, where a dialogue manager can
be concurrently optimized with various user simulators, to improve the performance of trained
dialogue manager. The experimental results show that one-to-one agents trained with adjacency
pairs constraints can converge faster and avoid derivation. In cross-model evaluation with human
users involved, the dialogue manager trained in one-to-many strategy achieves the best performance.

Keywords: dialogue management; user simulation; reward shaping; conversation knowledge;
multi-agent reinforcement learning

1. Introduction

A task-oriented dialogue system can help people accomplish specific goals, such as booking a hotel,
seeking a restaurant information. A typical text-based task-oriented dialogue system mainly comprises
three parts—Natural Language Understanding (NLU), Dialogue Management (DM), and Natural
Language Generation (NLG). DM plays a vital role which infers dialogue state from NLU and provides
appropriate action for NLG, and it has attracted much attention in recent years.

Recently, reinforcement learning has been widely studied as a data-driven approach for modeling
DM [1–9], where a state tracker maintains dialogue states and a policy model chooses a proper
action according to the current dialogue state. In most recent studies [4–9] on task-oriented dialogue
tasks, Deep Reinforcement Learning (DRL) was utilized to train the policy model in order to achieve
maximum long-term reward through interacting with a manual user simulator. To this end, most of
the studies need the additional development of a user simulator in task-oriented dialogue system.

To address the time-consuming development of simulator policy issue, we propose a Multi-Agent
Dialogue Model (MADM) where an end-to-end dialogue manager cooperates with a user simulator to
fulfill the dialogue task. Since user simulator is treated as one agent in multi-agent, the simulator policy
can be optimized in an automatic manner rather than laboring development. Different from prior
work [10], we optimize the cooperative policies concurrently via multi-agent reinforcement learning

Appl. Sci. 2020, 10, 2740; doi:10.3390/app10082740 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3160-6668
http://dx.doi.org/10.3390/app10082740
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/8/2740?type=check_update&version=2

Appl. Sci. 2020, 10, 2740 2 of 16

from scratch without supervised initializing process. For user simulator reward function, we use the
reward shaping technique [11] based on the adjacency pairs in conversational analysis [12] to make the
simulator learn real user behaviors quickly. In addition, we generalize the one-to-one learning strategy
to one-to-many learning strategy where a dialogue manager cooperates with various user simulators
to improve the performance of trained dialogue manager. We obtain these various user simulators
through changing the adjacency pairs settings, and then we mixture them with a dialogue manager to
optimize the cooperative policies via multi-agent reinforcement learning.

Compared with MADM without the constraints, MADM trained with adjacency pairs constraints
can converge faster and avoid derivation from normal human-human conversation. The experimental
results also show that the dialogue manager trained with one-to-many strategy achieves the
best performance in cross-model evaluation with human users involved. To summary, our main
contributions in this work are three-fold:

1. We propose an MADM to optimize the cooperative policies between an end-to-end dialogue
manager and a user simulator concurrently from scratch.

2. We apply reward shaping technique based on adjacency pairs to user simulator to speed learning
and to help the MADM generate normal human-human conversation.

3. We further generalize the one-to-one learning strategy to one-to-many learning strategy to
improve the performance for trained dialogue manager.

The rest of the paper is organized as follows—Section 2 gives an overview of related work.
Section 3 describes the MADM model in detail. Section 4 discusses the experimental results and
evaluations. Section 5 gives the conclusive discussions and the description of future work.

2. Related Work

Data-driven DM has become an active research area in the field of task-oriented dialogue system.
In recent years, a lot of promising studies [1,2,4,7–9] worked on the policy model in dialogue system
pipeline. Meanwhile, some studies [13–15] built the DM and NLU into an end-to-end model. In the
above studies, the dialogue policy was optimized with a user simulator as a trial-and-error manner
in reinforcement learning. However, the development of a user simulator was complex and it took
considerable time to built an appropriate user policy. Additionally, some studies [4,5,14,16] relied on
considerable supervised data. Reference [16] proposed an end-to-end model by jointly training NLU
and DM with supervised learning. References [4,5,14] applied the demonstration data to speed up
the convergence in a supervised manner. Preparing such supervised data is also laborious. Although
some studies [3,17] could optimize the policy model via on-line human interaction, these methods
required considerable human interaction. Meanwhile, the initial performance was still relatively poor,
which could impact negatively on the user experience. Different from the above studies, the dialogue
management in our framework is optimized from scratch without any laborious preparation for
supervised data and development of user policy.

As the user simulator plays a vital role in reinforcement learning for optimizing dialogue policy,
the studies on the user simulator also received a lot of attention. References [18–24] utilized the
data-driven approach to develop the user simulator. However, such statistic-based methods required a
lot of corpus. Once the training data were not sufficient, the data-driven simulator could only produce
a simplex response. Dialogue management trained with such simplex simulator might converge to a
solution with poor generalization performance. In addition, the obtained policy was uncontrollable
with statistic-based methods. Thus, an alternative approach was based on agenda rules. Reference [25]
proposed an agenda-based approach that does not necessarily need training data but can be trained in
case such data are available. This agenda-based simulator was realistic enough to successfully test
many DRL algorithms [6] and train a dialogue policy. However, the developer must maintain the
rules operating on agenda, working as simulation policy, with domain expertise. Different from above

Appl. Sci. 2020, 10, 2740 3 of 16

studies, user simulator in our framework is optimized from scratch without the need of pre-defined
rules or dialogue corpus.

To address the time-consuming development for simulator policy, recent studies [10,26,27]
proposed a one-to-one dialogue model where a dialogue manager and a user simulator were
optimized concurrently. Different from the above studies, our proposed MADM applies the reward
shaping technique [11] based on the adjacency pairs in conversational analysis [12], which can help
the cooperative policies learn from scratch quickly. By the method of reward shaping, our proposed
MADM avoids running a learning algorithm multiple times in a study [26] and collects the corpora in
studies [10,27].

Recently, multi-agent reinforcement learning has been applied in many interesting research areas.
References [28,29] proposed a cooperative ‘image guessing’ game between two agents – Q-BOT and
A-BOT– who communicate in natural language dialog so that Q-BOT can select an unseen image
from a lineup of images. References [30,31] showed it was possible to train a multi-agent model for
negotiation where agents with different goals attempt to agree on common decisions. Reference [32]
pointed out that a competitive multi-agent environment trained with self-play could produce behaviors
that were far more complex than the environment itself. Different from the above studies, we use
the multi-agent reinforcement learning to model the cooperation between dialogue manager and
user simulator.

3. Model

3.1. Notation

We consider a cooperative multi-agent reinforcement learning as a Decentralized
Partially Observable Markov Decision Processes (Dec-POMDP) [33] defined with a tuple
(α,S , {Ai}i∈α, T , {Oi}i∈α,Z , {Ri}i∈α), where α is a set of n agents, S is a set of states of the
world and the possible joint configuration of all the agents, Ai is a set of actions for agent i, the joint
action space are defined as A = A1 × ...×An, T : S ×A× S → [0, 1] is a state transition function,
Oi is a set of observations for agent i, the joint observation space are denoted as O = O1 × ...×On,
Z : S ×A×O → [0, 1] is an observation function, Si : S ×A× S → R is a reward function for agent
i. For the cooperative multi-agent reinforcement learning, each agent i has the equal reward in every
time step t. Each agent i chooses its own actions according to the policy function πi : Oi ×Ai → [0, 1].
Each agent i aims to maximize its own long-term discounted reward Ri = ∑T

t=0 γtri,t, where γ is a
discount factor and T is the time horizon.

3.2. Multi-Agent Dialogue Model (MADM)

We propose an MADM where a dialogue manager cooperates with a user simulator to fulfill
the dialogue task based on cooperative multi-agent reinforcement learning. The entire architecture is
illustrated in Figure 1. The basic MADM has two agents: a dialogue manager and a user simulator.
This basic MADM can be generalized to MADM with multiple agents—a dialogue manager and
various user simulators. The dialogue manager takes the historical dialogue sequence as input and
then produces the selected action. The user simulator takes the action from the dialogue manager
and then produces a user utterance back to dialogue manager. The dialogue manager and the user
simulator are described in detail, respectively, as follows.

Appl. Sci. 2020, 10, 2740 4 of 16

Manager policy

DNN
NLG

Goal generator
gt

gt

(w1
t+1, w

2
t+1, ..., w

I
t+1)

Observation maintainer

Simulator policy

MLP

as
t

os
t

Observation encoder

one hot

+
Utterance encoder

LSTMbwd LSTMbwd

LSTMfwd

LSTMbwd

LSTMfwdLSTMfwd

LSTMobs

(ŷ1
t , ŷ2

t , ..., ŷI
t), ẑt

(w1
t , w2

t , ..., wI
t)

dm
tem

t

am
t�1

om
t�1

om
t

am
t

om
t

Dialogue Manager User Simulator

Figure 1. The cooperative multi-agent dialogue model between dialogue manager and user simulator.

3.2.1. Dialogue Manager

Dialogue manager consists of two parts: an observation encoder and a manager policy as shown
in Figure 1. The observation encoder is employed to map historical dialogue sequence to observation
representation. As some slot dependent actions (e.g., confirm()) need to combine with slot values from
user utterances to make up an integral action, observation encoder also produces the slot values from
user utterance through slot filling and intent recognition. The manager policy is applied to map the
observation representation to a selected action for responding to user simulator. Observation encoder
and manager policy are described in detail, respectively, as follows.

Observation encoder: the historical dialogue sequence ht = [am
0 , u1, ..., am

t−1, ut] is encoded to an
observation representation om

t , meanwhile, the slot values information yt and the intent recognition
information zt are output, where am

t−1 denotes the selected action from manager in time step t− 1,
ut = [w1

t , w2
t , ..., wI

t] denotes the user utterance in time step t, wi
t denotes the i-th word (or i-th character

in Chinese) in the user utterance ut, and ŷt = [ŷ1
t , ŷ2

t , ..., ŷI
t] denotes the slot label information on

user utterance ut. To this end, a hierarchical recurrent neural network (HRNN) is applied to model
observation encoder. In the bottom layer of HRNN, a bidirectional LSTM [34] with attention pooling is
employed to obtain the sentence representation em

t for user utterance ut, which is computed as follows:

−→c i
t = LSTM f wd(

−→c i−1
t , e(wi

t)) (1)
←−c i

t = LSTMbwd(
←−c i+1

t , e(wi
t)) (2)

ei
t =

I

∑
i=1

αi[
−→c i

t ⊕
←−c i

t] (3)

αi =
exp qi

t

∑I
i=1 exp qi

t
(4)

qi
t =g([−→c i

t ⊕
←−c i

t]), (5)

where −→c i
t and ←−c i

t are the outputs of forward and backward LSTM in bottom layer of HRNN,
respectively, ei

t denotes the embedding of word wi
t, ⊕ is the concatenation operator, αi is the attention

Appl. Sci. 2020, 10, 2740 5 of 16

weights, and g is a feed-forward neural network. The bidirectional LSTM also outputs the slot values
information ŷt and the intent recognition information ẑt, which is computed as follows:

ŷi
t = arg max

l
(so f tmax(−→c i

t ⊕
←−c i

t)) (6)

ẑt = arg max
k

(so f tmax(−→c I
t ⊕
←−c 0

t)), (7)

where l denotes the set of slot labels and k denotes the set of intent labels. In top layer of HRNN,
a forward LSTM is applied to integrate the last observation representation om

t−1, last manager action
am

t−1 and current sentence representation em
t into current observation representation om

t , which is
computed as follows:

dm
t =em

t ⊕ o(am
t−1) (8)

om
t = LSTMobs(om

t−1, dm
t), (9)

where dm
t is the concatenation of sentence representation em

t and last action representation o(am
t−1),

and o(am
t−1) is a one-hot vector with the corresponding action position set to 1.

Manager policy: the observation representation om
t is projected to the selected action am

t .
To this end, a deep neural network (DNN) is applied to model manager policy, which is computed
as follows:

πm(am
t |om

t) = so f tmax(DNN(om
t)), (10)

where policy function πm(am
t |om

t) is a probability distribution on the action space. The selected action
am

t is drawn from the distribution πm(am
t |om

t). For convenience, πm(am
t |om

t ; θm) is denoted as the policy
function of dialogue manager, where θm are the parameters of the manager policy.

3.2.2. User Simulator

User simulator is composed of four parts: a simulator observation maintainer, a goal generator,
a simulator policy, and an NLG as shown in Figure 1. The observation maintainer is applied to obtain
the observation representation for user simulator. The goal generator is used to produce the user goal
(e.g., slot value) and simulate the goal change during a dialogue. The simulator policy is applied to
map the observation representation to a selected action for generating a user utterance. The NLG is
applied to generate the next user utterance to dialogue manager. The four parts of user simulator are
described in detail, respectively, as follows.

Observation maintainer: the observation representation os
t is a concatenated vector composed of

three parts: an embedding o(am
t) for manager action am

t , a binary variable bt that indicates whether
the slot value in manager action am

t is null, and an indicative vector vt that denotes which type of slot
value in confirm-action received from manager is different from user goal gt in time step t.

Goal generator: the user goal is generated at the start of the dialogue by sampling the candidate
slot values uniformly. As the initial goal may change in a real user dialogue, the variation of user
goals are also simulated during the interaction. For each session, the user goals are sampled from
the candidate slot values randomly at the beginning of the dialogue, meanwhile, an indicative vector
cc, which counts the number of variations for each slot, is set to be a zeroes vector. This indicative
vector cc is used to limit the number of variations for each slot to avoid overly complex conversations.
In each turn, a variation probability pv is sampled from [0, 1] randomly, if this variation probability pv

is bigger than threshold probability pth, then a random slot is selected to change the corresponding
value to another one from candidate slot values. Once a slot value is changed, the corresponding value
of variation slot in indicative vector cc is added 1. If the number of variations for some slots exceed the
limitation number, those slots will not be changed, even though the variation probability pv is bigger
than threshold probability pth.

Appl. Sci. 2020, 10, 2740 6 of 16

Simulator policy: the observation representation os
t is mapped to the selected action as

t .
To this end, a multi-layer perceptron (MLP) is applied to model simulator policy, which is computed
as follows:

πs(as
t |os

t) = so f tmax(MLP(os
t)), (11)

where policy function πs(as
t |os

t) is a probability distribution on the action space. The selected action as
t

is drawn from the distribution πs(as
t |os

t). For convenience, πs(as
t |os

t ; θs) is denoted as policy function
of user simulator, where θs are the parameters of the simulator policy.

NLG: the selected action as
t is projected to next user utterance ut+1 for replying to dialogue

manager. A template-based NLG is used to produce such user utterances. The responding template
is drawn from a set of pre-defined templates according to the selected action as

t . To assure the
generalization and expressiveness, the templates are delexicalized by replacing concrete slot values
with their slot names. For some slot dependent actions (e.g., inform()), the drawn template is lexicalized
with the goal slot values to generate the final user utterance. An example of user utterance generation
is shown in Figure 2, where B-loc, I-loc and O denote the slot labels of the beginning character of a
location, inter character of a location and other characters, respectively.

Goal slot value:

Drawn template:

Final utterance:

 capital
B-loc

 hotel
I-loc

The
O

meeting
O

place
O

is
O

$location.

 capital
B-loc

 hotel.
I-loc

The
O

meeting
O

place
O

is
O

Figure 2. An example of user utterance generation.

3.3. Cooperative Training

Policy gradient: the policy gradient is applied to compute an estimate of the gradient of policy
parameters in order to maximize the long-term discounted reward. In a cooperative dialogue,
the gradient of manager policy and simulator policy are denoted as follows:

∇θm J(θm) = Eπm ,πs [Am(am, om)∇θm log πm(am|om)] (12)

∇θs J(θs) = Eπm ,πs [As(as, os)∇θs log πs(as|os)], (13)

where Am(am, om) is the advantage function of manager, and As(as, os) is the advantage function of
simulator. REINFORCE with a baseline algorithm [35] is applied to estimate the advantage functions.
Thus, the advantage function Am(am, om) and the advantage function Am(am, om) are computed
as follows:

Am(am
t , om

t) =
J

∑
j=0

γjrt+j −Vπm
(om

t ; φm) (14)

As(as
t , os

t) =
J

∑
j=0

γjrt+j −Vπs
(os

t ; φs), (15)

Appl. Sci. 2020, 10, 2740 7 of 16

where Vπm
(om

t ; φm) is the value function of manager with parameters φm to estimate the return on
observation om

t , and Vπs
(os

t ; φs) is the value function of simulator with parameters φs to estimate the
return on observation os

t . The loss functions of Vπm
(om

t ; φm) and Vπs
(os

t ; φs) are computed as follows:

J(φm) =
1
2
[Am(am

t , om
t)]

2 (16)

J(φs) =
1
2
[As(as

t , os
t)]

2. (17)

The value function Vπm
(om

t ; φm) and policy function πm(am
t |om

t ; θm) share the same parameters,
meanwhile, the slot filling and intent recognition are optimized in a supervised manner jointly.
To this end, the total loss function of dialogue manager is computed as follows:

Jr(θ
m) = −Am(am, om)∇θm log πm(am|om) +

1
2
[Am(am, om)]2 (18)

Js(θ
m) =

T

∑
t=1

I

∑
i=1

ŷi
t log yi

t +
T

∑
t=1

ẑt log zt (19)

Jw(θ
m) = (1− λ)Jr(θ

m) + λJs(θ
m), (20)

where λ ∈ (0, 1] is a balance coefficient. Similar to dialogue manager, the value function Vπs
(os

t ; φs)

and policy function πs(as
t |os

t ; θs) share the same parameters in user simulator. The total loss function
of user simulator is computed as follows:

Jw(θ
s) = −As(as, os)∇θs log πs(as|os) +

1
2
[As(as, os)]2. (21)

The two total-loss functions are optimized cooperatively after a complete dialogue. In this way,
the dialogue manager and the user simulator are optimized cooperatively and simultaneously.
The alternate training method was tried to optimize dialogue manager and user simulator,
and empirical results show that alternate training method (every 10 training steps alternately) has
slower convergence than joint training method and achieves the same performance with training jointly.

Above all, the dialogue manager and the user simulator are optimized cooperatively in a
one-to-one manner. To improve the dialogue manager generalization performance, this one-to-one
cooperation is generalized to one-to-many cooperation where a dialogue manager cooperates with
various user simulators. These various user simulators are obtained through changing the settings of
adjacency pairs as described in the next paragraph. For one training step, dialogue manager interacts
with one user simulator to fulfill a complete dialogue, then the dialogue manager and the current
simulator are optimized via one-to-one training. For next training step, dialogue manger changes
to anther simulator to learn the cooperative policies. In this way, the dialogue management and the
various user simulators are optimized in a one-to-many manner alternately. We tried to use multi
one-to-one parallelly then share the gradient of dialogue manager, and empirically observed that
sharing gradient optimization is slower than learning one-by-one.

Reward shaping based on adjacency pairs: In cooperative multi-agent reinforcement learning,
each agent has the same reward for every time step. The naive reward function is assigned as follows:

• Manager reward r(st−1, am
t−1, st) and simulator reward r(st−1, as

t−1, st) are both +1, if st is a
successful completed state.

• Manager reward r(st−1, am
t−1, st) and simulator reward r(st−1, as

t−1, st) are both −1, if st is not a
successful completed state until the maximum length T in a dialogue.

• Manager reward r(st−1, am
t−1, st) and simulator reward r(st−1, as

t−1, st) are both −0.01 in otherwise.

This credit-assignment approach is sparse and delayed when a successful cooperative dialogue
between dialogue manager and user simulator has a long trajectory. In cold start situation, as the

Appl. Sci. 2020, 10, 2740 8 of 16

initial cooperative polices are nearly random, the successful dialogue with a long trajectory is easier
to be generated than one with a short trajectory. This credit-assignment approach leads to a slow
convergence. To alleviate this problem, we use the reward shaping technique [11] based on the
adjacency pairs in conversational analysis [12] to substitute the reward in user simulator. The reward
based on the adjacency pairs is assigned as follows:

• Simulator reward r(st−1, as
t−1, st) is −0.01, if st is a non-terminal state and the action pair

[am
t−1, as

t−1] does not belong to the set of adjacency pairs.
• Simulator reward r(st−1, as

t−1, st) is rs, if st is a non-terminal state and the action pair [am
t−1, as

t−1]

does not belong to the set of adjacency pairs, where rs is the shaping reward greater than −0.01.
• Manager reward r(st−1, am

t−1, st) and simulator reward r(st−1, as
t−1, st) are both +1, if st is a

successful completed state.
• Manager reward r(st−1, am

t−1, st) and simulator reward r(st−1, as
t−1, st) are both −1, if st is not a

successful completed state until the dialogue reaches maximum length T in a dialogue.
• Manager reward r(st−1, am

t−1, st) is −0.01, if st is a non-terminal state.

Through changing the set of adjacency pairs, various user simulators can be obtained. For
non-shaped reward setting, each agent has the equal reward every time step. For shaped reward
setting, each agent aims to maximize its own long-term discounted reward.

4. Experiment

To assess the performance, cross-model evaluation [36] is applied that is, training on one simulator
and testing on the other. In our cross-model evaluation, human users also take part in the test for
different dialogue managers. The evaluation is happened on Chinese meeting room booking tasks. It is
worth nothing that our proposed framework can be directly utilized on English tasks by substituting
Chinese characters to English words as inputs.

4.1. Dataset

The dataset was collected from 300 human-human dialogues on booking Chinese meeting room
task. The average length of collected dialogues is approximately 16 turns. For the NLG in user
simulator, 255 pre-defined templates and 240 slot values are extracted from collected dialogues.
The dialogue manager consists of 7 dialogue acts and 3 slots and the user simulator consists of 10
dialogue acts, as shown in Table 1.

Table 1. lists all dialogue acts in details.

Dialogue Acts

Dialogue manager ask_date,ask_location,ask_attendance,
confirm_date,confirm_location,confirm_attendance,bye

User simulator inform_date,inform_location,inform_attendance,update_date,
update_location,update_attendance,affirm,deny,error,hello

4.2. Cross-Model Evaluation with Human Users Involved

4.2.1. Users for Cross-Model Evaluation

To access the performance on different dialogue managers, simulated users and human users take
part in the cross-model evaluation.

A group of user simulators (Group-S): This group of user simulators is obtained through
changing the settings of adjacency pairs and is optimized with the dialogue manager in MADM
as one-to-many strategy via multi-agent reinforcement learning. The Group-S is composed of five
different simulators: all-simulator where all the types of adjacency pairs is applied to reward shaping,

Appl. Sci. 2020, 10, 2740 9 of 16

ask-simulator where only ask-action adjacency pairs (e.g., ask_loc() to inform_loc()) is applied to
reward shaping, confirm-simulator where only confirm-action adjacency pairs (e.g., confirm_loc()
to affirm()) is applied to reward shaping, bye-simulator where only bye-action adjacency pairs
(e.g., bye() to bye()) is applied to reward shaping and naive-simulator where no adjacency pairs
is applied. The shaping reward rs is set to +0.01. The probability of simulating goal change is set
to 0.5. Each slot is limited to change once to avoid overly complex conversations. For the NLG,
the collected pre-defined templates are used to generate the user utterance through lexicalization as
described in Section 3.2.2. Different dialogue managers are tested with each simulator in Group-S
through interacting 200 episodes.

A rule-based user simulator (Rule-S): This simulator is developed according to the mode
proposed in Reference [25,37]. The naive reward function is used in Section 3.3. The same settings in
Group-S is used for goal generator and NLG. Different dialogue managers are tested with this Rule-S
through interacting 200 episodes.

Human Users: 25 graduate volunteers are recruited to conduct human users test.
Comparing different model subjectively on human users always suffers from unfairness and human
user may fit in the system gradually. Thus, human users test is conducted in a paralleled manner
and is evaluated in objective assessment whether the system can help users accomplish tasks or not.
Before testing, the specific user goals are allocated to each users. In the guide of the same allocated
goal, the human users use the same natural language to interact with different dialogue managers.
Each of the volunteers conducts two parallel tests on different dialogue managers.

4.2.2. Dialogue Managers for Cross-Model Evaluation

To benchmark the dialogue manager from MADM trained as one-to-many strategy, five dialogue
managers take part in the cross-model evaluation.

A dialogue manager from MADM trained as one-to-many strategy (M-MADM-OM):
This end-to-end dialogue manager is built based on the dialogue manager as described in MADM and
optimized with the Group-S concurrently via multi-agent reinforcement learning. The character is
used as the model inputs, the size of character embedding is set to 8, the hidden sizes of the LSTM in
bottom layer of HRNN and LSTM in bottom layer of HRNN are both set to 16, the sizes of two hidden
layers in DNN are both set to 16 and the balance coefficient λ is 0.5.

A dialogue manager trained with Rule-S (Rule-M): This end-to-end dialogue manager is
implemented with the same inputs and structures as dialogue manager in MADM and is optimized
with the Rule-S through REINFORCE with baseline algorithm.

Yang 2017 [16]: A end-to-end dialogue manager is implemented as those in Reference [16].
The hidden size of the LSTM for NLU and system action prediction are both set to 16. This model is
optimized with standard supervised learning.

Zhao 2016 [13]: A end-to-end dialogue manager is implemented with the same inputs and
structure as those in Reference [13]. The hidden size of the LSTM is set to 256. The size of hidden layer
which maps LSTM output to action is 128. As the model in Reference [13] can only parse a Yes/No
answer, we connect this model with additional NLU. This NLU is modeled with a bi-directional
LSTM separately. The hidden size of separate bi-directional LSTM is set to 32. This model optimized
with REINFORCE with baseline outperforms the one optimized with deep Q-learning after repeated
experiments in our dialogue tasks. Thus, REINFORCE with baseline algorithm is used to optimize this
model with the Rule-S.

Peng 2018 [9]: A dialogue manager implements a model with the same inputs and structures
as dialogue manager in MADM. This dialogue manager is optimized with deep dyna-Q with a
world model and a user simulator. The world model is implemented with the same structure as
in Reference [9], where the input is the concatenation of an observation representation om

t and an
embedding of dialogue manager action am

t , where the size of hidden layer is set to 16. The user
simulator uses the same setting in Rule-S.

Appl. Sci. 2020, 10, 2740 10 of 16

4.2.3. Results

The results of the cross-model evaluation on success rate and average turns are shown in Table 2.
In Group-S test, M-MADM-OM achieves the best performance. In Rule-S test, although M-MADM-OM
does not achieve the best performance, it is only 0.2% lower than Rule-M and Peng 2018 [9]. In human
users test, M-MADM-OM achieves the best performance. Above all, our proposed M-MADM-OM
achieves the best performance in cross-model evaluation.

Table 2. Cross-model evaluation on Success Rate (SR) and Average Turns (AT).

Group-S Rule-S Human Users
SR AT SR AT SR AT

M-MADM-OM 0.902 18.86 0.925 17.28 0.84 18.04
Rule-M 0.582 24.94 0.945 17.04 0.76 19.56
Yang2017 0.577 25.03 0.860 21.56 0.68 21.08
Zhao2016 0.433 27.77 0.890 20.99 0.68 20.02
Peng2018 0.428 27.86 0.945 18.44 0.72 20.32

For the simulators performance, comparing Group-S test with Rule-S test, dialogue managers
trained with Rule-S show the bad performance while interacting with Group-S. This phenomenon
shows that Group-S may generate some user behaviors that Rule-S are unable to simulate.
Comparing Group-S test with human users test, the results of human users are better than Group-S,
which means that Group-S generate some user behaviors that human users may not produce. Even so,
to our surprise, the Group-S can improve the concurrent dialogue manager performance on human
users test.

Since our method applies a dynamic adjusted simulator without extensive involving of human
laboring, the built model is more time efficient in a long run, even though it is slower in learning an
optimal dialogue manager compared with the one-to-one methods with rule-based user simulator
(including the work in Reference [9]). As empirical analysis, we observed that dialogue manager with
dynamic adjusted simulator is four hours slower than deep dyna-Q method in Reference [9] as the
same experimental settings, finally we obtained the optimized simulator with better generalization
ability and without involving any more human efforts.

4.2.4. Good Case Study

Considering the improvement on M-MADM-OM in real scenario, two examples compared
between M-MADM-OM and Rule-M are shown in Table 3. The Rule-M may fail in the case that
the user always gives irrelevant answer (e.g., system request the number of people and user inform
the date of the meeting). On the other hand, the M-MADM-OM can tackle such irrelevant answer
and guide the user to inform the rest of slots. This is because the Group-S may generate more user
behaviors than Rule-S, and M-MADM-OM can learn more robust policy for real scenario than Rule-M.

Appl. Sci. 2020, 10, 2740 11 of 16

Table 3. Two sample dialogue sessions on human users comparing M-MADM-OM with Rule-M
dialogue manager (SYS: system, USR: human user).

M-MADM-OM Rule-M

1 SYS: Hello, where is the meeting? 1 SYS: Hello, where is the meeting?
2 USR:The location is in bupt technology building. 2 USR:The location is in bupt technology building.
3 SYS: Please confirm, the meeting place is in bupt

technology building?
3 SYS: Please confirm, the meeting place is in bupt

technology building?
4 USR:Yes. 4 USR:Yes.
5 SYS: How many people are there? 5 SYS: How many people are there?
6 USR:The meeting will be held at 10 a.m. on 5

April 2019.
6 USR:The meeting will be held at 10 a.m. on 5

April 2019.
7 SYS: Will the meeting be held at 10 a.m. on 5

April 2019?
7 SYS: How many people are there?

8 USR:Sorry, please change 2 p.m. on 5 April 2019. 8 USR:The meeting will be held at 10 a.m. on 5
April 2019.

9 SYS: Please confirm. the meeting be held at 2 p.m.
on 5 April 2019?

9 SYS: How many people are there?

10 USR:Pefect. .
11 SYS: How many people are there? .
12 USR:Eight. .
13 SYS: Is there eight people to participate? 32 SYS: How many people are there?
14 USR:For sure.
15 SYS: Booked at 14:00 on 5 April 2019 Sixth

meeting room at bupt technology building
for you, if there are any questions, please
call 010-52810888, good bye.

Success Failure: System does not book the right meeting
room within the max turn

4.3. Ablation

The ablation experiments are conducted to evaluate efficiency of the different settings on adjacency
pairs for reward shaping and the generalization performance on M-MADM-OM.

4.3.1. Adjacency Pair Performance

Considering reward shaping influence on convergence, the different adjacency pairs settings for
reward shaping are compared. There are five settings: all the types of adjacency pairs, only ask-action
adjacency pairs, only confirm-action adjacency pairs, only bye-action adjacency pairs and naive reward
function. The training curves are shown in Figure 3. These success rate curves are obtained through
testing dialogue managers with their respective learning simulator after every 300 training steps.
Two settings (i.e., all the types of adjacency pairs and only ask-action adjacency pairs) achieve the best
performance on speed up learning.

As the learning from scratch may cause that learned policy deviate from normal
human-human conversation, these final dialogue managers are also tested with human users to
check whether they deviate from normal human-human conversation or not. The same paralleled
test strategy as described in Section 4.2.1 is conducted in human users test. The success rate and
average turns are shown in Table 4. Results show that only all the types of adjacency pairs outperform
the Rule-M. Other settings show bad performance on human users test. There are two reason for
this: slow convergence and derivation from normal human-human conversation. Above results
demonstrate that all the types of adjacency pairs for reward shaping can speed learning and avoid
derivation from normal human-human conversation.

Appl. Sci. 2020, 10, 2740 12 of 16

0 12,000 24,000 36,000 48,000 60,000

training steps

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

e
ss

 r
a
te

all

ask

confirm

bye

naive

Figure 3. Training curves for different adjacency pairs settings.

Table 4. Human users evaluation on Success Rate (SR) and Average Turns (AT).

Human Users

SR AT

All 0.80 19.80
Ask 0.62 23.22
Confirm 0.30 27.30
Bye 0.22 20.00
Naive 0.32 21.30
Rule-M 0.76 19.56

4.3.2. Comparison of Various Simualtors Settings in One-to-Many Learning

Considering the various simualtors settings in one-to-many learning, we compare the combination
of multiple simulators. Since we change the adjacency pairs settings to obtain the different user
simulators, we can get 31 combinations based on five seed simulators (i.e., all, ask, confirm, bye and
naive). We compare M-MADM-OM with the dialogue managers trained with all combinations
containing two simulators, and then show the success rate and average turns in Table 5. We observe
that dialogue managers trained with the conbinations containing an all-simulator outperform those
dialogue managers trained without the all-simulator on the Group-S and the Rule-S, meanwhile,
we observe that all the dialogue managers can achieve the roughly same performance on corresponding
trained simulators. We obtain the same results in one-to-three and one-to-four learning. Through the
aforementioned results, we think user behaviors generated by the all-simulator can cover user
behaviors generated by the Rule-S and the other simulators can generate some user behaviors that
the Rule-S can not generate. Thus, we use the combination of five seed simulators to train the
M-MADM-OM jointly to improve the robustness and generalization.

Appl. Sci. 2020, 10, 2740 13 of 16

Table 5. The different combinations of seed simulators in one-to-two learning on Success Rate (SR) and
Average Turns (AT) (Corresponding-S denotes the corresponding training simulators).

Group-S Rule-S Corresponding-S

SR AT SR AT SR B

M-MADM-OM 0.902 18.86 0.925 17.28 0.902 18.86
all&ask 0.875 19.42 0.895 19.01 0.905 18.93
all&confirm 0.860 19.64 0.895 18.95 0.910 18.92
all&bye 0.825 20.34 0.905 18.65 0.905 18.85
all&naive 0.835 20.07 0.880 19.27 0.900 18.94
ask&confirm 0.825 24.94 0.645 23.73 0.895 18.91
ask&bye 0.760 21.43 0.645 25.52 0.900 18.89
ask&naive 0.815 20.02 0.550 24.73 0.895 18.93
confirm&bye 0.730 22.08 0.590 18.95 0.895 18.91
confirm&naive 0.725 22.23 0.505 17.04 0.905 18.89

4.3.3. One-to-One Learning vs. One-to-Many Learning

Considering the difference between one-to-one learning strategy and one-to-many learning
strategy. The cross-model evaluation is conducted on two dialogue managers: M-MADM-OM and
M-MADM-OO, where the M-MADM-OO is optimized via one-to-one learning strategy with all the
types of adjacency pairs for reward shaping. For the users in cross-model evaluation, a simulator
(MADM-S) trained with M-MADM-OO, Group-S, Rule-S and human users are employed. The results of
cross-evaluation on comparing M-MADM-OM with M-MADM-OO is shown in Table 6. Results show
that M-MADM-OM outperforms M-MADM-OO in cross-model evaluation, which demonstrates that
one-to-many learning strategy can improve the generalization performance of dialogue manager.

Table 6. Cross-model evaluation on Success Rate (SR) and Average Turns (AT).

MADM-S Group-S Rule-S Human Users

SR AT SR AT SR AT SR AT
M-MADM-OM 0.980 17.38 0.902 18.86 0.925 17.28 0.84 18.04
M-MADM-OO 0.975 17.47 0.775 21.27 0.935 18.23 0.78 19.80

5. Conclusions

We introduce a MADM, where an end-to-end dialogue manager cooperates with a user simulator
to fulfill a dialogue task. For user simulator reward function, we use the reward shaping technique
based on the adjacency pairs to make the simulator learn real user behaviors quickly while learning
from scratch. The experimental results show that reward shaping technique speeds up learning and
avoids derivation from normal human-human conversation. In addition, we generalize the one-to-one
learning strategy to one-to-many learning strategy where a dialogue manager cooperates with various
user simulators, which are obtained by changing the adjacency pairs settings. The experimental results
also show that the dialogue manager from MADM-OM achieves the best performance on human users
involving cross-model evaluation.

In our proposed MADM, there are several models that can be applied to get utterance embedding
in dialogue manager, such as TextCNN [38], BERT [39] and XLnet [40]. But these contextualized model
is orthogonal to MADM. In the future, we are planning to substitute these models to the bottom
bidirectional LSTM in dialogue manager. In addition, we will collect more dataset to enrich the
templates expressiveness for NLG and train the models iteratively.

Author Contributions: Methodology, S.L.; formal analysis, X.W.; data curation, S.L.; writing–original draft
preparation, S.L.; writing–review and editing, C.Y.; funding acquisition, X.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by NSFC (No.61273365).

Appl. Sci. 2020, 10, 2740 14 of 16

Acknowledgments: This paper is supported by 111Project (No. B08004), Beijing Advanced Innovation Center for
Imaging Technology, Engineering Research Center of Information Networks of MOE, China. The authors would
like to thank the reviewers for their comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

NLU Natural Language Understanding
DM Dialogue Management
NLG Natural Language Generation
DRL Deep Reinforcement Learning
MADM Multi-Agent Dialogue Model
HRNN Hierarchical Recurrent Neural Network
LSTM Long Short-Term Memory
DNN Deep Neural Network
MLP Multi-Layer Perceptron
ST Success Rate
AT Average Turns

References

1. Williams, J.D.; Young, S. Scaling POMDPs for spoken dialog management. TASLP 2007, 15, 2116–2129.
[CrossRef]

2. Young, S.; Gasic, M.; Thomson, B.; Williams, J.D. POMDP-Based Statistical Spoken Dialog Systems: A Review.
Proc. IEEE 2013, 5, 1160–1179. [CrossRef]

3. Gašić, M.; Breslin, C.; Henderson, M.; Kim, D.; Szummer, M.; Thomson, B.; Tsiakoulis, P.; Young, S.
On-line policy optimisation of bayesian spoken dialogue systems via human interaction. In Proceedings of
the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,
26–31 May 2013; pp. 8367–8371.

4. Fatemi, M.; Asri, L.E.; Schulz, H.; He, J.; Suleman, K. Policy networks with two-stage training for dialogue
systems. arXiv 2016, arXiv:1606.03152.

5. Su, P.H.; Budzianowski, P.; Ultes, S.; Gasic, M.; Young, S. Sample-efficient Actor-Critic Reinforcement
Learning with Supervised Data for Dialogue Management. arXiv 2017, arXiv:1707.00130.

6. Casanueva, I.; Budzianowski, P.; Su, P.H.; Mrkšić, N.; Wen, T.H.; Ultes, S.; Rojas-Barahona, L.;
Young, S.; Gašić, M. A benchmarking environment for reinforcement learning based task oriented dialogue
management. arXiv 2017, arXiv:1711.11023.

7. Weisz, G.; Budzianowski, P.; Su, P.H.; Gasic, M. Sample Efficient Deep Reinforcement Learning for Dialogue
Systems With Large Action Spaces. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 2083–2097. [CrossRef]

8. Peng, B.; Li, X.; Gao, J.; Liu, J.; Chen, Y.N.; Wong, K.F. Adversarial advantage actor-critic model for
task-completion dialogue policy learning. In Proceedings of the 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 6149–6153.

9. Peng, B.; Li, X.; Gao, J.; Liu, J.; Wong, K.F. Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue
Policy Learning. arXiv 2018, arXiv:1801.06176.

10. Liu, B.; Lane, I. Iterative policy learning in end-to-end trainable task-oriented neural dialog models. In
Proceedings of the 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU),
Okinawa, Japan, 16–20 December 2017; pp. 482–489.

11. Ng, A.Y.; Harada, D.; Russell, S. Policy invariance under reward transformations: Theory and application to
reward shaping. In Proceedings of the Sixteenth International Conference on Machine Learning (ICML),
Bled, Slovenia, 27–30 June 1999; pp. 278–287.

12. Liddicoat, A.J. Adjacency pairs. In An Introduction to Conversation Analysis; Bloomsbury Publishing: London,
UK, 2011; pp. 143–145.

13. Zhao, T.; Eskenazi, M. Towards End-to-End Learning for Dialog State Tracking and Management using Deep
Reinforcement Learning. arXiv 2016, arXiv:1606.02560.

http://dx.doi.org/10.1109/TASL.2007.902050
http://dx.doi.org/10.1109/JPROC.2012.2225812
http://dx.doi.org/10.1109/TASLP.2018.2851664

Appl. Sci. 2020, 10, 2740 15 of 16

14. Williams, J.D.; Atui, K.A.; Zweig, G. Hybrid Code Networks: practical and efficient end-to-end dialog control
with supervised and reinforcement learning. arXiv 2017, arXiv:1702.03274.

15. Dhingra, B.; Li, L.; Li, X.; Gao, J.; Chen, Y.N.; Ahmad, F.; Deng, L. Towards End-to-End Reinforcement
Learning of Dialogue Agents for Information Access. arXiv 2017, arXiv:1609.00777.

16. Yang, X.; Chen, Y.N.; Hakkani-Tür, D.; Crook, P.; Li, X.; Gao, J.; Deng, L. End-to-end joint learning of natural
language understanding and dialogue manager. In Proceedings of the 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 5690–5694.

17. Pietquin, O.; Geist, M.; Chandramohan, S. Sample efficient on-line learning of optimal dialogue policies
with kalman temporal differences. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, Barcelona, Spain, 16–22 July 2011; pp. 1878–1883.

18. Scheffler, K.; Young, S. Automatic learning of dialogue strategy using dialogue simulation and reinforcement
learning. In Proceedings of the Second International Conference on Human Language Technology Research,
San Diego, CA, USA, 24–27 March 2002; pp. 12–19.

19. Cuayáhuitl, H.; Renals, S.; Lemon, O.; Shimodaira, H. Human-computer dialogue simulation using hidden
markov models. In Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding,
San Juan, Puerto Rico, 27 November–1 December 2005; pp. 290–295.

20. Pietquin, O.; Dutoit, T. A probabilistic framework for dialog simulation and optimal strategy learning.
IEEE Trans. Audio Speech Lang. Process. 2006, 14, 589–599. [CrossRef]

21. Keizer, S.; Gasic, M.; Mairesse, F.; Thomson, B.; Yu, K.; Young, S. Modelling user behaviour in the
HIS-POMDP dialogue manager. In Proceedings of the 2008 IEEE Spoken Language Technology Workshop,
Goa, India, 15–19 December 2008; pp. 121–124.

22. Chandramohan, S.; Geis, M.; Lefèvre, F.; Pietquin, O. User Simulation in Dialogue Systems Using Inverse
Reinforcement Learning. In Proceedings of the 12th Annual Conference of the International Speech
Communication Association, Florence, Italy, 27–31 August, 2011; pp.1025–1028.

23. El Asri, L.; Hem, J.; Suleman, K. A Sequence-to-Sequence Model for User Simulation in Spoken Dialogue
Systems. Interspeech 2016, 1151–1155. [CrossRef]

24. Kreyssig, F.; Casanueva, I.; Budzianowski, P.; Gasic, M. Neural User Simulation for Corpus-based Policy
Optimisation of Spoken Dialogue Systems. arXiv 2018, arXiv:1805.06966.

25. Schatzmann, J.; Thomson, B.; Weilhammer, K.; Ye, H.; Young, S. Agenda-based user simulation for
bootstrapping a POMDP dialogue system. NAACL-HLT 2007, 149–152. [CrossRef]

26. English, M.S.; Heeman, P.A. Learning mixed initiative dialog strategies by using reinforcement learning on
both conversants. EMNLP 2005, 1011–1018. [CrossRef]

27. Chandramohan, S.; Geist, M.; Lefèvre, F.; Pietquin, O. Co-adaptation in spoken dialogue systems. In Natural
Interaction with Robots, Knowbots and Smartphones; Springer: New York, NY, USA, 2014; pp. 343–353.

28. Das, A.; Kottur, S.; Moura, J.M.; Lee, S.; Batra, D. Learning cooperative visual dialog agents with deep
reinforcement learning. In Proceedings of the IEEE International Conference on computer Vision, Venice,
Italy, 22–29 October 2017; pp. 2951–2960.

29. Kottur, S.; Moura, J.; Lee, S.; Batra, D. Natural language does not emerge ‘naturally’ in multi-agent dialog.
arXiv 2017, arXiv:1706.08502.

30. Georgila, K.; Nelson, C.; Traum, D. Single-agent vs. multi-agent techniques for concurrent reinforcement
learning of negotiation dialogue policies. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, Baltimore, MD, USA, 22–27 June 2014; pp. 500–510.

31. Lewis, M.; Yarats, D.; Dauphin, Y.; Parikh, D.; Batra, D. Deal or No Deal? End-to-End Learning of Negotiation
Dialogues. arXiv 2017, arXiv:1706.05125.

32. Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; Mordatch, I. Emergent complexity via multi-agent competition.
arXiv 2018, arXiv:1710.03748.

33. Bernstein, D.S.; Givan, R.; Immerman, N.; Zilberstein, S. The complexity of decentralized control of Markov
decision processes. Math. Oper. Res. 2002, 27, 819–840. [CrossRef]

34. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef]
35. Sutton, R.S.; Barto, A.G. Policy gradient methods. In Reinforcement Learning: An Introduction; MIT Press:

Cambridge, MA, USA, 1998; pp. 329–331.

http://dx.doi.org/10.1109/TSA.2005.855836
http://dx.doi.org/10.21437/Interspeech.2016-1175
http://dx.doi.org/10.3115/1614108.1614146
http://dx.doi.org/10.3115/1220575.1220702
http://dx.doi.org/10.1287/moor.27.4.819.297
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Appl. Sci. 2020, 10, 2740 16 of 16

36. Schatztnann, J.; Stuttle, M.N.; Weilhammer, K.; Young, S. Effects of the user model on simulation-based
learning of dialogue strategies. In Proceedings of the IEEE Workshop on Automatic Speech Recognition and
Understanding, San Juan, Puerto Rico, 27 November–1 December 2005; pp. 220–225.

37. Li, X.; Lipton, Z.C.; Dhingra, B.; Li, L.; Gao, J.; Chen, Y.N. A user simulator for task-completion dialogues.
arXiv 2016, arXiv:1612.05688.

38. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
39. Devlin, J.; Chang, M.W.; Lee, K. Toutanova K. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv 2019, arXiv:1810.04805.
40. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive

pretraining for language understanding. In Proceedings of the 2019 Conference on Neural Information
Processing Systems, Vancouver Convention Centre, Vancouver, BC, Canada, 8–14 December 2019; pp.
5754–5764.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Model
	Notation
	Multi-Agent Dialogue Model (MADM)
	Dialogue Manager
	User Simulator

	Cooperative Training

	Experiment
	Dataset
	Cross-Model Evaluation with Human Users Involved
	Users for Cross-Model Evaluation
	Dialogue Managers for Cross-Model Evaluation
	Results
	Good Case Study

	Ablation
	Adjacency Pair Performance
	Comparison of Various Simualtors Settings in One-to-Many Learning
	One-to-One Learning vs. One-to-Many Learning

	Conclusions
	References

