A Novel Sensorless Control for Multiphase Induction Motor Drives Based on Singularly Perturbed Sliding Mode Observer-Experimental Validation
Abstract
:1. Introduction
- (i)
- A novel singularly perturbed sliding mode observer is proposed for a five-phase induction motor drive for estimating the speed and rotor resistance.
- (ii)
- The design procedure of the proposed SMO observer is presented and explained in a detailed way which contributes in clarifying the base principles upon which the observer depends.
- (iii)
- Load torque estimation is not required, which simplifies the observer construction.
- (iv)
- State estimation procedure does not involve mechanical equations. Therefore, the proposed scheme does not use nonlinear estimation equations.
- (v)
- The rotor resistance and speed are estimated simultaneously, so that the effect of parametric variation can be minimized.
- (vi)
- The singular perturbation theory used in this paper essentially works on two-time-scale system with slow and fast subsystems which simplifies the control system design and the structural analysis as well. Accordingly, the two lower order control and observer subsystems can be designed and finally merged to yield a combined observer system. This contributed effectively in enhancing the robustness of the controller against system uncertainties.
- (vii)
- In order to validate the feasibility of the proposed SMO observer, extensive simulation and experimental tests are carried out for a wide range of speed variation considering the parameters mismatch. The robustness of the observer is present for the all considered operating regimes.
- (viii)
- The proposed SMO observer can be easily extended to be used by different types of multi-phase machine drives after considering the construction and base operation of each type.
2. Technique of Two-Time-Scale
2.1. Nonlinear SP Systems
2.2. Slow Subsystem Dynamics
2.3. Fast Subsystem Dynamics
2.4. Approximation of Two-Time-Scale States
3. SMO Synthesis
3.1. SMO Conception
3.2. Fast Time-Scale Stability Analysis
3.3. Slow Time-Scale Stability Analysis
4. Design of Two-Time-Scale SMO for Five-Phase IM
4.1. Mathematical Model of Five-Phase IM
4.2. Sliding Mode Observer (SMO)
4.3. Stability Analysis
5. RT Real-Time Simulation and Experimental Validation
5.1. RT Real-Time Simulation Results
5.2. Experimental Validation
6. Results Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ward, E.; Härer, H. Preliminary investigation of an inverter-fed 5-phase induction motor. Proc. Inst. Electr. Eng. 1969, 116, 980–984. [Google Scholar] [CrossRef]
- Klingshirn, A. High Phase Order Induction Motors—Part I. Description and Theoretical Considerations. IEEE Power Eng. Rev. 1983, 1, 27. [Google Scholar]
- Klingshirn, A. High Phase Order Induction Motors—Part II. Experimental Results. IEEE Power Eng. Rev. 1983, 1, 27–28. [Google Scholar]
- Semail, E.; Bouscayrol, A.; Hautier, P. Vectorial formalism for analysis and design of polyphase synchronous machines. Eur. Phys. J. Appl. Phys 2003, 22, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Selim, F. A sensorless six-phase induction motor driving a centrifugal pump system. In Proceedings of the Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017; pp. 242–247. [Google Scholar]
- Maher, A.; Pragasen, P.; Pierre, A. A Novel In Situ Efficiency Estimation Algorithm for Three-Phase Induction Motors Operating With Distorted Unbalanced Voltages. IEEE Trans. Ind. Appl. 2017, 53, 5338–5347. [Google Scholar]
- Vo, H.; Nguyen, T.; Duong, T.; Pham, H. Sensorless speed control of a three-phase induction motor: An experiment approach. In Proceedings of the International Conference on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, 21–23 July 2017; pp. 694–698. [Google Scholar]
- Kim, J.; Lee, Y.; Lee, J. A sensorless speed estimation for indirect vector control of three-phase induction motor using Extended Kalman Filter. In Proceedings of the IEEE Region 10 Conference (TENCON) Marina Bay Sands, Singapore, 22–25 November 2016; pp. 3087–3090. [Google Scholar]
- Son, N.; Phi, P.; Tuan, P.; Hoa, H.; Cong, N.; Phi, D. A sensorless three-phase induction motor drive using indirect field oriented control and artificial neural network. In Proceedings of the IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 1454–1459. [Google Scholar]
- Uma, S.; Jayanand, B. A reduced order smoothing filter for speed estimation of three phase induction motor. In Proceedings of the TENCON 2017-2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 1749–1754. [Google Scholar]
- Mario, B.; Ignacio, P.; Federico, B.; Hugo, G.; Mario, D.; Xavier, K. Open-Phase Fault-Tolerant Direct Torque Control Technique for Five-Phase Induction Motor Drives. IEEE Trans. Ind. Electron. 2016, 99, 1. [Google Scholar]
- Jorge, R.; Federico, B.; Manuel, A.; Cristina, M.; Raul, G. Online Estimation of Rotor Variables in Predictive Current Controllers: A Case Study Using Five-Phase Induction Machines. IEEE Trans. Ind. Electron. 2016, 9, 5348–5356. [Google Scholar]
- Jorge, R.; Hugo, G.; Raul, G.; Federico, B. Model predictive current controller using Kalman filter for fault-tolerant five-phase wind energy conversion systems. In Proceedings of the IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, BC, Canada, 14–16 July 2016; pp. 1–6. [Google Scholar]
- Jorge, R.; Cristina, M.; Manuel, A.; Federico, B.; Raul, G. Influence of Covariance-Based ALS Methods in the Performance of Predictive Controllers with Rotor Current Estimation. IEEE Trans. Ind. Electron. 2016, 99, 1. [Google Scholar]
- Cristina, M.; Manuel, A.; Federico, B.; Mario, D. Five-Phase Induction Motor Rotor Current Observer for Finite Control Set Model Predictive Control of Stator Current. IEEE Trans. Ind. Electron. 2016, 63, 4527–4538. [Google Scholar]
- Wolbank, T.; Woehrnschimmel, R.; Machl, J. Zero speed sensorless control signals of induction motors with closed rotor slots. In Proceedings of the IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289), Cairns, QLD, Australia, 23–27 June 2002; Volume 2, pp. 997–1002. [Google Scholar]
- Briz, F.; Degner , M.W.; Diez, A.; Lorenz, R.D. Measuring, modeling, and decoupling of saturation-induced saliencies in carrier-signal injection-based sensorless AC drives. IEEE Trans. Ind. Appl. 2001, 5, 1356–1364. [Google Scholar]
- Soto, G.; Mendes, E.; Razek, A. Reduced-order observers for rotor flux, rotor resistance and speed estimation for vector controlled induction motor drives using the extended Kalman filter technique. IEE Proc. Electr. Power Appl. 1999, 146, 282–288. [Google Scholar] [CrossRef]
- Zuohua, X.; Jiuhe, W.; Pengfei, W. Passivity-based control of induction motor based on euler-lagrange (EL) model with flexible damping. In Proceedings of the International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008; pp. 48–52. [Google Scholar]
- Alma, A.; Edgar, S.; Alexander, L. Real-Time Output Trajectory Tracking using a Discrete Neural Backstepping Controller. In Proceedings of the IEEE International Symposium on Intelligent Control, San Antonio, TX, USA, 3–5 September 2008; pp. 1289–1294. [Google Scholar]
- Bilal, A.; Umut, O.; Aydin, E. A comparative study on Kalman filtering techniques designed for state estimation of industrial AC drive systems. In Proceedings of the IEEE International Conference Mechatronics, ICM ’04, Istanbul, Turkey, 3–5 June 2004; pp. 439–445. [Google Scholar]
- Suman, M.; Chandan, C.; Yoichi, H.; Minh, T. Model Reference Adaptive Controller-Based Rotor Resistance and Speed Estimation Techniques for Vector Controlled Induction Motor Drive Utilizing Reactive Power. IEEE Trans. Ind. Electron. 2008, 55, 594–601. [Google Scholar]
- Ramzi, T.; Adel, K.; Mouhamed, M.; Faouzi, M. Backstepping control for an induction motor using an adaptive sliding rotor-flux observer. Electr. Power Syst. Res. 2012, 93, 1–15. [Google Scholar]
- Sravanthi, C.; James, C. A survey of energy harvesting sources for embedded systems. In Proceedings of the IEEE SoutheastCon, Huntsville, AL, USA, 3–6 April 2008; pp. 442–447. [Google Scholar]
- Zhifeng, Z.; Renyuan, T.; Baodong, B.; Dexin, X. Novel Direct Torque Control Based on Space Vector Modulation With Adaptive Stator Flux Observer for Induction Motors. IEEE Trans. Magn. 2010, 46, 3133–3136. [Google Scholar]
- Thomas, M.; Andreas, K. Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness. Automatica 2009, 45, 1182–1194. [Google Scholar]
- Toshiaki, T.; Takuya, H.; Hiroshi, K.; Mariko, M.; Kouhei, O. A Wide-Range Velocity Measurement Method for Motion Control. IEEE Trans. Ind. Electron. 2009, 56, 510–519. [Google Scholar]
- Teresa, K.; Mateusz, D. Stator-Current-Based MRAS Estimator for a Wide Range Speed-Sensorless Induction-Motor Drive. IEEE Trans. Ind. Electron. 2010, 57, 1296–1308. [Google Scholar]
- Ghanes, M.; Leon, J.; Glumineau, A. Cascade and high-gain observers comparison for sensorless closed-loop induction motor control. Iet Control Theory Appl. 2008, 2, 133–150. [Google Scholar] [CrossRef]
- Amuliu, P.; Ali, K. Sliding-Mode Flux Observer With Online Rotor Parameter Estimation for Induction Motors. IEEE Trans. Ind. Electron. 2007, 54, 716–723. [Google Scholar]
- Adnan, D.; Mustafa, G.; Habib-ur, R.; Longya, X. A new approach to induction machine flux and speed observer with on-line rotor time constant estimation. In Proceedings of the IEMDC. IEEE International Electric Machines and Drives Conference (Cat. No.01EX485), Cambridge, MA, USA, 17–20 June 2001; pp. 102–107. [Google Scholar]
- Adel, K.A.; Mohamed, M. Sensorless-adaptive DTC of double star induction motor. Energy Convers. Manag. 2010, 51, 2878–2892. [Google Scholar]
- Abdelkrim, B.; Ahmed, R.; Eric, A. Sliding mode input-output linearization and field orientation for real-time control of induction motors. IEEE Trans. Power Electron. 1999, 14, 3–13. [Google Scholar]
- Ramzi, T.; Adel, K.; Mohamed, M.; Faouzi, M. Backstepping control for an induction motor with an adaptive Backstepping rotor flux observer. In Proceedings of the Control & Automation (MED), 18th Mediterranean Conference, Marrakech, Morroco, 24–26 June 2010; pp. 5–10. [Google Scholar]
- Soltani, J.; Payam, F.; Abbasian, M. A Speed Sensorless Sliding-Mode Controller for Doubly-Fed Induction Machine Drives with Adaptive Backstepping Observer. In Proceedings of the IEEE International Conference on Industrial Technology, Mumbai, India, 15–17 December 2006; pp. 2725–2730. [Google Scholar]
- Prut, N.; Suwat, K. Observer-based backstepping force control of an electrohydraulic actuator. Control Eng. Pract. 2009, 17, 895–902. [Google Scholar]
- Jalalifar, M.; Farrokh Payam, A.; Mirzaeian, B.; Saghaeian nezhad, S.M. Dynamic Modeling and Simulation of an Induction Motor with Adaptive Backstepping Design of an Input-Output Feedback Linearization Controller in Series Hybrid Electric Vehicle. In Proceedings of the International Conference on Power Electronic, Drives and Energy Systems, New Delhi, India, 12–15 December 2006; pp. 1–6. [Google Scholar]
- Khadar, S.; Kouzou, A.; Hafaifa, A.; Atif, I. Investigation on SVM-Backstepping sensorless control of five-phase open-end winding induction motor based on model reference adaptive system and parameter estimation. Eng. Sci. Technol. Int. J. 2019, 22, 1013–1026. [Google Scholar]
- Kan, A.; Atsuo, K. Sensorless very low-speed and zero-speed estimations with online rotor resistance estimation of induction motor without signal injection. IEEE Trans. Ind. Appl. 2000, 36, 764–771. [Google Scholar]
- Murat, B.; Seta, B.; Metin, G. Switching EKF technique for rotor and stator resistance estimation in speed sensorless control of IMs. Energy Convers. Manag. 2007, 48, 3120–3134. [Google Scholar]
- Francesco, A.; Filippo, D.; Antonino, S. Sensorless Control of Induction-Motor Drive Based on Robust Kalman Filter and Adaptive Speed Estimation. IEEE Trans. Ind. Electron. 2014, 3, 1444–1453. [Google Scholar]
- Jakub, T.; Zdenek, P.; Vojtech, B.; Lubos, S. Rotor and stator resistance estimation of induction motor based on augmented EKF. In Proceedings of the International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 8–9 September 2015; pp. 253–258. [Google Scholar]
- Jiménez, E.; Jaramillo, O.; Sánchez-Torres, J.; Boteroy, H. A second order sliding mode state and parameter estimator for induction motors. In Proceedings of the 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 28–30 October 2015; pp. 1–6. [Google Scholar]
- Deepak, P.; Ashok, S. Sensorless speed estimation of linear induction motor under variable discrete loading using cascaded MRAS observer. In Proceedings of the International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), Ratan Pur, India, 11–12 March 2016; pp. 274–279. [Google Scholar]
- Mihai, C. Design of a MRAS-type sliding mode observer for estimation of the rotor time constant of the induction motor. In Proceedings of the IECON—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 2573–2748. [Google Scholar]
- Haitam, C.; Ahmed, E.; Tamou, N. MRAS and Luenberger observers using a SIFLC controller in adaptive mechanism based sensorless fuzzy logic control of induction motor. In Proceedings of the International Conference on Electrical and Information Technologies (ICEIT), Tangiers, Morocco, 4–7 May 2016; pp. 153–158. [Google Scholar]
- Djemai, M.; Hernande, J.; Barbot, J. Nonlinear control with flux observer for a singularly perturbed induction motor. In Proceedings of the 32nd IEEE Conference on Decision and Control, San Antonio, TX, USA, 15–17 December 1993; Volume 4, pp. 3391–3396. [Google Scholar]
- De-Leon, J.; Alvarez, J.; Castro, R. Sliding mode control and state estimation for nonlinear singularly perturbed systems. Application to an induction electric machine. In Proceedings of the International Conference on Control Applications, Albany, NY, USA, 28–29 September 1995; pp. 998–1003. [Google Scholar]
- Hamdy, E.; Ramzi, T.; Atif, I.; Faouzi, M. Real time implementation of indirect rotor flux oriented control of a five-phase induction motor with novel rotor resistance adaption using sliding mode observer. J. Frankl. Inst. 2018, 355, 2112–2141. [Google Scholar]
- Abdelkrim, B.; Ahmed, R.; Eric, A.; Mohamed, T. Real-time sliding-mode observer and control of an induction motor. IEEE Trans. Ind. Electron. 1999, 46, 128–138. [Google Scholar]
- Hamdy, E.; Ramzi, T.; Atif, I.; Nichola, B.; Faouzi, M. Non-linear backstepping control of five-phase IM drive at low speed conditions–experimental implementation. Isa Trans. 2016, 65, 244–253. [Google Scholar]
- Mezouar, A.; Fellah, M.; Hadjeri, S. Adaptive sliding-mode-observer for sensorless induction motor drive using two-time-scale approach. Simul. Model. Pract. Theory 2008, 16, 1323–1336. [Google Scholar] [CrossRef]
- Proca, A.; Keyhani, A.; Miller, J. Sensorless sliding mode control of induction motors using operating condition dependent models. IEEE Trans. Energy Convers. 2003, 18, 205–212. [Google Scholar] [CrossRef]
- Min, J.; Bong, J.; Jun, J.; Yong, P.; Young, K. Speed sensorless control of induction motor using sliding mode observer with variable boundary layer. In Proceedings of the SICE Annual Conference, Tokyo, Japan, 20–22 August 2008; pp. 748–752. [Google Scholar]
- Atassi, A.; Khalil, H. A separation principle for the control of a class of nonlinear systems. IEEE Trans. Autom. Control 2001, 46, 742–746. [Google Scholar] [CrossRef]
- Chengkang, X. An output feedback control design via nonlinear separation principle. In Proceedings of the 7th World Congress on Intelligent Control and Automation (WCICA), Chongqing, China, 25–27 June 2008; pp. 2886–2889. [Google Scholar]
- Sassano, M.; Astolfi, A. A Local Separation Principle via Dynamic Approximate Feedback and Observer Linearization for a Class of Nonlinear Systems. IEEE Trans. Autom. Control 2019, 64, 111–126. [Google Scholar] [CrossRef] [Green Version]
Symbols | Quantity | Value |
---|---|---|
Rotor resistance | 2.4 Ω | |
Stator resistance | 2.8 Ω | |
Rotor inductance | 0.2388 H | |
Stator inductance | 0.2388 H | |
Stator leakage inductance | 0.0088 H | |
Rotor leakage inductance | 0.0088 H | |
Mutual inductance | 0.23 H | |
Pair of Pole | 2 | |
Rated speed | 1000 RPM | |
Rated torque | 4 N·m | |
Inertia moment | 0.008 kg·m2 | |
Rated Power | 1 kW |
Symbols | Value |
---|---|
100 | |
100 | |
50 | |
50 | |
150 | |
150 |
Tracking Error | Convergence Time | |
---|---|---|
Speed estimation | 0% | 200 ms |
Rotor resistance estimation | 0% | 20 ms |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mossa, M.A.; Echeikh, H.; Iqbal, A.; Duc Do, T.; Al-Sumaiti, A.S. A Novel Sensorless Control for Multiphase Induction Motor Drives Based on Singularly Perturbed Sliding Mode Observer-Experimental Validation. Appl. Sci. 2020, 10, 2776. https://doi.org/10.3390/app10082776
Mossa MA, Echeikh H, Iqbal A, Duc Do T, Al-Sumaiti AS. A Novel Sensorless Control for Multiphase Induction Motor Drives Based on Singularly Perturbed Sliding Mode Observer-Experimental Validation. Applied Sciences. 2020; 10(8):2776. https://doi.org/10.3390/app10082776
Chicago/Turabian StyleMossa, Mahmoud A., Hamdi Echeikh, Atif Iqbal, Ton Duc Do, and Ameena Saad Al-Sumaiti. 2020. "A Novel Sensorless Control for Multiphase Induction Motor Drives Based on Singularly Perturbed Sliding Mode Observer-Experimental Validation" Applied Sciences 10, no. 8: 2776. https://doi.org/10.3390/app10082776
APA StyleMossa, M. A., Echeikh, H., Iqbal, A., Duc Do, T., & Al-Sumaiti, A. S. (2020). A Novel Sensorless Control for Multiphase Induction Motor Drives Based on Singularly Perturbed Sliding Mode Observer-Experimental Validation. Applied Sciences, 10(8), 2776. https://doi.org/10.3390/app10082776