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Abstract: An efficient and selective oxidative procedure for the synthesis of quinazolinones from
readily available o-aminobenzamides and styrenes was developed. A number of potentially
pharmacologically relevant quinazolinones were prepared using metal- and catalyst-free conditions.
The synthesis procedure highlights the sustainable operation, low-priced, free from perilous materials,
green solvent and environmental affability. The synthesized products were isolated in moderate to
excellent yields.
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1. Introduction

Oxidative cleavage of unsaturated hydrocarbons is one of the most significant and efficient
approaches to produce carbonyl compounds in organic chemistry, petrochemical industry as well as
the conversion of biomass [1–4]. Aldehydes and ketones are important precursors to acids and alcohols
as well as widely used in pharmaceutical, agriculture and most importantly in the fine chemical
industry. The direct oxidative cleavage of olefins is still a challenge and greatly dependent on the use
of conventional methods, for instance using ozone [5–8], KMnO4 [9,10], oxone [11,12], NaIO4 [13],
OsO4 [14], high valance I2 [15,16], m-chloroperbenzoic acid, etc. [17,18]. However, these methods suffer
from the long reaction period, over oxidation, low selectivity, limited substrate scope, poor functional
group tolerance and environment unfriendliness.

There is need for development of environment benign synthetic methodologies, procedures not
requiring use of hazardous materials and expensive reagents. In order to match the request of green
chemistry some methodologies were developed for the oxidation of alkenes using the palladium
catalyst under high pressure of oxygen [19]. Our group has also developed several metal-free
oxidative methodologies [20–22]. Although these methodologies show progress towards oxidative
cleavage of unsaturated hydrocarbons, nevertheless, there is still much room for the development
of synthetic methodologies that provide the generality of substrate scope for the synthesis of fine
chemical building blocks.

Quinazolinone heterocycles are an important class of fundamental building blocks in modern
organic synthesis with recognized importance in natural products, bioactive compounds and
pharmaceutical industry. A broad range of medicinal properties are reported for quinazolinones, such
as anticancer [23–27], antibacterial [28–30], antifungal [31–35], antimalarial [36], antiviral [37,38] as
well as anti-microbial cholinesterase inhibitors [39,40], making quinazolinone a privileged class of
N-containing heterocyclic scaffolds (Figure 1).
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Due to diverse biological applications in pharmaceutical industry numerous synthetic
methodologies were developed for the synthesis of quinazolinones [41–58]. These methods furnish
the quinazolinones through reactions of readily available anthranilamide (2-aminobenzamide) with
aldehydes, alcohols, esters, carboxylic acids, methyl arenes and amines under harsh reaction conditions
in the presence of transition metals, etc. [41–58]. Despite a high number of synthetic methodologies
in literature, there is not much known for the synthesis of quinazolinones via oxidative reactions
of 2-aminobenzamide with industrially important unsaturated hydrocarbons, i.e., olefins. Recent
examples of oxidation-annulation reactions of 2-aminobenzamide and olefins were discovered by
Liu et al. [59] and An et al [60] using transition metals Pd-ligand and Ru-cluster/ceria/CO respectively
(Figure 2). More recently, Abdullaha et al. [61] has reported metal-free, iodine catalyzed reactions
to synthesize quinazolinones from o-aminobenzamide and alkynes/alkenes (Figure 2). Furthermore,
a very interesting discovery, metal and catalyst free electrochemical synthesis of quinazolinones from
o-aminobenzamide and alkenes was reported by Teng et al. [62] (Figure 2).

Nevertheless, most of the reported work depend on expensive metals, ligands, higher temperature
and special equipment, etc. which, as a result, limit the synthesis of biologically active compounds
because of the presence of metal impurities in the products. Therefore, a significant need for
improvement of environmentally benign methodologies for the preparation of quinazolinones under
metal-based-catalyst free reaction conditions is still needed. Based on our continuing interest in the
maturity of green, novel and sustainable synthetic methodologies for fine chemicals [63–65] as well as
pharma related products where we have developed methodology for the synthesis of quinazolinones
by reaction of 2-aminobenzamides and benzylic alcohols [66]. Thus, we report a metal-catalyst-free,
synthesis of quinazolin-4(3H)-ones from o-aminobenzamide and direct oxidation-cyclization of in
situ prepared aldehydes from styrenes. General preparation; characterization of the synthesized
compounds and figures of the NMR spectra can be seen in supplementary material.
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2. Results and Discussion

2.1. Model Reaction for Synthesis of Quinazolin-4(3H)-one

Initially, o-aminobenzamide 1 and styrene 2 in the presence of an oxidant TBHP (70% in H2O,
5.8 eq., 1.5 mL w.r.t 2) were employed as a model reaction for screening the best reaction conditions.
As shown in Table 1, different reaction parameters, oxidant, solvent, temperature, additive and time
were screened. To our contentment, as expected, desired product 3, was obtained in 56% yield using a
neat reaction, without solvent (Table 1, entry 1). The lower yields of the anticipated product 3 were
observed with variations of solvents (H2O, 2 mL), (DMSO, 2 mL), oxidant amount and temperature
respectively (Table 1, entries 2–5). Then, further screening with another oxidant DTBP using only
(0.54 eq) in the presence of DMSO as solvent 35% yield of 3 was found (Table 1, entry 6). Delightedly,
the addition of p-TsOH showed the improvement in yield (Table 1, entry 7). Several screenings were
performed by varying the amounts of the additives, temperatures and time and it was observed that
DTBP (1.1 eq, TsOH 0.33 eq) furnished the improved yield (Table 1, entry 8). It was observed that DTBP
was the more efficient oxidant as compared to TBHP (tert-butyl hydroperoxide) (Table 1, entries 7–13).
At increased amount of additive TsOH, decrease in yield was observed (Table, entry 17). The controlled
experiments implied the need of oxidant and TsOH by showing no and lower activity respectively
(Table 1, entries 14 and15).
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Entry Oxidant (Equiv) e Additive Temp., Time Solvent Yield % b

1 TBHP (5.8) - 105 ◦C - 56

2 TBHP (5.8) - 105 ◦C H2O 30

3 TBHP (5.8) - 105 ◦C DMSO 40

4 TBHP (1.5) - 80 ◦C, 24 h - 20

5 TBHP (1.5) - 120 ◦C, 24 h - 30

6 DTBP (0.54) - 110 ◦C DMSO 35

7 DTBP (0.54) p-TsOH 110 ◦C DMSO 58

8 DTBP (1.09) p-TsOH 120 ◦C DMSO 70

9 DTBP (0.8) p-TsOH 105 ◦C DMSO 45

10 DTBP (1.09) p-TsOH 105 ◦C DMSO 50

11 DTBP (1.4) p-TsOH 105 ◦C DMSO 14

12 DTBP (1.6) p-TsOH 105 ◦C DMSO 23

13 DTBP (2.1) p-TsOH 105 ◦C DMSO 65

14 - - 120 ◦C DMSO 0

15 - p-TsOH 120 ◦C DMSO 20

16 c DTBP (1.4) p-TsOH 120 ◦C CH3CN 60

17 d DTBP (1.09) p-TsOH 120 ◦C DMSO 50
a Reaction conditions: 1 (1 mmol), 2 (2.0 mmol), additive (0.66 mmol), DMSO (2 mL), b Isolated yields, c 2 (3 mmol),
d p-TsOH (1.2 eq), e equiv. with respect to 2.

2.2. Synthesis of Quinazolin-4(3H)-one: Substrate Scope

The best optimized conditions obtained in entry 8 of Table 1, were employed to assess the
substrate scope, generality and limitations of the present protocol. A reaction of o-aminobenzamide
and wide range of substituted styrenes were studied under best conditions in hand. As presented
in Figure 3, several substituted styrenes showed functional group tolerance under given condition
and furnished the desired quinazolin-4(3H)-ones in good to high yields. Styrenes bearing common
electron donating functional groups, tert-(CH3)3 (Figure 3, 3b), -OCH3 (Figure 3, 3d), which are
generally sensitive to strong oxidants exhibited very good tolerance under the optimized reaction
conditions and were transformed to corresponding quinazolin-4(3H)-ones providing moderate yields
65%, 50% respectively (Figure 3). 54–56% yields were isolated in case of reaction of o-aminobenzamide
1, with para-fluoro and para-chloro substituted styrenes (Figure 3, 3e, 3f), whereas para substituted
trifluoromethyl (CF3) styrene was also tested which smoothly worked and afforded 55% yields on
annulation with o-aminobenzamide 1 (Figure 3, 3g). Furthermore, another interesting fused ring
styrenes (2-vinylnaphtalene) also worked very well and afforded the anticipated product in 70%
(Figure 3, 3h). Interestingly, another para-substituted electron withdrawing group (p-NO2) afforded
corresponding quinazolinone in 64% yield (Figure 3, 3c). In addition a heteroatom containing styrenes
(2-vinylpyridine) was also efficiently annulated with o-aminobenzamide 1 giving the subsequent
quinazolin-4(3H)-one (Figure 3, 3i) in 62% yield.
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2.3. Synthesis of Benzothiadiazine-1,1-dioxides: Substrate Scopes

In view of our previous knowledge in the advancement of synthetic methodologies [61,62] for
quinazolinones synthesis [63,64] and the promising results are shown in the Figure 3, the methodology
was further extended to benzothiadiazine-1,1-dioxides synthesis [67] from o-aminobenzenesulfonamide
and styrenes (Figure 4, 5a–b). Surprisingly, when o-aminobenzenesulfonamide 4 and different functional
group bearing styrenes were subjected to the identical condition as Table 1, the expected product
5 was observed in 60% yield (Figure 4). Subsequently, meta- and para-methyl substituted styrenes
gave 5a and 5b in 63% and 59% respectively (Figure 4). This is the novel oxidative method for
benzothiadiazine-1,1-dioxides synthesis from o-aminobenzenesulfonamide and styrenes (Figure 4).
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2.4. Understanding of the Reaction Mechanism

To have better understanding of the reaction pathway, several control experiments were performed.
Initially, the reaction of styrene was performed without using oxidant and o-aminobenzamide,
no oxidation product was detected in GC showing the starting material only. Whereas, an oxidation
reaction of styrene under optimized reaction conditions (without o-aminobenzamide) afforded the
expected benzaldehyde in 78% GC yield (Figure 5). Based on the above experiments a plausible reaction
mechanism for the synthesis of quinazolinones from styrene and o-aminobenzamide is proposed
(Figure 5). It is established that benzaldehyde is an oxidation product of styrene which on condensation
with o-aminobenzamide afforded imine intermediate that eventually, through cyclization-oxidation
afforded the quinazolinone.
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3. Materials and Methods

3.1. Typical Experimental Procedure for Synthesis of Quinazolin-4(3H)-ones

2-aminobenzamides (1.00 mmol, 136 mg), styrenes (2.0 mmol, 2.0 eq) were placed in an ace-pressure
tube that was equipped with a stirring bar. DMSO (2 mL) and p-TsOH (0.66 mmol, 114 mg) were then
added into the mixture. In the end, DTBP (2.2 mmol, 0.4 mL) added to the mixture by the syringe and
ace-pressure tube sealed with Teflon cap. The final reaction mixture in the pressure tube was placed in
an aluminum heating block and stirred at a temperature of 120 ◦C for 16 h. The reaction mixture was
cooled to room temperature and worked up by diluting with ethyl acetate and washed with water.
The compound was extracted with 45 mL ethyl acetate. After the solvent was evaporated in vacuum,
products were purified using column chromatography on silica gel with hexane and ethyl acetate (2:1)
(Figure 3, 3–3i).

2-phenylquinazolin-4(3H)-one (3)

Yield: (156 mg, 70%); 1HNMR (300 MHz, DMSO-d6): δ = 7.53–7.60 (m, 4H), 7.77–7.80 (m, 1H),
7.84–7.88 (m, 1H), 8.18–8.25 (m, 3H), 12.6 (s, 1H, NH); 13CNMR (DMSO-d6): δ = 122.8 (C), 126.7 (CH),
127.4 (CH), 128.3 (C), 128.6 (2CH), 129.4 (2CH), 132.2 (CH), 133.6 (C), 135.4 (CH), 149.6 (C), 153.2 (C),
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163.5 (CO); GCMS (EI, 70 eV): m/z (%) [M+] 222 (83), 119 (99), 104 (12), 92 (15), 90 (11), 77 (21); HRMS
(ESI): Calc. for C14H10N2O: 222.07876; found: 222.07887 [66].

3.2. Typical Procedure for Synthesis of Benzothiadiazine-1,1-dioxides

2-aminobenzenesulfonamide (1.00 mmol, 172 mg), styrenes (2.0 mmol, 2.0 eq) were placed in an
ace-pressure tube that was equipped with stirring bar. DMSO (2 mL) and p-TsOH (0.66 mmol, 114 mg)
were then added into the mixture. At the end, DTBP (2.2 mmol, 0.4 mL) added to the mixture by the
syringe and ace-pressure tube sealed with Teflon cap. The final reaction mixture in pressure tube was
placed aluminum heating block and stirred at temperature of 120 ◦C for 20 h. The reaction mixture
was cooled to room temperature and worked up by diluting with ethyl acetate and washed with water.
The compound was extracted with 45 mL ethyl acetate. After the solvent was evaporated in vacuum,
products were purified using column chromatography on silica gel with hexane and ethyl acetate (2:1)
(Figure 4, 5–5b).

3-phenyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5)

Yield: (155 mg, 60%); 1HNMR (300 MHz, DMSO-d6): δ = 7.51–7.814 (m, 6H), 7.92 (d, J = 7.70 Hz,
1H), 8.11 (d, J = 7.70 Hz, 2H), 12.2 (s, 1H, NH); 13CNMR (DMSO-d6): δ = 119.3 (CH), 122.3 (C),
124.2 (CH), 127.6 (CH), 129.1 (2CH), 129.8 (2CH), 132.7 (C), 133.7 (CH), 134.0 (C), 136.3 (C), 155.7 (C);
GCMS (EI, 70 eV): m/z (%) [M+] 258 (55), 194 (11), 155 (100), 91 (65), 64 (19); HRMS (ESI): Calc. for
C13H10N2O2S1: 258.04575; found: 258.04581 [66].

4. Conclusions

In conclusion, we have established an efficient, novel metal-and catalyst-free protocol for
the synthesis of pharmaceutically important, potential bio-active quinazolin-4(3H)-ones and
benzothiadiazine-1,1-dioxides in modest to fairly good yields. Readily accessible starting materials
were applied as substrate in presence of DTBP as an oxidant and p-TsOH as an additive. Remarkable,
no transition metal catalyst was used for this effective transformation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/8/2815/s1,
General information, data for compounds, 3a–3i and, 5a–b, Figures S1–S23: NMR spectra for compounds 3, 3a–3i
and 5, 5a–b.
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