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Abstract: In this paper, an expanded digital hippocampal spurt neural network (HSNN) is innovatively
proposed to simulate the mammalian cognitive system and to perform the neuroregulatory dynamics
that play a critical role in the cognitive processes of the brain, such as memory and learning.
The real-time computation of a large-scale peak neural network can be realized by the scalable on-chip
network and parallel topology. By exploring the latest research in the field of neurons and comparing
with the results of this paper, it can be found that the implementation of the hippocampal neuron
model using the coordinate rotation numerical calculation algorithm can significantly reduce the
cost of hardware resources. In addition, the rational use of on-chip network technology can further
improve the performance of the system, and even significantly improve the network scalability on a
single field programmable gate array chip. The neuromodulation dynamics are considered in the
proposed system, which can replicate more relevant biological dynamics. Based on the analysis of
biological theory and the theory of hardware integration, it is shown that the innovative system
proposed in this paper can reproduce the biological characteristics of the hippocampal network and
may be applied to brain-inspired intelligent subjects. The study in this paper will have an unexpected
effect on the future research of digital neuromorphic design of spike neural network and the dynamics
of the hippocampal network.

Keywords: brain-inspired intelligence; hippocampal network; dynamical oscillation; neuromorphic
engineering

1. Introduction

Over the last few decades, numerous studies have accumulated a great deal of knowledge
about brain function, but our understanding of brain mechanisms and functional dynamics remains
limited [1,2]. Spiking neural networks (SNNs) have been increasingly popular in recent years due to
their relationship to dynamics in human brain and enhanced biological relevance [3]. The SNNs with
cognitive and motor functions, such as the hippocampal network, have been investigated with abundant
in vitro and model-based experiments [4,5]. One of the most essential components of the human brain is
the hippocampus, which processes short-term memory and spatial navigation information [6–9]. It can
be biologically demonstrated that behavioral learning and memory in mammals are closely related to its
hippocampal rhythm [10,11]. In addition, there is ample evidence that abnormal hippocampal rhythms
in animals induce psychological dysfunction of the nervous system. One of the most representational
examples is that abnormal electrical activity in the hippocampal neural network can cause cognitive
decline and behavioral inhibition in Alzheimer’s patients [12–15]. Previous experiments have shown
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that hippocampal oscillations play an irreplaceable role both in the encoding and transmission of
information [16]. The dynamics of neuromodulation can affect sensory processing and information
processing in cognitive function [17,18]. Most of the current spiking neural network models for machine
learning application use the feedforward network architecture for the sake of object classification.
However, the human brain does not execute the classification task most of the time. Besides, many
critical brain areas for learning do not use a feedforward architecture. On the basis of these observations,
we were inspired to present a novel model with recurrent network architecture for the neuromodulatory
dynamics, which are critical in the cognitive and learning process in human brain.

Although the hippocampal neural network has been investigated for a long time and applied in
various fields widely, its computational process has some constraint. CPU characteristics lead to low
clock rates and low memory bandwidth on traditional platforms. A high-performance computing
platform in neuromorphic engineering is urgently needed. Various kinds of hardware designs have
endeavored to realize the real-time computation of the human brain system in recent years. The analog
neuromorphic system based on the very large scale integration (VLSI) can be more realistic and
power efficient [19–21], but it has not been popularized due to its excessive resource consumption
and long development time. The field programmable gate array (FPGA) has the characteristics of
parallel computation, reconfigurable architecture, and distributed structure in a digital neuromorphic
system [22,23]. Previous studies have focused on using FPGAs to improve the performance of
neuromorphic platforms, which present different realization methods with various applications [24–27].
However, although this is important for information encoding and signal processing in the brain’s
cognitive system, few previous studies have considered the dynamic oscillations of the hippocampal
neural network. In addition, how to effectively implement large-scale hippocampal networks with
coupled synapses with random connections is a difficult challenge. Due to the shortcomings of on-chip
network (NoC) technology [28], the digital implementation of the seahorse network we proposed
earlier is limited in scalability and system performance [29].

Since the introduction of microchip technology, great progress has been made in its development,
and large-scale on-chip system technology has been applied in more and more fields. As the
architectures of the system-on-chip platform become more complex, NoC techniques are investigated
and used to solve the problems of data transmission, large-scale computation, and complicated network
topology [30]. The NoC structure can improve the utilization of the hardware resource and transmission
rate of the data flow, which can make the topology architecture flexible and improve the system
scalability. In this study, we proposed a novel NoC technique to complete the realization of a scalable
digital neural morphology of the hippocampal neural network and focus on the neuromodulation
oscillation dynamics of the hippocampus. In particular, the proposed FPGA-based hippocampal neural
network can track biodynamics in real time under normal and even neuroregulatory conditions.

The general structure of this article is as follows. Section 2 describes the construction principle of
the hippocampal neural network model, and the digital implementation of the presented hippocampal
network model is described in detail in Section 3. The experimental results and the biological feasibility
of the network are demonstrated in Section 4.

2. The Hippocampal Neural Network Model

As shown in Figure 1, hippocampal neural coding is closely related to peridergic pyramidal
neurons and inhibitory neurons, and the hippocampal neural network can contain both important
types of neurons. Pyramidal neurons are asymmetrical in the narrow region between the dendrites
and the cell body, whereas the structures of the genus rabbit on both sides of the cell body of the
intermediate neuron are symmetrical. As a result, the two types of neurons have different effects in the
electrical field outside the cell. Besides, the network is coupled with various synaptic connections due
to the relatively local dense connectivity.
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Figure 1. The overall structure of hippocampus and the hippocampal network in the CA3 region. The
hippocampal network consists of pyramidal excitatory neurons and inhibitory neurons. These two
types of neurons are coupled to each other through excitatory and inhibitory synapses with a variety of
synaptic strengths.

In this paper, Ne = 48,000 excitatory neurons and Ni = 16,000 inhibitory neurons were used to
form a hippocampal network model, and the synapses between these neurons were connected with a
sparsity of 20%. When neuron i peaks, the synaptic current of neuron j is weighted by the presynaptic
pulse s(i, t), which is weighted by the corresponding synaptic current w(j, i). This current generation
process can be regarded as the integral process of all synaptic current to the jth neuron, which can be
defined by the following mathematical equation:

∂IS( j)/∂t =

−IS( j) +
∑

i

gsynw( j, i)s(i, t)

/τS( j) (1)

In the above formula, s(i, t) is used to indicate presynaptic impulse, and w(j, t) is used to describe
synaptic strength. For different connections between excitatory neurons and inhibitory neurons, the
parameter range of synaptic strength is different: the synaptic strength w is uniformly distributed with
wee ∈ [0, 0.65] for: excitatory-to-excitatory synapses, wei ∈ [0, 2] for excitatory-to-inhibitory synapses,
wie ∈ [−1.7, −0.8] for inhibitory-to-excitatory synapses, and wii ∈ [−1.1, −0.3] for inhibitory-to-inhibitory
synapses. τs is a constant describing the synapse time constant. For excitatory neurons, τs = 0.5
ms, and for inhibitory neurons, τs = 6 ms. The effective gain gsyn, which stands for the amplitude
response of the synaptic current neurons, is 8.7 ± 4.8 Hz and 21.1 ± 1.4 Hz for inhibitory neurons [31].
The firing rate of the excitatory field E will affect the nerve polarization of cone excitatory neurons, and
E is proportional to the applied electric field, which can be described by the following mathematical
equation:

∂IE/∂t = (−IE + SEE(t))/τE (2)

The SE in the above formula is a description of the sensitivity of the membrane to the field
determined by the cell geometry and field orientation. It should be noted that the parameter τE in the
formula is a constant value and will not change with the iteration process. At the same time, the total
input current I of the jth neuron is proposed, which is expressed as follows:
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I( j) =
{

IS( j) + IE + Icar, for jth excitatory neuron
IS( j), for jth inhibitory neuron

(3)

In this paper, in order to describe the impact caused by carbachol, Icar uses a Gaussian white
noise current with an average value of 0. The advantage of this choice is that the operation of the
endogenous hippocampal neural network can be demonstrated by applying a weak electric field.

Through the past research on neural network models, it can be found that using excitatory
neurons and inhibitory neurons to build a hippocampal neural network model can achieve very good
simulation results. Using phenomenological Izhikevich neuron [32] modeling, the differential equation
of neuronal membrane potential V(t) is as follows:

V(t + 1) =
{

aV2(t) + (b + 1)V(t) + c−U(t) + I(t), for V(t) ≤ θ,
V0, otherwise,

(4)

During the calculation iteration, the unit time step is selected to be 0.77 ms. The driving current
I(t) is an input stimulation, and θ is the threshold value. The recovery variable U(t) can be expressed
by the following equation:

U(t + 1) =
{

U(t) + [kUV(t) −U(t)]/τU, for V(t) < θ,
U(t) + ∆U otherwise,

(5)

where kU is the slope of the variation in V(t), and τU describes the relaxation time. The recovery of
the ∆U represents variables U(t) reset after the peak. The recovery of neuronal membrane potential
and the discharge rate of excitatory and inhibitory neurons in hippocampus are affected by V0, ∆U,
τU, and kU when carbachol-induced gamma oscillation emerges. Heterogeneity within the neural
network is considered by using a normally distributed expression. Table 1 shows the corresponding
parameter values. Based on these values, the network dynamics can be consistent with electrical
biological experimental results.

Table 1. Parameter values of the neuron models.

Excitatory Neuron Inhibitory Neuron

a 0.04 0.04
b 5 5
c 140 140
τu 43 ± 4.3 100 ± 0
ku 0.24 ± 0.02 0.25 ± 0
V0 −65 ± 6.5 −65 ± 0
∆U 10 ± 1 1 ± 0

3. Digital Implementation

The proposed system uses a high-end Intel Stratix III FPGA to implement a digital neuromorphic
system that can simulate large-scale hippocampal neural networks. On the FPGA chip, the hippocampal
neural network is realized using the torus architecture. The enhancement of the system throughput
depends on pipeline technology.

3.1. Network-On-Chip (NoC) Architecture

The digital structure of the proposed hippocampal neural network is based on the NoC architecture
that can enable a scalable and cost-efficient digital neuromorphic system. It is so indispensable that
it determines the hardware performance of the proposed system. In the proposed study, the torus
structure is used because it can avoid the node closure on the edge of toroidal topology; thus, the
system can show better performance. Figure 2 shows the detailed implementation of the proposed
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NoC-based SNN. The top-level NoC structure is shown in Figure 2a, which contains 64 nucleus
processors (NPs). Address event routing (AER) is essential to data communication between NPs
determined by routers. The specific structure is shown in Figure 2b: Each NP contains a neuron unit,
a router, a silicon synapse unit, and a configuration unit. The routers can transmit the data flow via
the east, south, west, or north ports. The configuration unit is used to configure the routers, which
determines the data transmission within an NP. The neuron unit is used to compute the hippocampal
neurons, and the synaptic current is calculated in the silicon synapse unit. In the router module,
the data flow is determined by hippocampal information processing (HIP) scheduling as shown in
Figure 2c.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 14 

of the proposed NoC-based SNN. The top-level NoC structure is shown in Figure 2a, which contains 
64 nucleus processors (NPs). Address event routing (AER) is essential to data communication 
between NPs determined by routers. The specific structure is shown in Figure 2b: Each NP contains 
a neuron unit, a router, a silicon synapse unit, and a configuration unit. The routers can transmit the 
data flow via the east, south, west, or north ports. The configuration unit is used to configure the 
routers, which determines the data transmission within an NP. The neuron unit is used to compute 
the hippocampal neurons, and the synaptic current is calculated in the silicon synapse unit. In the 
router module, the data flow is determined by hippocampal information processing (HIP) scheduling 
as shown in Figure 2c.  

 
(a) 

  
(b) (c) 

Figure 2. Digital implementation of the proposed hippocampal neural network. (a) Digital 
implementation of the network-on-chip (NoC) architecture; (b) Digital implementation of the nucleus 
processor (NP); (c) Digital implementation of the router. 

The NoC structure proposed in this paper uses a torus topology and requires a router with a 
dedicated routing algorithm to carry out correct data transmission, which is quite different from the 
conventional network structure. In the case of inter-chip data communication, the router receives 
external events from four adjacent NPs and sends data streams based on programmed routing 
rules from the configuration unit. The algorithm below shows the routing algorithm of the 
proposed system. The AER spike information will be firstly routed along the X direction. After 
it reaches the location along the X direction checked by the embedded router, the information will be 
then routed along the Y direction to the destination node according to the routing table. A judgement 

Figure 2. Digital implementation of the proposed hippocampal neural network. (a) Digital
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The NoC structure proposed in this paper uses a torus topology and requires a router with a
dedicated routing algorithm to carry out correct data transmission, which is quite different from the
conventional network structure. In the case of inter-chip data communication, the router receives
external events from four adjacent NPs and sends data streams based on programmed routing rules
from the configuration unit. The Algorithm 1 shows the routing algorithm of the proposed system.
The AER spike information will be firstly routed along the X direction. After it reaches the location
along the X direction checked by the embedded router, the information will be then routed along
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the Y direction to the destination node according to the routing table. A judgement is executed
during the following routing algorithm to determine the routing direction for the shorter routing
path planning. The AER data in the packet transmitted through the router is synaptic information
rather than peak information, which is different from the traditional AER-based implementation of SNN.

Algorithm 1: The HIP router for routing the packets in torus-based NoC

loop
if posedge clk then
∆x1=XC-1; ∆x2= WN-XC;
//WN: Width of the NoC, XC: xcurrent
∆y1=YC-1; ∆y2= HN-YC;
// HN: Height of the NoC, YC: ycurrent
∆xsign <-((xdest-XC) > 0)?0:l
∆ysign <- ((ydest-YC) > 0)?0:l

if ∆xsign = 0 then ∆x<- (xdest-XC); ∆xreverse<- (WN -xdest) + XC;
if ∆x ≤ ∆xreverse then Route the packet EAST;
else Route the packet WEST; end if

else {∆xsign != 0}; ∆x<- (XC-xdest); ∆xreverse<- (WN -XC) + xdest;
if ∆x ≤ ∆xreverse then Route the packet WEST;
else Route the packet EAST; end if

end if
if ∆ysign = 0 then ∆y<- (ydest-YC); ∆yreverse <- (HN -ydest) + YC;

if ∆y ≤ ∆yreverse then Route the packet SOUTH;
else Route the packet NORTH; end if

else {∆ysign != 0}; ∆y<- (YC-ydest); /∆yreverse <- (HN -YC) + ydest;
if ∆y ≤ ∆yreverse then Route the packet NORTH;
else Route the packet SOUTH; end if

end if
if XC=1 or XC=WN or YC=1 or YC= HN
then Route the packet UP;
// The situation that the current node is the edge node
elseif ∆xl>=∆x2 then Route the packet West;
else Route the packet East; end if

end if
end loop

3.2. CORDIC-Based Neuron Design

In order to solve the prior function, the coordinate rotation digital computer (CORDIC) algorithm
is used in this paper to complete the conversion between rectangular coordinates and polar coordinates.
The CORDIC algorithm can use the addition, shift, and look-up table operations to calculate basic
transcendental functions, which are complicated for the hardware computation, including sin θ, cos
θ, sinh θ, cosh θ, eθ, ln θ. The major method of the CORDIC algorithm is to rotate series of angles
which are related to the specific values for the approximation of the target angle, which is based on
multi-iteration operations. It is worth noting that the results can become more accurate as the number
of iterations increases. All the computations are based on addition and shift operation of the specific
computing results.
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The unified CORDIC algorithm employs a parameter of the plane coordinate system m to integrate
the linear rotation, circle rotation, and hyperbolic rotation in a CORDIC function set, the related
equation set can be written as follows:

Xi+1 = Xi −mξiYi · 2−i

Yi+1 = Yi + ξiXi · 2−i

Zi+1 = Zi − ξi · θi

(6)

In the function set, Xi and Yi are the result values of the ith iteration. Zi is the angle value of the
ith iteration. The number of iterations can be expressed as parameter i, and ξi is the judgment operator.
If ξi > 0, then rotate counterclockwise, and if ξi < 0, then rotate in the opposite direction, that is,
clockwise. This parameter has a specific angle used to represent the ith rotation, where m refers to the
parameter of the coordinate system. The parameter m can be equal to −1, 0, 1, and different values of
m correspond to different nonlinear functions. If m = −1, the function set can be used to represent sinh
θ and cosh θ. If m = 0, the function set can be used to calculate multiplication and division. In addition,
if m = 1, the function set can compute sin θ and cos θ. Besides, different initial values can result in
different computing results. If X0 = A + 1/4, Y0 = A − 1/4, and m = −1, the function set can be used to
solve

√
A. If X0 = A + 1, Y0 = A – 1, and m = −1, the function set can be used to solve 0.5ln A.

In the research model in this paper, the Izhikevich model is mainly used in the neuron model,
and the electrical synapse model is used to build the synapses. The CORDIC algorithm is used to realize
the functions of multiplication, division, and exponential operations. In terms of the multiplication
operation using the CORDIC algorithm, the parameters are set as m = 0, X0 = A, Y0 = B, and Z0 = 0,
and the function of Z = A × B can be calculated as:

Xi+1 = Xi
Yi+1 = Yi − ξiXi · 210−i

Zi+1 = Zi + ξi · θi

(7)

where θi = 210−i
× Xi, ξ = 1 if Yi > 0, otherwise ξi = 0. In terms of division operation, the parameters m

= 0, X0 = B, Y0 = A, Z0 = 0 and the function Z = A/B can be computed as follows:
Xi+1 = Xi
Yi+1 = Yi − ξiXi · 210−i

Zi+1 = Zi + ξi · θi

(8)

where θi = 210−i, and other parameters are the same as those in the case of multiplication. The eθ can
be calculated by the following formula set:

Xi+1 = Xi + ξiYi · 2−i

Yi+1 = Yi + ξiXi · 2−i

Zi+1 = Zi − ξi · θi

(9)

where θi = tanh−1(2−i), and it can be calculated in the range from −1.11817 to 1.11817, which is smaller
than the required range. Therefore, the data can be converted through the following equation:

θ = Q ln 2 + γ (10)

where Q∈Z, |γ| ≤ ln2 = 0.6931 and eθ = eQln2+γ = 2Qeγ. In this method, the range of eθ can be expanded
as the iteration number increases to meet the required precision.
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3.3. Neuron Implementation

In this study, the Izhikevich neuron model is used to realize the neural network. The digital
implementation is shown in Figure 3. In Figure 3a, the blocks “Reg” and “ADD” represent the register
and adder, and “SUB” stands for the subtractor. The block “MUL” represents the multiplier which is
realized based on the CORDIC algorithm in this study. For the concrete implementation of an iteration
of the CORDIC algorithm refer to Figure 3b, where “MUX” is the multiplexer. The input Xi, Yi, Zi
are the input values of the iteration, and Xi+1, Yi+1, Zi+1 are the updated results of the i + 1 iteration.
The variable is the iteration parameter of the iteration, and the specific values are based on the functions
that the CORDIC algorithm implements. The CORDIC algorithms with different iterations can meet
different precision requirements. The CORDIC algorithm can achieve more precision by increasing the
iteration number. In this study, the CORDIC algorithm uses 21 steps of iteration.
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4. Experimental Results

In order to simulate the function of a feedforward network on hardware FPGA, this paper
implements an extensible neural network based on the improved butterfly fat tree (IBFT) architecture.
Stratix III EP3SE260 FPGA can effectively implement the proposed neural network. In total, 64 NPs are
implemented with the time division multiplexing technique for a single NP. Each NP is responsible
for 1000 virtual neurons. The hardware resource cost is shown in Table 1. Traditionally, the use
of lookup tables to compute multiplication solves this problem, but this method is expensive and
backward in terms of memory resources and digital signal processing (DSP) resources. It can be clearly
found from Table 2 that the hardware resource cost of only 18 bits of DSP block using the traditional
method exceeds all available hardware resources. In contrast, the proposed implementation method
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can effectively reduce hardware resource costs in terms of the DSP and memory resources which are
extravagant elements on FPGA hardware. The proposed digital neuromorphic system operates at a
working frequency of 146.03 MHz.

Table 2. The hardware resource consumption when conventional and CORDIC-based implementation
methods are used respectively to implement the hippocampal neural network.

Resources Conventional CORDIC-Based

Combinational ALUTs 19,652/203,520 (10%) 10,642/203,520 (5%)
Memory ALUTs 490/101,760 (<1%) 712/101,760 (1%)

Dedicated logic registers 8924/203,520 (4%) 11,546/203,520 (6%)
Total block memory bits 7,771,246/15,040,512 (52%) 2106/15,040,512 (<1%)

DSP block 18-bit elements 2384/768 (310%) 0/768 (0%)
Total PLLs 1/8 (13%) 1/8 (13%)

The design and programming of the proposed digital neural morphological network is realized by
using the VHDL modeling language. On the premise of using ALTERA Quartus II to synthesize HDL
code, a Stratix III FPGA development board with 60 nm can be successfully developed. The oscilloscope
photograph of the membrane potential of the neurons in the hippocampal neural network is shown in
Figure 4. This indicates that the proposed neuromorphic hippocampal neural network can accurately
track the biodynamics in real time.
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Figure 4. Biological behaviors of the hippocampal neural network implemented on Stratix III field
programmable gate array (FPGA), which are observed on the oscilloscope device. The voltage scale is
50 mV. (a) The output of the 1st excitatory neuron in the digital neuromorphic network (time scale is
20 µs); (b) The output of the 48,000th excitatory neuron in the digital neuromorphic network (time
scale is 20 µs); (c) The output of the 1st inhibitory neuron in the digital neuromorphic network (time
scale is 20 µs); (d) The output of the 16,000th inhibitory neuron in the digital neuromorphic network
(time scale is 20 µs).

The relationship of the computational precision, the iteration number and the CORDIC module
number is shown in Figure 5a. The computational precision is defined by relative error between the
CORDIC-based results and the desired results. It shows that the precision increases with increasing
iteration number. The calculation accuracy will decrease as the number of CORDIC modules increases.
Figure 5b reveals the relationship between the number of CORDIC modules and different kinds of the
hardware resource cost. The CORDIC module can significantly reduce the hardware resource cost
of the DSP block 18-bit elements and total storage bits. Considering both Figure 5a,b, it means that
the CORDIC module in the proposed hardware implementation can save hardware resources while
maintaining high level of computational precision.
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In our study, we use frequency domain analysis to reveal how many signals are in a given
frequency band within a given frequency range. According to the previous research results, the wavelet
transform can effectively complete digital image processing and signal compression. As shown in
Figure 6a,b, modulation of extracellular oscillations with negative and positive DC stimuli resulted
in suppression and promotion of mean emissivity, respectively. During symmetrical modulation
of low-frequency AC stimulation, the average activation rate of the hippocampal neural network
increased, and the frequency of low-frequency AC stimulation was less than half (about 12 Hz) of
the endogenous magnetic field frequency. In practice, symmetric modulation means that the effect of
suppression is roughly the same as the effect of enhancement under stimulation of a low-frequency
ac field. The suppressive neurons due to the effect of the negative cycles can fire during the positive
cycles of the AC stimulation, which induces a stable network firing rate. Synchrony occurs during the
emergency of subharmonic as shown in Figure 6c,d.
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under the modulation of negative direct current; (b) The oscillation dynamics under the modulation
of positive direct current; (c) The oscillation dynamics under the modulation of low-frequency AC
stimulation; (d) The oscillation dynamics under the modulation of high-frequency AC stimulation.

Previously we have presented several works for brain-inspired neuromorphic computing. In order
to clarify the unique contribution in this study, a comparison with analysis is presented as illustrated in
Table 3. These works have been inspired by different areas of the brain, which includes visual pathway,
hippocampus, CPG (central pattern generator), Purkinje, and retina. Although [33] shares the same
brain area with the presented study, different network structures with different aims are pursued.
Study [33] uses the feedforward network structure for the implementation of the memory-related
behaviors. This study presents a unique contribution for the realization of the neuromodulatory
dynamics. In addition, this study presents a torus-based NoC design for hardware architecture, which
presents another significant contribution in comparison with the previous studies. A previous study
has revealed the advantage and necessity of the NoC design [28]. The presented study is the improved
version in comparison with our previous studies [34,35]. The previous studies [34,35] use a bus-based
NoC architecture. This work proposes a torus-based solution, which can further improve the NoC
performance of the hippocampal network on FPGA, which is the major innovation and difference in
comparison with our previous work. The weakness of the presented digital neuromorphic model
is that it can only reproduce parts of the critical dynamics of the biological hippocampus. It cannot
reproduce all the dynamics of the hippocampus region such as navigation, which should be further
explored in a future study.

Table 3. Comparison of the presented study with previous works.

Work Motivation Network Structure Hardware Architecture

[27] Visual pathway-inspired Feedforward No NoC design
[34] Hippocampus-inspired Feedforward No NoC design
[36] CPG-inspired CPG No NoC design
[37] Purkinje-inspired Recurrent No NoC design
[38] Retina-inspired Feedforward No NoC design

This study Hippocampus-inspired Recurrent Torus-based NoC design
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5. Conclusions

In this paper, a FPGA-based scalable hardware design for hippocampal neural network is presented,
and the simulation is carried out under the constraints of biological characteristics. In addition, it
is of great significance to study neural information processing and neurological diseases, since the
biological dynamics of reappearing neuroregulatory oscillations are realized based on the proposed
digital neuromorphic system. Since the NoC techniques are used in the proposed system, which
makes the proposed system more scalable than the previous studies of the digital realization of the
hippocampal network. In addition, it has been proved that the application of the CORDIC algorithm
in large-scale neural networks can improve the system performance. The proposed work could
be used in a variety of applications, such as simulation platforms for neural network dynamics,
brain-inspired intelligence, neural prostheses in brain-machine interfaces, and control circuits for
neural robots. Due to the neuromodulatory dynamics of the presented neuromorphic hippocampus,
the most two significant future directions are the studies for the realization of the adaptive bi-directional
brain-machine interface and the compact neuroprosthetics to replace the impaired counterpart in
human brain. The brain-machine interface can induce a novel kind of mixed intelligence, which is
an enhanced version of artificial intelligence. In addition, due to rhythmic dynamics of the proposed
digital neuromorphic hippocampus, it can be applied in the interaction between human brain and
the external environment to form a human-machine-environment integration system [39]. Besides,
it can also be used as a neuro-controller for intelligent robots because of the rhythmic outputs of the
neuromorphic network induced by the period input signals.
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