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Abstract: In voice conversion (VC), it is highly desirable to obtain transformed speech signals that
are perceptually close to a target speaker’s voice. To this end, a perceptually meaningful criterion
where the human auditory system was taken into consideration in measuring the distances between
the converted and the target voices was adopted in the proposed VC scheme. The conversion rules
for the features associated with the spectral envelope and the pitch modification factor were jointly
constructed so that perceptual distance measurement was minimized. This minimization problem was
solved using a deep neural network (DNN) framework where input features and target features were
derived from source speech signals and time-aligned version of target speech signals, respectively.
The validation tests were carried out for the CMU ARCTIC database to evaluate the effectiveness of
the proposed method, especially in terms of perceptual quality. The experimental results showed that
the proposed method yielded perceptually preferred results compared with independent conversion
using conventional mean-square error (MSE) criterion. The maximum improvement in perceptual
evaluation of speech quality (PESQ) was 0.312, compared with the conventional VC method.

Keywords: voice conversion; joint conversion; perceptual distance measure

1. Introduction

Voice conversion (VC) is a method of changing the features derived from speech signals, so that
one voice is made to sound like another. If the features of one speaker (reference speaker) are modified
so that the features are close to those of another specific speaker (target speaker), the resultant speech
signals sound as if it was spoken by target speaker. This technique is referred to as voice personality
transformation [1]. Voice personality transformation has numerous applications in a variety of areas
such as personification of text-to-speech synthesis systems [2,3], speaker adaptation for automatic
speech recognition [4], reducing the artifacts of abnormal speech [5], and foreign language training
systems [6].

VC is closely related with speaker recognition/identification tasks [7] and practically achieved by
using converted speech parameters to synthesize speech. The feature parameters adopted in VC reflect
the speaker-related characteristics. Typical feature parameters that satisfy such properties include
Mel-frequency cepstral coefficients (MFCCs) [8,9], linear prediction coefficients (LPCs) [10–13] and
line spectrum pair (LSP) coefficients [14–16]. Pitch period and the spectrum of LP-residual (spectral
fine structure) have also been adopted for VC [17]. These have important roles in modifying source
characteristics of the given voices [18].

The ultimate goal of VC is to convert input reference speech sounds so that it perceptually
approximates the target speaker’s voice. Since MFCCs are computed based on human auditory
systems [19], perceptual aspects have been considered to some extent in the VC techniques that have
been designed to minimize the differences in MFCCs. In most VC schemes, however, the differences
perceived by the human ear were not sufficiently addressed in constructing the conversion rules.
For example, the conversion rules for the spectral envelope of most conventional VC methods either
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minimize the mean squared errors between the converted and target MFCCs [20,21] or they minimize
the squared errors between the warped version of the reference spectra and the target spectra [22,23].
The statistical properties (e.g., the mean and standard deviation) of the converted pitch periods are
the major concerns in prosody conversion [2,24]. This indicates that the perceptual aspects have been
given limited consideration in current VC techniques. Since converted speech will be listened to by a
human, it is highly desirable to adopt human auditory-based distance as an objective function to be
minimized. Such a distance measure has already been used for various forms of speech processing
procedures, such as speech enhancement [25], speech recognition [26], speech coding [27], speech
synthesis [28,29] and speech quality evaluation [30]. This distance measure has not yet been adapted
as an objective metric in VC.

In the proposed VC method, the conversion rules for both the spectral envelope and the pitch
were designed so that the perceptual differences between the converted spectra and that of the target
speech is minimized. The perceptual evaluation of speech quality (PESQ) [30], which has been widely
used in speech quality evaluation was adopted to compute the perceptual differences. The PESQ is one
of the best known objective metrics for speech coding [30] and speech enhancement [25]. We extended
the utility of the PESQ to construct VC mapping rules and evaluate the quality of the converted
speech. The two conversion functions, one for the spectral envelope and the other for the spectral
fine structure, were cascade connected and incrementally trained to reduce the unique objective
function. This differs from the conventional VC approaches wherein the conversion rules for each
feature parameter are independently constructed by minimizing the separate distance measurements.
One of the advantages gained by the construction of cascaded conversion rules is that one step can
compensate for the conversion errors in another, thereby further reducing the overall conversion error.
The conversion function was implemented by using the deep neural networks (DNN) [31], which
were widely employed in the VC methods [32–37]. The objective function of the DNN is different from
the previous DNN-based methods where the log-likelihood [32] or the joint probability function [33]
was adopted. The WaveNet vocoder [38], which was originally developed for text-to-speech (TTS)
was fine-tuned to improve the quality of the converted speech signals [34,36]. The perceptual aspects,
however, were not addressed in construction of the conversion rules.

In addition to conventional forms of objective (such as mel-ceptral distance) and subjective (such
as MOS test) evaluation, PESQs were calculated by comparing the converted speech with time-aligned
target speech to verify the effectiveness of the proposed method. The remainder of this paper is
organized as follows. First, Section 2 introduces the overall structure of the proposed VC method,
and procedure of construction of the conversion rules. Then, the adopted distance measurement is
explained in Section 3. Estimation of the conversion parameters is described in Section 4. Experimental
results are shown in Section 5. Finally, conclusions are drawn in Section 6.

2. The Structure of the Proposed VC Method

The overall procedure proposed for the VC method appears in Figure 1 wherein a typical
conventional VC scheme is also presented for comparison. The first step of VC is analysis that
extracts a set of speech feature parameters of both the reference and target speakers. The spectral
envelop parameter and spectral fine structure were used as feature parameters, which were associated
with the vocal tract transfer function and prosody information, respectively. The linear prediction
coefficient cepstrum (LPCC) was chosen to represent the spectral envelope and the spectral fine
structure was represented with the pitch period. In practice, even if the reference/target speakers
utter the same words, it is unlikely that a synchronized set of feature sequences would be produced.
Dynamic Time Warping (DTW) [39] was first applied in a preprocessing step in order to time-align
these sequences. Time-alignment using DTW produced frame-level synchronized sequences, but
waveform-level synchronization between the neighboring frames, is not guaranteed. This could
potentially result in occurrence of undesired pitch-pulse misalignment. To cope with this problem,
a synchronized overlap and add (SOLA) method [40] was applied to the frame-level time-aligned
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target speech. A pairing of reference speech and time-aligned (both in frame-level and waveform-level)
target speech was used to construct the conversion rules and for evaluation. An example of the final
time-aligned target speech that is subsequently used for construction of the conversion rules and
evaluation is shown in Figure 2. This shows that the onset/termination times of the time-aligned target
speech are relatively consistent with those of reference speech.

When FH and FE denote the conversion functions for the LPCC and the spectral fine structure,
respectively, then the optimal conversion rules for conventional VC methods, F ∗H , F ∗E are given by

F ∗H = arg min
FH

DH(Ht, Ĥt) (1)

F ∗E = arg min
FE

DE(Et, Êt) (2)

where Ĥt = FH(Hr), Êt = FE(Er). Hr = {hr,n}N
n=1 and Ht = {ht,n}N

n=1 are the sets of the
reference and time-aligned target LPCCs, respectively, and N is the total number of the parameters
for constructing the conversion rules. In a similar manner, Er = {er,n}N

n=1 and Et = {et,n}N
n=1 are the

sets of the spectral fine structures for reference and target speakers, respectively. DH and DE are the
objective functions for the LPCC and the spectral fine structures, respectively. The mean squared error
(MSE) was mostly adopted as the objective function in previous VC methods. Equation (1) indicates
that the conversion rules for two parameters are independently obtained by minimizing each objective
function, as shown in the top of Figure 1.

In the proposed method, construction of the two conversion rules was achieved by minimizing
the unique distance measurement,

F ∗H , F ∗E = arg min
FH , FE

DPD(Ht, Ĥt, Et, Êt) (3)

where DPD is the perceptual distance measure that is explained in the next section. As illustrated
in Figure 1, the distance measurement is computed using the synthesized speech signals and the
target speech signals. That is a major difference from conventional VC schemes, in which the distance
measurements are independently computed using the corresponding feature parameters. Independent
minimization of each feature parameter leads to producing the converted speech which is close to the
target speech. However, since the synthesized speech signals are directly heard, it is more desirable to
minimize the differences between the target speech and the synthesized (converted) speech.

It is not possible to simultaneously obtainF ∗H andF ∗E . Hence, incremental estimation was adopted

in this study. Beginning with the initial rules F (0)
H , F (0)

E the conversion functions for each parameter
are updated at the i-th iteration as follows:

Re− estimation stage for FH : F (i)
H = arg minFH DPD(Ht,FH(Hr), Et,F (i−1)

E (Er))

Re− estimation stage for FE : F (i)
E = arg minFE DPD(Ht,F (i)

H (Hr), Et,FE(Er))
(4)



Appl. Sci. 2020, 10, 2884 4 of 16

The detailed explanation of minimization (4) is given in the next section. The minimization process
is repeated until a convergence threshold is reached. Assuming that each re-estimation stage yields the
conversion functions that minimize the perceptual distance, the algorithm ensures a non-increasing
sequence of the perceptual distances such as

D(0)
PD ≥ D(1)

PD ≥ ... ≥ D(i)
PD ≥ D(i+1)

PD ≥ ... (5)

where D(i)
PD = DPD(Ht,F (i)

H (Hr), Et,F (i)
E (Er)). This can be easily proved as follows. First, since the

minimum criterion is adopted in the re-estimation stage for H, the DPD is at least as small as that for
the previous re-estimation stage for E. Therefore, the following inequality holds for every i

DPD(Ht,F (i−1)
H (Hr), Et,F (i−1)

E (Er)) ≥ DPD(Ht,F (i)
H (Hr), Et,F (i−1)

E (Er)) (6)

Next, the re-estimated FE by (4) yields the minimum DPD. Thus, the following inequality also
holds for every i:

DPD(Ht,F (i)
H (Hr), Et,F (i−1)

E (Er)) ≥ DPD(Ht,F (i)
H (Hr), Et,F (i)

E (Er)) (7)

From (6) and (7), it can be easily proved that this inequality D(i−1)
PD ≥ D(i)

PD holds for every i.

Figure 1. The block diagrams of the two voice conversion (VC) schemes. Top: Conventional VC scheme.
Bottom: Proposed VC scheme.
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Figure 2. Examples of the time-aligned waveforms. Top: Reference speech. Middle: Target speech.
Bottom: Time-aligned target speech.

3. Perceptual Distance

Although the MSE has previously been shown to be a reasonably successful choice both for
modifying speaker individuality and obtaining transformed voice with high quality, it was not
guaranteed that the MSE necessarily reflected the perceptual differences. The objective of this
study is to incorporate a distance metric that sufficiently reflects the perceptual differences into
the conversion rules. Our assumption is that the usage of a perceptually relevant distance metric
ensures that the resulting converted speech sounds perceptually closer to target speech, and it is
hoped, would outperform the conventional MSE-based methods. There are several ways to implement
a perceptually relevant distance metric. The properties of the human auditory system was mostly
exploited in this kind of distance metric. Hence, frequency-selective emphasis, non-uniform frequency
sampling, and loudness transformation were adopted to measure the perceptual distance. In the
present study, the structure of the distance metric used in the PESQ, which quantitatively measured
the degree of perceptual degradation, was employed to measure the distances between the converted
and target speech signals. Accordingly, the traditional MSE-based objective function was modified by
incorporating both a symmetrical disturbance, D(s), and an asymmetrical disturbance, D(a) [25]

DPD =
1
N ∑

n

(
MSEn + αD(s)

n + βD(a)
n

)
(8)

where MSEn is the MSE of the n-th spectrum

MSEn =
1
M

M−1

∑
m=0

1
σ2

m

(
log
|Xt,n(m)|2

|X̂t,n(m)|2

)2

(9)
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where |Xt,n(m)|2 and |X̂t,n(m)|2 are, respectively, the target and converted power spectra obtained
by multiplying the spectral envelope derived from the LPCC, ht,n(m), and the spectral fine structure,
et,n(m), while σm is the standard deviation of |Xt,n(m)|2. Indices n and m denote, respectively, frame
and frequency, while M is the number of frequency bins. The number of frequency bins was chosen
according to the frame length and the sampling frequency, that was 256. In (8), α and β are weighting
factors for each disturbance. The symmetrical disturbance reflects the absolute difference between
the converted and target loudness spectra when auditory masking effects are account for. When
the symmetrical disturbance is applied to VC, it can be regarded as a distance function between the
reference and target speakers measured in a domain that reflects human auditory system. There are
two types of difference patterns in VC, one where the target value is greater than the reference value
and vice-versa. Such difference patterns cannot be reflected on the distance metric such as MSE and
the symmetrical disturbance. Whereas the signs of the loudness differences are considered in the
asymmetrical disturbance. The negative differences (loss of target spectral component) and positive
differences (residuals of reference spectral component) are differently perceived owing to masking
effects. By using the asymmetrical disturbance, the differences between the two speakers can be
described in more detail, which can lead to the improvement of the VC performance.

The calculation of symmetrical and asymmetrical disturbances reflects the human auditory system
and is composed of several steps, briefly described as follows [25,30]:

(1) Perceptual domain transformation: The target and converted loudness spectra st,n =

[St,n(0), ..., St,n(Q − 1)]T and ŝt,n = [Ŝt,n(0), ..., Ŝt,n(Q − 1)]T , which are perceptually closer to
the actual human listening are obtained as follows,

st,n = Ts[H · xt,n], ŝt,n = Ts[H · x̂t,n] (10)

where Q is the number of Bark bands, H is a Bark transformation matrix that converts the power
spectra xt,n = [Xt,n(0), ..., Xt,n(M − 1)], x̂t,n = [X̂t,n(0), ..., X̂t,n(M − 1)] into the Bark spectra
bt,n = [Bt,n(0), ..., Bt,n(Q− 1)], b̂t,n = [B̂t,n(0), ..., B̂t,n(Q− 1)], respectively. Ts[·] is the mapping
function that converts each band of the Bark spectrum to a sone loudness scale as follows,

St,n(q) = sl

(P0(q)
0.5

)γ
·
[(

0.5 + 0.5
Bt,n(q)
P0(q)

)γ
− 1
]

(11)

where sl is a loudness scaling factor, P0(q) is the absolute hearing threshold for the q-th Bark band
and γ is set to 0.23 [25]

(2) Disturbances computation: A relative small difference between the target and converted loudness
spectra can be negligible [25,30,41]. Accordingly, a center-clipping operator over the absolute
difference between the loudness spectra was applied to compute the symmetrical disturbance
vector as follows,

d(s)
n = max(|ŝt,n − st,n| −mn, 0) (12)

where mn = 0.25 ·min(ŝt,n, st,n) is a clipping factor and | · |, min(·), and max(·) are applied
element-wise, while 0 is a zero-filled vector of length Q. The asymmetrical disturbance vector is
obtained as d(a)

n = d(s)
n � rn, where � denotes an element-wise multiplication and rn is a vector

of asymmetry ratios with components computed from the Bark spectra,

Rn,q =
( B̂t,n(q) + ε

Bt,n(q) + ε

)λ
(13)

For the speech enhancement task, the constants ε and λ were set to 50 and 1.2, respectively [25].
In this study, the experiments were carried out to optimally determine the two constants, ε and λ.
The experimental results showed that the same values adopted in [25] also yielded the minimum
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DPD. The symmetrical and asymmetrical disturbance terms in (8) are given by the weighted sum
of each disturbance vector,

D(s)
n = ||wb||

1
2
1 · ||wb � d(s)

n ||2
D(a)

n = ||wb � d(a)
n ||1 = wT

b · d
(a)
n

(14)

where the components of the weight vector wb are proportional to the width of the Bard bands,
as explained in [30].

4. Estimation of the Conversion Parameters

The overall procedure of constructing the conversion parameters is explained in Figure 3. Basically,
the converted and target speech signals are represented in the frequency domain, since the perceptual
distance is computed using the power spectra. The converted spectra were given by multiplying the
spectral envelope derived from the LPCC and the pitch-scaled spectral fine structure. A supervised
learning framework was adopted where DNN [31] are used to estimate the conversion rules for the
LPCC, FH . The power spectra necessary for calculation of the perceptual distance is obtained by

xt,n = (G · ht,n)� et,n, x̂t,n = (G · ĥt,n)� êt,n (15)

where G is the transformation matrix that transforms the LPCC vector into the power spectrum. The
elements of the matrix G are given by

gij = cos
(

π
i(j + 1)
M− 1

)
, 0 ≤ i ≤ M− 1, 0 ≤ j ≤ NL (16)

where NL is the order of the LPCC. The updated estimate of the DNN weights W with a learning rate
λW is computed iteratively as follows:

Wn+1 = Wn − λW∇WDPD(Xt, X̂t) (17)

The conversion rule for the spectral fine structure,FE, was achieved by pitch modification wherein
the time-domain pitch-synchronized overlap and addition (TD-PSOLA) [6] method was performed on
the LP-residual of the reference speech. Note that pitch modification was adapted only to the voiced
regions, and hence, the pitch locations of the unvoiced regions were not changed. Since TD-PSOLA
was implemented in the time domain, the modified reference spectrum was obtained by discrete
Fourier transform (DFT) of the pitch-scaled LP-residual signal. Estimation of the conversion rule
FE is then formulated as finding the optimal pitch modification factor that minimizes the overall
perceptual distortion with the given converted LPCCs, as shown in (4). Although there was no explicit
relationship between DPD and the pitch modification factor, the convexity of the perceptual distance
function over the pitch modification factor was clearly observed for all conversion pairs, as shown in
Figure 4. Accordingly, the gradient descent algorithm was employed to find the pitch modification
factor as follows:

ϕn+1 = ϕn − λϕ∇ϕDPD(Xt, X̂t) (18)

where ϕn is the pitch modification factor that is estimated at the n-th iteration. A learning rate λϕ was
heuristically determined, that was 0.01. Note that the derivative term ∇ϕDPD cannot be computed
mathematically. The mean value theorem was employed to approximate ∇ϕDPD as follows;

∇ϕDPD(Xt, X̂t) ≈
DPD(Xt, X̂t|ϕn)− DPD(Xt, X̂t|ϕn−1)

ϕn − ϕn−1
(19)

where DPD(Xt, X̂t|ϕ) is the perceptual distance in case when the pitch modification factor is given
by ϕ.
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Figure 3. Block diagram of constructing of the conversion parameters.

Figure 4. Examples of perceptual distances according to the pitch modification factors.
Left: male-to-male. Right: male-to-female conversions.

5. Experiments and Results

5.1. Experiment Setup

The evaluation was carried out using the CMU ARCTIC database [42] for US English and was
sampled at 16 kHz. These databases were constructed as phonetically balanced, and originally designed
for unit selection speech synthesis research. These databases consist of around 1150 utterances and
includes US English male and female speakers as well as other accented speakers. Among them, two
male speakers, bdl and rms, and two female speakers, clb and slt were used. Four different voice
conversion tasks were investigated including male-to-male (rms→ bdl), male-to-female (bdl→ slt),
female-to-female (slt→ clb) and female-to-male (clb→ rms) conversion. To obtain the conversion rules,
200 utterances were used, and the remaining 100 utterances were prepared for evaluation. The order
of the LPCC was 20. The speech data were analyzed pitch-synchronously, at the manually labelled
pitch marks. For voiced regions, the frame length was set to two or three pitch periods depending
on the pitch modification factor [6], whereas the frame length was set to be constant (=25 msec) for
unvoiced regions. A pre-emphasis factor 0.95 was applied.

Since it is impossible to mathematically determine the optimum number of hidden layers and
optimum number of hidden nodes, we performed several experiments to investigate the relationship
between the number of hidden layers and objective performance in terms of overall perceptual
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distances. No clear relationship between them was found. According to the experimental results, the
best performance was achieved in case when the DNN had three hidden layers and the number of
the nodes in the hidden layer was set to 100. To prevent the network from converging to poor local
minima, a deep generative model of input features was adopted to initialize the network by a stacking
of multiple restricted Boltzmann machines (RBMs) [43,44]. The number of RBM pre-training epoches
in each layer was 20. The learning rate of the RBM training was set as 0.0005. A fixed learning rate of
0.001 was applied for the fine-tuning of the baseline. The total number of epoches at the fine-tuning
stage was 50. For both RBM pre-training and fine-tuning, The momentum was set to 0.05 for the
first five epochs, then maintained at 0.07 thereafter. Mean and variance normalization was applied
to the input and target feature vectors of the DNN. The performance of the DNN was expected to be
improved by dropout regularization [45]. Hence, dropout regularization with a keep probability of 0.8
was employed.

For comparison, the performance of the four conventional VC methods including the minimum
mean square error (MMSE)-based joint Gaussian method (JGMM) [20], the maximum likelihood
trajectory conversion method (JDGMM) [21], dynamic frequency warping with amplitude scaling
(DFW) [22], and DNN-based conversion with independent pitch scaling (MLP-ind) were also evaluated.
For all these methods, pitch modification with a fixed scale factor was employed to convert the spectral
fine structures. For each conversion, the pitch modification factors were determined so that the
statistical properties (mean and standard variation) of the converted pitch periods were matched with
those of the target pitch periods [24]. Three measurements, Mel-cepstral distance (MCD), perceptual
distance (8), and PESQ, were employed to evaluate the performance of each method objectively. Note
that all three measurements are relevant to distortions perceived by the human auditory system.
PD and PESQ, however, were newly adopted in this study. The listening tests were conducted to
subjectively evaluate the validity of the proposed VC method. The ABX test and a preference test
were performed wherein stimuli consisting of 10 sentences were presented to 20 subjects (15 males,
5 females, ages ranging from 21 to 51 years, mean: 34.3, standard deviation: 10.8). All subjects had
normal hearing ability. Although they were native Korean, they had participated in many VC tests
using English utterances. In the ABX test, the first and second stimuli, A and B, were either the
reference speaker’s or the target speaker’s, while the last stimuli X was converted speech achieved
using the underlying methods. The subjects were then asked to select either A or B as a candidate for
X. The subjects were allowed to listen to each utterance as many times as they wished before making
a judgment.

Along with the ABX test, a preference test was conducted in which the same subjects participated
in the ABX test listened to two randomly selected converted utterances per method and conversion
pair. The subjects were asked to choose the perceptually preferred stimuli. In this test, each pair of
stimuli consisted of the two converted utterances, one from the proposed method and the other from
the conventional methods. Since this test was designed to evaluate the overall quality rather than
voice personality, the subjects were asked to pay more attention to the naturalness and intelligibility of
the converted speech signals.

5.2. Determination of the Weights for Each Disturbance

The weights (α, β) for each of the disturbances in (8) were first determined so that the average
PESQ was maximized. This provided the necessary information for calculating the perceptual distance
in the future experiments. The average PESQs according to the weight for the asymmetrical disturbance,
β in (8) are plotted in Figure 5 where the weight for the symmetrical disturbance α is given by 1− β.
The correlations between the two variables (average PESQ and the asymmetrical disturbance) were
−0.9321, −0.9722, −0.9888, and 0.7172 for conversion pairs r2b (rms→ bdl), b2s (bdl→ slt), s2c (slt
→ clb), and c2r (clb→ rms), respectively. This means that except for c2r, lowering the asymmetrical
disturbances was helpful in increasing the PESQ. Such results are somewhat different from in the case
of speech enhancement, where the asymmetrical disturbance contributed to an increase in perceptual
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quality [25]. This results indicated that the perceptual similarity between the converted speech and the
target speech was not remarkably affected by the residual components of the reference speech spectra
and the loss of the target speech spectra. Whereas in speech enhancement [25], the residuals of the
unwanted components (noise spectra) and the loss of the desired components (signal spectra) highly
affected the perceptual similarity to the original speech signals. A possible reason for this results is
that in speech enhancement, the unwanted components are always less correlated with the desired
signal components, and hence, the residuals of the unwanted components and the loss of the desired
components seriously degraded the quality of the reproduced speech signals. Whereas in VC, both the
unwanted components and the desired components correspond to the reference and target spectra,
respectively. The degree of the correlation between the two components may be varied according to the
underlying two speech signals (reference and target). In other words, usefulness of the asymmetrical
disturbance may be determined by combination of the reference/target signals. For example, the two
speech signals are perceptually more correlated for the pairs (rms, bdl), (bdl, slt), and (slt, clb), compare
with the pair (clb, rms). The conversion of clb→ rms is female-to-male conversion, and hence, it can
be reasonably assumed that the perceptual correlation between them is not as high as other pairs. The
conversion of rms→ slt is also different gender conversion. However, the degree of the correlation in
the perceptual domain between them is assumed to be higher than the pair (clb, rms).

In the follows, the weights for each of the disturbances that yielded the highest average PESQ
were adopted for each conversion pair.

Figure 5. Average PESQs for each conversion pair according to the weight for the asymmetrical disturbance.

5.3. Objective Evaluation

The results are presented in Figure 6. The JGMM method revealed the best performance in terms
of MCD for all conversion pairs. This result was due to the MCC minimization criterion adopted in the
JGMM method. In terms of PD and PESQ, the proposed VC method was superior to the other methods
for all conversion pairs. This results can be explained by the fact that the objective function for the
proposed VC method was similar to that adopted in calculating the PESQ. The original purpose of
the PESQ was to perceptually compare the overall quality of clean (untouched) speech with that of
reconstructed (or distorted) speech [25,30]. The role of the PESQ in distinguishing the voices of different
speakers has not been discussed to date. Our assumption was that even if two different speakers
uttered the same sentence and the two voices were time-aligned using DTW and SOLA, the PESQ
between the two voices would be very small. This assumption was verified by the experimental result
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wherein the average PESQs between the reference voices and time-aligned target voices were 0.922,
0.581, 1.084, and 0.614 for rms→ bdl, bdl→ slt, slt→ clb, and clb→ rms conversions, respectively.
Considering the range of PESQs is −0.5 to 4.5 [30], these values are remarkably low, and hence, the
PESQ is also a good indicator of differences in voice personality. The average PESQ of the proposed
method was always higher than that between the reference and time-aligned target voices for all
conversion pairs, as shown in Figure 6. Such improvements in PESQ mainly came from conversion
to target speech, since no attempt to improve the quality was carried out on reference speech. The
experimental results also showed that the correlation between the perceptual distance and the PESQ
was −0.7315, whereas the correlation between MCD and the PESQ was 0.4805. This was graphically
verified by the scatter plots presented in Figure 7 where the perceptual distance is more clear correlated
with the PESQ, compared with MCD. Consequently, the distance metric adopted in this study is more
usful for the prediction of perceptual similarity to target speech by comparison with the previously
employed distance metric.

Figure 6. The objective evaluation results for each method, each conversion pair.
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Figure 7. Scatterplot of PESQ values. Top: Mel-cepstral distance. Bottom: Perceptual distance.

5.4. Subjective Evaluation

Although it can be inferred in the previous section, that voice personality was one of the major
factors affecting the PESQ, it was worthwhile to verify whether the PESQ results were consistent with
those from a subjective listening test. Figure 8 lists the results of the methods, other than the proposed
method, that yielded the highest score for each conversion pair. Such results are consistent with those
obtained from the objective evaluation, including PD and PESQ. This confirms that PD and PESQ
well predicted the perceptual quality of the converted speech and potentially replace the subjective
listening tests. The listeners indicated that the voices converted by the proposed method sounded
more clear than those from the MMSE, JGMM, and JDGMM methods. A common characteristics
of these three methods is that the converted features are given by a linear combination of some
representative vectors (e.g., mean vectors of each Gaussian component). This resulted in ambiguous
and unclear voices, due to the averaging effects. Such undesired effects were alleviated by adopting
the global variance (GV) compensation method [21]. The proposed method yielded the perceptually
preferred voices without GV compensation. It was not clearly verified whether perceptually more
pleasant quality of the proposed method came from the properties of the DNN-based estimator or from
the adopted objective function. Considering the fact that the MLP-dep (proposed) method yielded
higher preferences than MLP-ind, it can be said that using conversion rules based on perceptual
distance is one of the contributions of improvements in perceptual quality. Consequently, although
the evaluations were carried out on the limited number of speakers, one language, and the limited
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number of the subjects, the results appear to be somewhat promising in that some improvements
over the conventional MSE-based VC methods especially in perceptual quality could be achieved by
employing the perceptual distance measurement.

Figure 8. Subjective evaluation results with 95% confidence interval. Top: ABX test results, Bottom:
Preference test results.

6. Conclusions

A voice conversion method was proposed, based on a perceptually meaningful criterion. The
objective function resides in the conventional MMSE and in the perceptual distance. The conversion
rules for spectral envelop and spectral fine structure were jointly constructed in an iterative manner
so that the perceptual distance was decreased incrementally. The effectiveness of the proposed
method was confirmed through both objective and subjective evaluations. The experimental results
also showed that the perceptual distance revealed a strong correlation with the PESQ. Moreover, it
was confirmed that the results of the PESQ were consistent with the subjective listening test results.
Currently, a simple conversion method is adopted for the spectral fine structure, which is based on
PSOLA with a global pitch modification factor. More complicated conversion schemes for spectral
fine structures will be considered in future study, and these will include pitch modification as well as
LP-residual conversion.
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Abbreviations

The following abbreviations are used in this manuscript:

VC Voice Conversion
DNN Deep Neural Networks
MLP Multi-Layer Perceptron
MSE Mean Squared Error
PESQ Perceptual Evaluation of Speech Quality
MCC Mel Cepstral Coefficients
MFCC Mel-Frequency Cepstral Coefficients
LPC Linear Prediction Coefficients
LSP Line Spectrum Pair
MOS Most Opinion Score
DTW Dynamic Time Warping
SOLA Synchronized OverLap and Add
LPCC Linear Predictive Ceptral Coefficients
TD-PSOLA Time Domain Pitch synchronous OverLap and Add
DFT Discrete Fourier Transform
PD Perceptual Distance
MCD Mel-Cepstral Distance
RBM Restricted Boltzmann Machines
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