MBR-Assisted VFAs Production from Excess Sewage Sludge and Food Waste Slurry for Sustainable Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Seeding Inoculum
2.2. Experimental Set-Up
2.2.1. Thermal and Thermochemical Pretreatment
2.2.2. Batch Set-Up
2.2.3. Immersed Membrane Bioreactor (iMBR) Set-Up
2.3. Analytical Method
2.4. Statistical Analysis
2.5. Process Feasibility Study
3. Results and Discussion
3.1. Effect of Thermal and Thermochemical Pretreatment on Substrate Solubilization
3.2. Effect of Pretreatment and Initial pH on VFAs Production in Batch Fermentation
3.3. VFAs Production Using Immersed Membrane Bioreactor
3.4. Different Process Scenarios for the Production of VFAs for Application as a Denitrification Carbon Source
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viessman, W. Water Supply and Pollution Control; Pearson Education: London, UK, 2014. [Google Scholar]
- Henze, M.; van Loosdrecht, M.C.M.; Ekama, G.A.; Brdjanovic, D. Biological Wastewater Treatment; IWA Publishing: London, UK, 2008. [Google Scholar]
- Spellman, F.R. Handbook of Water and Wastewater Treatment Plant Operations; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Eurostat. Sewage Sludge Production and Disposal from Urban Wastewater (in Dry Substance (d.s)). Available online: https://ec.europa.eu/eurostat/databrowser/product/view/TEN00030?lang=en (accessed on 27 February 2020).
- Braguglia, C.M.; Gallipoli, A.; Gianico, A.; Pagliaccia, P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol. 2018, 248, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Paritosh, K.; Kushwaha, S.K.; Yadav, M.; Pareek, N.; Chawade, A.; Vivekanand, V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. Biomed. Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.M.; Forgács, G.; Taherzadeh, M.J.; Sárvári Horváth, I. Biogas from wastes: Processes and applications. In Resource Recovery to Approach Zero Municipal Waste; Richards, T., Taherzadeh, M.J., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 107–140. [Google Scholar]
- Wainaina, S.; Lukitawesa; Kumar Awasthi, M.; Taherzadeh, M.J. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019, 10, 437–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wainaina, S.; Parchami, M.; Mahboubi, A.; Horváth, I.S.; Taherzadeh, M.J. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour. Technol. 2019, 274, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.J.; Lim, S.J.; Chang, H.N. Volatile fatty acid platform: Concept and application. Emerg. Areas Bioeng. 2018, 1, 173–190. [Google Scholar]
- Golterman, H. Denitrification in the Nitrogen Cycle; Springer: Berlin/Heidelberg, Germany, 2013; Volume 9. [Google Scholar]
- Christensson, M.; Lie, E.; Welander, T. A comparison between ethanol and methanol as carbon sources for denitrification. Water Sci. Technol. 1994, 30, 83. [Google Scholar] [CrossRef]
- Elefsiniotis, P.; Li, D. The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochem. Eng. J. 2006, 28, 148–155. [Google Scholar] [CrossRef]
- Fass, S.; Ganaye, V.; Urbain, V.; Manem, J.; Block, J.C. Volatile fatty acids as organic carbon sources in denitrification. Environ. Technol. 1994, 15, 459–467. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Shin, S.G.; Hwang, S.; Lee, C. Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source. Bioresour. Technol. 2016, 207, 440–445. [Google Scholar] [CrossRef]
- Elefsiniotis, P.; Wareham, D.G.; Smith, M.O. Use of volatile fatty acids from an acid-phase digester for denitrification. J. Biotechnol. 2004, 114, 289–297. [Google Scholar] [CrossRef]
- Elefsiniotis, P.; Wareham, D.G. Utilization patterns of volatile fatty acids in the denitrification reaction. Enzym. Microb. Technol. 2007, 41, 92–97. [Google Scholar] [CrossRef]
- Longo, S.; Katsou, E.; Malamis, S.; Frison, N.; Renzi, D.; Fatone, F. Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants. Bioresour. Technol. 2015, 175, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Chua, A.S.M.; Yeoh, H.K.; Ngoh, G.C. A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 2014, 235, 83–99. [Google Scholar] [CrossRef]
- Trad, Z.; Akimbomi, J.; Vial, C.; Larroche, C.; Taherzadeh, M.J.; Fontaine, J.-P. Development of a submerged anaerobic membrane bioreactor for concurrent extraction of volatile fatty acids and biohydrogen production. Bioresour. Technol. 2015, 196, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Zacharof, M.P.; Lovitt, R.W. Recovery of volatile fatty acids (VFA) from complex waste effluents using membranes. Water Sci. Technol. 2014, 69, 495–503. [Google Scholar] [CrossRef]
- Mumtaz, T.; Abd-Aziz, S.; Rahman, N.A.; Yee, P.L.; Shirai, Y.; Hassan, M. Pilot-scale recovery of low molecular weight organic acids from anaerobically treated palm oil mill effluent (POME) with energy integrated system. Afr. J. Biotechnol. 2008, 7, 3900–3905. [Google Scholar]
- Mostafa, N.A. Production and recovery of volatile fatty acids from fermentation broth. Energy Convers. Manag. 1999, 40, 1543–1553. [Google Scholar] [CrossRef]
- Chen, H.; Meng, H.; Nie, Z.; Zhang, M. Polyhydroxyalkanoate production from fermented volatile fatty acids: Effect of pH and feeding regimes. Bioresour. Technol. 2013, 128, 533–538. [Google Scholar] [CrossRef]
- Huang, C.; Xu, T.; Zhang, Y.; Xue, Y.; Chen, G. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. J. Membr. Sci. 2007, 288, 1–12. [Google Scholar] [CrossRef]
- Mahboubi, A.; Ylitervo, P.; Doyen, W.; De Wever, H.; Taherzadeh, M.J. Reverse membrane bioreactor: Introduction to a new technology for biofuel production. Biotechnol. Adv. 2016, 34, 954–975. [Google Scholar] [CrossRef] [Green Version]
- Wainaina, S.; Awasthi, M.K.; Horváth, I.S.; Taherzadeh, M.J. Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors. Renew. Energy 2020, 152, 1140–1148. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Pollution Control Federation; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1920. [Google Scholar]
- Xue, Y.; Liu, H.; Chen, S.; Dichtl, N.; Dai, X.; Li, N. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem. Eng. J. 2015, 264, 174–180. [Google Scholar] [CrossRef]
- Penaud, V.; Delgenes, J.P.; Moletta, R. Thermo-chemical pretreatment of a microbial biomass: Influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzym. Microb. Technol. 1999, 25, 258–263. [Google Scholar] [CrossRef]
- Kim, J.; Park, C.; Kim, T.-H.; Lee, M.; Kim, S.; Kim, S.-W.; Lee, J. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 2003, 95, 271–275. [Google Scholar] [CrossRef]
- Liu, C.-F.; Yuan, X.-Z.; Zeng, G.-M.; Li, W.-W.; Li, J. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour. Technol. 2008, 99, 882–888. [Google Scholar] [CrossRef]
- Zhai, N.; Zhang, T.; Yin, D.; Yang, G.; Wang, X.; Ren, G.; Feng, Y. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Manag. 2015, 38, 126–131. [Google Scholar] [CrossRef]
- Hussain, A.; Filiatrault, M.; Guiot, S.R. Acidogenic digestion of food waste in a thermophilic leach bed reactor: Effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production. Bioresour. Technol. 2017, 245, 1–9. [Google Scholar] [CrossRef]
- Min, K.S.; Park, K.S.; Jung, Y.J.; Khan, A.R.; Kim, Y.J. Acidogenic Fermentation: Utilization of Wasted Sludge as a Carbon Source in the Denitrification Process. Environ. Technol. 2002, 23, 293–302. [Google Scholar] [CrossRef]
Property | Excess Sewage Sludge | Food Waste Slurry |
---|---|---|
pH | 6.0 ± 0.10 | 4.1 ± 0.04 |
TSS (g/L) | 61.6 ± 0.92 | 131.9 ± 1.09 |
VSS (g/L) | 38.3 ± 0.71 | 125.5 ± 1.02 |
Total COD (g/L) | 80.5 ± 2.50 | 217.0 ± 1.00 |
Soluble COD (g/L) | 5.35 ± 0.15 | 86.00 ± 0.50 |
NH4+-N (g/L) | 0.86 ± 0.02 | 0.49 ± 0.01 |
PO43−-P (g/L) | 0.04 ± 0.00 | 1.02 ± 0.00 |
Pretreatment Mode | Substrate | Initial pH | Final pH | Total Gas Produced (mL) | Methane (mL) |
---|---|---|---|---|---|
No pretreatment | excess sewage sludge | 5 | 5.09 ± 0.03 | 13.0 ± 0.5 | 8.9 ± 0.6 |
8 | 7.30 ± 0.02 | 177.9 ± 4.2 | 103.5 ± 4.1 | ||
10 | 7.37 ± 0.03 | 88.6 ± 9.7 | 60.0 ± 9.9 | ||
12 | 8.30 ± 0.60 | 11.5 ± 4.3 | 0.7 ± 0.3 | ||
food waste slurry | 5 | 4.38 ± 0.02 | 38.0 ± 2.3 | 8.2 ± 1.1 | |
8 | 4.50 ± 0.00 | 89.7 ± 14.2 | 9.2 ± 0.5 | ||
10 | 4.66 ± 0.02 | 111.3 ± 1.4 | 10.5 ± 0.5 | ||
12 | 4.97 ± 0.03 | 34.4 ± 5.3 | 2.8 ± 0.9 | ||
Thermal pretreatment at 90 °C for 30 min | excess sewage sludge | 5 | 6.72 ± 0.06 | 69.0 ± 3.6 | 8.4 ± 1.8 |
8 | 7.37 ± 0.01 | 78.7 ± 22.6 | 48.6 ± 3.6 | ||
10 | 7.51 ± 0.04 | 100.2 ± 3.9 | 16.9 ± 1.9 | ||
12 | 9.38 ± 0.06 | 19.0 ± 6.4 | 0.9 ± 0.3 | ||
food waste slurry | 5 | 4.87 ± 0.13 | 94.2 ± 16.6 | 8.4 ± 0.2 | |
8 | 5.09 ± 0.11 | 108.1 ± 11.2 | 12.5 ± 0.8 | ||
10 | 5.18 ± 0.08 | 88.2 ± 39.2 | 2.6 ± 1.0 | ||
12 | 5.19 ± 0.14 | 62.3 ± 8.7 | 2.7 ± 2.3 | ||
Pretreatment with NaOH at 90 °C for 30 min | excess sewage sludge | 5 | 6.65 ± 0.03 | 85.6 ± 12.1 | 5.7 ± 0.6 |
8 | 7.21 ± 0.09 | 81.4 ± 6.1 | 18.9 ± 1.2 | ||
10 | 7.48 ± 0.05 | 35.7 ± 7.4 | 9.6 ± 1.4 | ||
12 | 9.29 ± 0.03 | 7.3 ± 2.8 | 1.6 ± 0.5 | ||
food waste slurry | 5 | 4.87 ± 0.08 | 68.4 ± 12.9 | 6.4 ± 1.3 | |
8 | 5.09 ± 0.02 | 98.0 ± 11.8 | 12.0 ± 1.8 | ||
10 | 5.18 ± 0.02 | 87.6 ± 3.7 | 3.8 ± 0.8 | ||
12 | 5.19 ± 010 | 87.0 ± 4.0 | 6.8 ± 1.4 |
Parameter | Value |
---|---|
In flow-denitrification (m3/s) | 2.5 |
Denitrification (kgN/h) | 91.2 |
C/N ratio (kg COD methanol/kgN) | 4.8 |
Methanol COD consumption (kgCOD/h) | 439.4 |
Methanol consumption (kg/h) | 298.9 |
Methanol cost (€/kg) | 0.467 |
Methanol cost (€/kgN) | 1.094 |
Cost of methanol used per hour (€/h) | 139.6 |
COD equivalent of methanol (ton COD/ton methanol) | 1.47 |
NO3 out through the effluent (mg/L) | 1.3 |
VFA solution flow to denitrification inflow ratio | 0.0054 |
Cost of equivalent VFA COD production per hour (€/h) | 11.88 |
Parameter | Value | |
---|---|---|
Scenario 1 | Total MBR volume | 11,700 m3 |
VFA production | 298 Kg/h (440 KgCOD/h equivalent) | |
Membrane area | 6510 m2 | |
Flow rate of VFA solution required for denitrification | 0.5% of the total denitrification flow (49 m3/h) | |
Estimated price of VFA produced | ~238 €/h | |
Estimated cost of VFA production | ~12–14 €/h | |
Scenario 2 | MBR volume | 7520 m3 (same biogas reactor or new reactor) |
VFA production | 319 Kg/h (440 KgCOD/h equivalent) | |
Membrane area | 4185 m2 | |
Flow rate of VFA solution required for denitrification | 0.3% of the total denitrification flow (29.5 m3/h) | |
Estimated price of VFA produced | ~255 €/h | |
Estimated cost of VFA production | ~8–10 €/h |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parchami, M.; Wainaina, S.; Mahboubi, A.; I’Ons, D.; Taherzadeh, M.J. MBR-Assisted VFAs Production from Excess Sewage Sludge and Food Waste Slurry for Sustainable Wastewater Treatment. Appl. Sci. 2020, 10, 2921. https://doi.org/10.3390/app10082921
Parchami M, Wainaina S, Mahboubi A, I’Ons D, Taherzadeh MJ. MBR-Assisted VFAs Production from Excess Sewage Sludge and Food Waste Slurry for Sustainable Wastewater Treatment. Applied Sciences. 2020; 10(8):2921. https://doi.org/10.3390/app10082921
Chicago/Turabian StyleParchami, Mohsen, Steven Wainaina, Amir Mahboubi, David I’Ons, and Mohammad J. Taherzadeh. 2020. "MBR-Assisted VFAs Production from Excess Sewage Sludge and Food Waste Slurry for Sustainable Wastewater Treatment" Applied Sciences 10, no. 8: 2921. https://doi.org/10.3390/app10082921
APA StyleParchami, M., Wainaina, S., Mahboubi, A., I’Ons, D., & Taherzadeh, M. J. (2020). MBR-Assisted VFAs Production from Excess Sewage Sludge and Food Waste Slurry for Sustainable Wastewater Treatment. Applied Sciences, 10(8), 2921. https://doi.org/10.3390/app10082921