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Abstract: The infrared absorption efficiency (IAE) enhancement of the complementary-metal-oxide-
semiconductorCMOS compatible thermopile with special subwavelength hole arrays in an active
area was numerically investigated by the finite-difference time-domain method. It was found that the
absorption efficiency of that thermopile was enhanced when the subwavelength rectangular-hole array
added extra rectangular-columnar or ellipse-columnar structures in the hole array. The simulation
results show that the IAEs of the better cases for the three types of rectangular columns and three
ellipse columns were increased by 14.4% and 15.2%, respectively. Such special subwavelength hole
arrays can be improved by the IAE of the CMOS compatible thermopile.

Keywords: subwavelength; subwavelength hole arrays; thermopile; CMOS-MEMS; infrared radiation;
infrared sensors

1. Introduction

With the advancement of computer-aided design and micro/nano-fabrication technologies [1],
optical elements with functional micro-/nano-structures have been successfully used to improve
the performance of components or modules, such as light-emitting diodes [2,3], photodetectors [4],
solar systems [5,6], displays [7], and glass components [8]. The anti-reflective optical film having
subwavelength structure arrays on its surface, and replicated by the use of a roll to roll micro-replication
process is numerically and experimentally investigated [9,10]. The experimental results show that the
Fresnel reflection on the interface surface is obviously suppressed when the subwavelength structure
arrays exist on the surface of the optical film. In addition, metal films or doped silicon wafers with
subwavelength hole arrays (SHAs) have been proposed to enhance the transmission [11–15]. Ebbesen
et al. discovered the optical transmission of subwavelength cylindrical cavities in metal films could be
significantly enhanced [11]. For such optically thick metal films, the zero-order transmission spectra are
clearly related to the geometry of the hole array [11,12]. The transmission of terahertz radiation through
highly doped silicon wafers with SHAs has been experimentally investigated [14,15]. It was found that
the transmission is significantly enhanced, and the enhancement is related to the hole size and array
thickness. We demonstrate extraordinary THz transmission of an array of subwavelength apertures
patterned on ultrathin highly doped silicon by reactive ion etching. Additionally, several subwavelength
hole arrays structured in the active area of the complementary-metal-oxide-semiconductorCMOS
compatible thermopile are investigated [16]. It is numerically and experimentally shown that the
measurement results are consistent with that of the simulation results, and the infrared absorption
efficiency (IAE) is significantly enhanced. There is an interesting phenomenon to be discovered; the
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rectangular column (RC) or ellipse column (EC) in a rectangular hole, which can be enhanced by
the IAE of that thermopile for the best case in [16] (the rectangular type with the hole length 15 µm,
the hole width 3.5 µm, and the array thickness 3.5 µm).

In this study, we investigated several special subwavelength columnar structures in the rectangular
hole of the best case of [16], to enhance the infrared absorption efficiency of CMOS compatible
thermopiles. Using the finite-difference time-domain (FDTD) method, we researched the best geometry
of the extra subwavelength columnar structures (ESCS). It was obtained that for the three types of RCs
and three ECs, the IAE enhancements of those thermopiles are 14.40% and 15.21%, respectively.

2. Simulation Method

The sketch of the proposed CMOS compatible thermopile is shown in Figure 1. Here Go is the
total thermal conductance, Th is the hot junction temperature, and Ta is the ambient temperature.
The infrared radiation is absorbed in the active area on the front-side of a thermopile. The fabrication
of the CMOS compatible thermopiles with SHA was considered as it uses the 0.35 µm 2P4M CMOS-
micro-electro-mechanical systems (MEMS) process in the Taiwan Semiconductor Manufacturing
Company (TSMC) [16].

In the above premise, we designed a thermopile with various SHAs by using the FDTD method.
The FDTD method is an accurate and available technique to study thermopiles with SHA [13]. The sketch
of the simulation model is shown in Figure 2, where no is the air refractive index and ns is the SiO2

refractive index. Here we considered n0 = 1 and ns = 1.42. For the FDTD method, an artificial boundary
condition was required to suppress reflections at the analysis windows. The perfectly matched layer
(PML) (ABC) is an absorbing boundary condition and is used to truncate the computational domain
without reflection [17,18]. A perfect matched layer (PML) was applied to decrease the error caused by
simulated region boundaries.

To explore the effect of the CMOS compatible thermopile with those ESCSs in the rectangular hole
of the best case in [16], we considered six ESCSs and looked for the best geometry of the ESCSs by
using the FDTD method. The six ESCSs included one RC, two RCs, three RCs, one EC, two ECs, and
three ECs, and the top-view sketch is shown in Figure 3. Geometric parameters of the rectangular hole
taken from [16] (the best SHA case) are a hole length (in the x-axis direction) of 15 µm, a hole width
(in the x-axis direction) of 3.5 µm, and an array thickness of 3.5 µm. One can see that, based on the
requirements of structure and heat conduction, we added some connection structures to connect those
ESCSs to the main structure and set its value to 0.8 µm. The structures can be fabricated by the etching
of layers and substrates beneath the floating structures. For the rectangular column, the geometric
dimensions in the x-axis and y-axis directions are Wx and Wy, respectively. For the ellipse column, the
geometric dimensions in the x-axis and y-axis directions were Dx and Dy, respectively.
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Figure 1. Sketch of the proposed CMOS compatible thermopile and heat conduction. SHA = subwavelength
hole arrays, ESCS = extra subwavelength columnar structures.
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Figure 3. Top-view sketch of the six ESCSs, (a) one rectangular column (RC), (b) two RCs, (c) three
RCs, (d) one ellipse column (EC), (e) two ECs, and (f) three ECs.

3. Results and Discussion

For convenience, the relative IAE is used to reveal the effect of the CMOS compatible thermopile
with those ESCS and is defined as the IAE of that thermopile with the ESCS is relative to one without
the ESCS and is written as:

Relative IAE =
the IAE of that thermopile with the ESCS

the IAE of that thermopile without the ESCS
(1)

For the types of rectangular column, the variances of the relative IAEs with different Wx and Wy

for the thermopiles with RC-type ESCSs at the target temperature of 75 ◦C are shown in Figure 4. It was
seen that for the types of one RC, two RCs, and three RCs, the better relative IAEs were 1.128, 1.127, and
1.144 times, respectively. It was obtained that the Wx and Wy of the better case are 2.6 µm and 1.8 µm,
respectively. For the types of ellipse column, the variances of the relative IAEs with different Wx and
Wy for the thermopiles with EC-type ESCSs at the target temperature 75 ◦C are shown in Figure 5. One
can see that for the types of one EC, two ECs, and three ECs, the better relative IAEs are 1.130, 1.132,
and 1.152 times, respectively. It was obtained that the Dx and Dy of the better case were 3.2 µm and
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1.5 µm, respectively. Those results of the better relative IAEs and the geometric parameters for the
six ESCSs are listed in Table 1. Finally, the variances of the IAEs with the target temperature for the
SHA thermopiles of (a) the best case in this study and (b) the best case in [16], and (c) the thermopile
without SHA, are shown in Figure 6. One can see that the IAE of the CMOS compatible thermopiles
was significantly enhanced when the subwavelength hole structure existed in the active area of the
thermopiles, especially when the special structure in the rectangular hole array was added.
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Table 1. Better relative IAEs and geometric parameters for the six ESCSs.

ESCS Type
Geometric Parameters

Relative IAE
Wx/Dx (µm) Wy/Dy (µm)

One RC 11.2 1.7 1.128
Two RCs 4.6 2.1 1.127

Three RCs 2.6 1.8 1.144
One EC 11.8 1.3 1.130
Two ECs 5.2 1.7 1.132

Three ECs 3.2 1.5 1.152
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time-domain method. It was found that the subwavelength rectangular-hole arrays with
rectangular-columnar or ellipse-columnar structures in the hole array could be enhanced the absorption
efficiency of this thermopile. It was obtained that, for the types of three RCs and three ECs, the
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