Skin Lesion Segmentation Using Image Bit-Plane Multilayer Approach
Abstract
:1. Introduction
2. Prior Research
3. Adopted Techniques
4. Implemented Method
Input |
|
Pre-processing phase |
|
Segmentation phase |
|
Post-processing phase |
|
Output |
|
4.1. Preprocessing Phase
4.2. Segmentation Phase
- for (i, j), with (i ≠ j)
- // definitions
- AND = U(j) & U(k);
- AnotB = (1-U(j)) & U(k);
- notAB = (1-U(k)) & U(j);
- // operations
- U(j) = AND | AnotB;
- U(k) = (AND | notAB);
- end
4.3. Post-Processing Phase
5. Adopted Database
6. Experimental Results
6.1. Evaluation Metrics
- TP (number of true positives) is the number of lesion pixels correctly classified as lesion inside the image under test.
- FN (the number of false negatives) is the number of lesion pixels incorrectly identified as non-lesion.
- FP (the number of false positives) is the number of non-lesion pixels incorrectly identified as lesion.
- TN (the number of true negatives) is the number of non-lesion pixels correctly identified as non-lesion.
6.2. Results
7. Discussions and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Campbell, B.; Dobson, L.; Higgins, J.; Dillon, B.; Marlow, M.; Pomfrett, C. A new health technology assessment system for devices: The first five years. Int. J. Technol. Assess. Health Care 2017, 33, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzi, M.; D’aloia, M.; Cice, G. Computer aided evaluation (CAE) of morphologic changes in pigmented skin lesions. Lect. Notes Comput. Sci. 2015, 9281, 250–257. [Google Scholar] [CrossRef]
- Velázquez, J.S.; Cavas, F.; Bolarín, J.M.; Alió, J.L. 3D Printed Personalized Corneal Models as a Tool for Improving Patient’s Knowledge of an Asymmetric Disease. Symmetry 2020, 12, 151. [Google Scholar] [CrossRef] [Green Version]
- Giorgio, A.; Rizzi, M.; Guaragnella, C. Efficient Detection of Ventricular Late Potentials on ECG Signals Based on Wavelet Denoising and SVM Classification. Information 2019, 10, 328. [Google Scholar] [CrossRef] [Green Version]
- Bolarín, J.M.; Cava, F.; Velázquez, J.; Alió, J. A Machine-Learning Model Based on Morphogeometric Parameters for RETICS Disease Classification and GUI Development. Appl. Sci. 2020, 10, 1874. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, M.; D’Aloia, M. Computer aided system for breast cancer diagnosis. Biomed. Eng. Appl. Basis Commun. 2014, 26, 3–11. [Google Scholar] [CrossRef]
- Abdel-Nasser, M.; Moreno, A.; Puig, D. Breast Cancer Detection in Thermal Infrared Images Using Representation Learning and Texture Analysis Methods. Electronics 2019, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- D’Aloia, M.; Rizzi, M. Noisy ECG signal analysis for automatic peak detection. Information 2019, 10, 35. [Google Scholar] [CrossRef]
- Melanoma. Available online: https://www.epicentro.iss.it/melanoma/ (accessed on 8 January 2020).
- Melanoma: Incidenza e Mortalità. Available online: https://www.infomedics.it/therapeutic-areas/melanoma/epidemiologia.html (accessed on 8 January 2020).
- Petruk, V.G.; Ivanov, A.P.; Kvaternyuk, S.M.; Barunb, V.V. Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics. J. Appl. Spectrosc. 2016, 83, 261–270. [Google Scholar] [CrossRef]
- Argenziano, G.; Soyer, H.P.; Chimenti, S.; Talamini, R.; Corona, R.; Sera, F.; Binder, M.; Cerroni, L.; De Rosa, G.; Ferrara, G.; et al. Dermoscopy of pigmented skin lesions: Results of a consensus meeting via the Internet. J. Am. Acad. Dermatol. 2003, 48, 679–693. [Google Scholar] [CrossRef] [Green Version]
- Carrera, C.; Marchetti, M.A.; Dusza, S.W.; Argenziano, G.; Braun, R.P.; Halpern, A.C.; Jaimes, N.; Kittler, H.J.; Malvehy, J.; Menzies, S.W.; et al. Validity and Reliability of Dermoscopic Criteria Used to Differentiate Nevi from Melanoma A Web-Based International Dermoscopy Society Study. JAMA Dermatol. 2016, 52, 798–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Chen, Y. Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging; Springer Publishing Company: Cham, Switzerland, 2018; ISBN 978-3-319-68842-8. [Google Scholar]
- Okur, E.; Turkan, M. A survey on automated melanoma detection. Eng. Appl. Artif. Intell. 2018, 73, 50–67. [Google Scholar] [CrossRef]
- Revathi, V.L.; Chithra, A.S. Review on Segmentation Techniques in Skin Lesion Images. Int. Res. J. Eng. Technol. 2015, 2, 2598–2603. [Google Scholar]
- Mendonc, T.; Ferreira, M.P.; Marques, J.S.; Marcal, A.R.S. PH 2-A dermoscopic image database for research and benchmarking. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5437–5440. [Google Scholar] [CrossRef]
- Pathana, S.; Gopalakrishna Prabhub, K.; Siddalingaswamya, P.C. Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—A review. Biomed. Signal Process. Control 2018, 39, 237–262. [Google Scholar] [CrossRef]
- Vesal, S.; Malakarjun Patil, S.; Ravikumar, N.; Maier, A.K. A Multi-task Framework for Skin Lesion Detection and Segmentation. In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis; Stoyanov, D., Taylor, Z., Sarikaya, D., McLeod, J., Ballester, M.A., Codella, N.C., Martel, A., Maier-Hein, L., Malpani, A., Zenati, M.A., et al., Eds.; CARE 2018, CLIP 2018, OR 2.0 2018, ISIC 2018; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11041. [Google Scholar] [CrossRef] [Green Version]
- Celebi, M.E.; Wen, Q.; Iyatomi, H.; Shimizu, K.; Zhou, H.; Schaefer, G. A State-of-the-Art Survey on Lesion Border Detection in Dermoscopy Images. In Dermoscopy Image Analysis; CRC Press: Boca Raton, FL, USA, 2015; pp. 97–129. [Google Scholar]
- Olugbara, O.O.; Taiwo, T.B.; Heukelman, D. Segmentation of Melanoma Skin Lesion Using Perceptual Color Difference Saliency with Morphological Analysis. Math. Probl. Eng. 2018, 2018, 1524286. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, N.; Wang, Y.; Wang, M. Segmentation of dermoscopy image using adversarial networks. Multimed. Tools Appl. 2019, 78, 10965–10981. [Google Scholar] [CrossRef]
- Riaz, F.; Naeem, S.; Nawaz, R.; Coimbra, M. Active Contours Based Segmentation and Lesion Periphery Analysis for Characterization of Skin Lesions in Dermoscopy Images. IEEE J. Biomed. Health Inform. 2019, 23, 489–500. [Google Scholar] [CrossRef]
- Meskini, E.; Helfroush, M.S.; Kazemi, K.; Sepaskhah, M. A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images. J. Biomed. Phys. Eng. 2018, 8, 117–126. [Google Scholar] [CrossRef]
- Pathana, S.; Gopalakrishna Prabhub, K.; Siddalingaswamya, P.C. Hair detection and lesion segmentation in dermoscopic images using domain knowledge. Med. Biol. Eng. Comput. 2018, 56, 2051–2065. [Google Scholar] [CrossRef]
- Ma, Z.; Tavares, J.M.R.S. A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J. Biomed. Health Inform. 2016, 20, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Garnavia, R.; Aldeena, M.; Celebi, M.E.; Varigosc, G.; Finch, S. Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput. Med. Imaging Graph. 2011, 35, 105–115. [Google Scholar] [CrossRef]
- Pennisi, A.; Bloisi, D.; Nardi, D.; Giampetruzzi, A.R.; Mondino, C.; Facchiano, A. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection. Comput. Med. Imaging Graph. 2016, 52, 89–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, T.; Chen, Y.; Lu, J.; Fan, Z. Sampling with level set for pigmented skin lesion segmentation. Signal Image Video Process. 2019, 13, 813–821. [Google Scholar] [CrossRef]
- Khan, M.A.; Akram, T.; Sharif, M.; Shahzad, A.; Aurangzeb, K.; Alhussein, M.; Haider, S.; Altamrah, A. An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer 2018, 18, 638. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chao, M.; Lo, Y. Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance. IEEE Trans. Med. Imaging 2017, 36, 1876–1886. [Google Scholar] [CrossRef] [PubMed]
- Baghersalimi, S.; Bozorgtabar, B.; Schmid-Saugeo, P.; Ekenel, H.K.; Thiran, J.P. DermoNet: Densely linked convolutional neural network for efficient skin lesion segmentation. Eurasip J. Image Video Process. 2019, 2019, 71. [Google Scholar] [CrossRef] [Green Version]
- Bi, L.; Kim, J.; Ahn, E.; Kumar, A.; Fulham, M.; Feng, D. Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks. IEEE Trans. Biomed. Eng. 2017, 64, 2065–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, L.; Kim, J.; Ahn, E.; Kumar, A.; Feng, D.; Fulham, M. Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recognit. 2019, 85, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Ünver, H.M.; Ayan, E. Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm. Diagnostics 2019, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Rother, C.; Kolmogorov, V.; Blake, A. Grabcut: Interactive foreground extraction using iterated graph cuts. In Proceedings of the SIGGRAPH04: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 8–12 August 2004; pp. 309–314. [Google Scholar] [CrossRef]
- Patino, D.; Avendano, J.; Branc, J.W. Automatic Skin Lesion Segmentation on Dermoscopic Images by the Means of Superpixel Merging. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2018; Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11073. [Google Scholar] [CrossRef] [Green Version]
- Aljanabi, M.; Özok, Y.E.; Rahebi, J.; Abdullah, A.S. Skin Lesion Segmentation Method for Dermoscopy Images Using Artificial Bee Colony Algorithm. Symmetry 2018, 10, 347. [Google Scholar] [CrossRef] [Green Version]
- Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. Numer. Math. 1970, 14, 403–420. [Google Scholar] [CrossRef]
- Guaragnella, C.; Giorgio, A.; Rizzi, M. Marginal component analysis of ECG signals for beat-to-beat detection of ventricular late potentials. Electronics 2019, 8, 1000. [Google Scholar] [CrossRef] [Green Version]
- PH2 Database. Available online: https://www.fc.up.pt/addi/ph2%20database.html (accessed on 10 March 2020).
- Sachdeva, S. Fitzpatrick skin typing: Applications in dermatology. Indian J. Dermatol. Venereol. Leprol. 2009, 75, 93–96. [Google Scholar] [CrossRef]
- ISIC 2017: Skin Lesion Analysis Towards Melanoma Detection. Available online: https://challenge2017.isic-archive.com/ (accessed on 20 March 2020).
- ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection. Available online: https://challenge2018.isic-archive.com/ (accessed on 20 March 2020).
- ISIC 2019: Skin Lesion Analysis Towards Melanoma Detection. Available online: https://challenge2019.isic-archive.com/ (accessed on 20 March 2020).
- Rizz, M.; D’Aloia, M.; Castagnolo, B. A supervised method for microcalcification cluster diagnosis. Integr. Comput. Aided Eng. 2013, 20, 157–167. [Google Scholar] [CrossRef]
- Gogtay, N.J.; Thatte, U.M. Statistical Evaluation of Diagnostic Tests (Part 1): Sensitivity, Specificity, Positive and Negative Predictive Values. J. Assoc. Physicians India 2017, 65, 80–84. [Google Scholar] [PubMed]
- Ahn, E.; Kim, J.; Bi, L.; Kumar, A.; Li, C.; Fulham, M.; Feng, D.D. Saliency-Based Lesion Segmentation Via Background Detection in Dermoscopic Images. IEEE J. Biomed. Health Inform. 2017, 21, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Kim, J.; Ahn, E.; Feng, D.; Fulham, M. Automated skin lesion segmentation via image-wise supervised learning and multi-scale superpixel based cellular automata. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016), Prague, Czech Republic, 13–16 April 2016; pp. 1059–1062. [Google Scholar] [CrossRef]
Paper | Performance [%] | ||||
---|---|---|---|---|---|
Se | Sp | Ac | DI | JA | |
Vesal S et al. ref. n. [19] | 95.2 | 92.5 | 96.4 | 94.6 | 89.9 |
Olugbara O.O. et al. ref. n. [21] | 95.86 | - | 98.47 | 95.22 | - |
Peng Y., et al. ref. n. [22] | 87 | 97 | 93 | 90 | 85 |
Riaz F. et al. ref. n. [23] | - | - | - | 86.54 | - |
Pathana S. et al., ref. n. [25] | 87.6 | 95.3 | 93.4 | - | - |
Pennisi A et al., ref. n. [28] | 80.24 | 97.22 | 89.66 | - | - |
Khan MA et al. ref n. [30] | 96.67 | 98.74 | 97.5 | - | - |
Baghersalimi S et al., ref. n. [32] | - | - | - | 91.5 | 85.3 |
Bi L. et al. ref. n. [33] | 94.89 | 93.98 | 94.24 | 90.66 | 83.99 |
Bi L. et al. ref. n. [34] | 96.23 | 94.52 | 95.30 | 92.10 | 85.90 |
Ünver H.M et al. ref. n. [35] | 83.63 | 94.02 | 92.99 | 88.13 | 79.54 |
Patino D. et al. ref. n. [38] | 91.04 | 89.73 | 90.39 | 89.18 | - |
Aljanabi M. et al. ref. n. [39] | 95.50 | 98.40 | 96.02 | 92.24 | 85.25 |
Proposed method | 93.60 | 98.77 | 95.37 | 95.32 | 91.05 |
a | |||||
---|---|---|---|---|---|
Paper | Performance [%] | ||||
Se | Sp | Ac | DI | JA | |
Pennisi A et al. ref. n. [28] | 54.04 | 95.97 | 66.15 | - | - |
Bi L. et al. ref. n. [33] | 91.88 | 89.42 | 88.78 | 90.25 | 83.35 |
Bi L. et al. ref. n. [34] | 92.70 | 89.19 | 90.05 | 91.44 | 85.33 |
Patino D. et al. ref n. [38] | 86.45 | 68.70 | 75.19 | 77.79 | - |
proposed method | 94.06 | 94.47 | 86.38 | 84.90 | 73.77 |
b | |||||
Paper | Performance [%] | ||||
Se | Sp | Ac | DI | JA | |
Pennisi A et al. ref. n. [28] | 86.78 | 97.46 | 93.74 | - | - |
Bi L. et al. ref. n. [33] | 95.64 | 95.12 | 95.61 | 90.77 | 84.15 |
Bi L. et al. ref. n. [34] | 97.11 | 95.85 | 96.61 | 92.26 | 86.05 |
Patino D. et al. ref n. [38] | 92.18 | 94.98 | 94.19 | 92.02 | - |
Proposed method | 93.01 | 98.77 | 95.37 | 95.30 | 91.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzi, M.; Guaragnella, C. Skin Lesion Segmentation Using Image Bit-Plane Multilayer Approach. Appl. Sci. 2020, 10, 3045. https://doi.org/10.3390/app10093045
Rizzi M, Guaragnella C. Skin Lesion Segmentation Using Image Bit-Plane Multilayer Approach. Applied Sciences. 2020; 10(9):3045. https://doi.org/10.3390/app10093045
Chicago/Turabian StyleRizzi, Maria, and Cataldo Guaragnella. 2020. "Skin Lesion Segmentation Using Image Bit-Plane Multilayer Approach" Applied Sciences 10, no. 9: 3045. https://doi.org/10.3390/app10093045
APA StyleRizzi, M., & Guaragnella, C. (2020). Skin Lesion Segmentation Using Image Bit-Plane Multilayer Approach. Applied Sciences, 10(9), 3045. https://doi.org/10.3390/app10093045