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Abstract: In general, convolutional neural networks (CNNs) maintain some level of translational
invariance. However, the convolutional layer itself is translational-equivariant. The pooling layers
provide some level of invariance. In object recognition, invariance is more important than equivariance.
In this paper, we investigate how vulnerable CNNs without pooling or augmentation are to translation
in object recognition. For CNNs that are specialized in learning local textures but vulnerable to
learning global geometric information, we propose a method to explicitly transform an image into a
global feature image and then provide it as an input to neural networks. In our experiments on a
modified MNIST dataset, we demonstrate that the recognition accuracy of a conventional baseline
network significantly decreases from 98% to less than 60% even in the case of 2-pixel translation.
We also demonstrate that the proposed method is far superior to the baseline network in terms of
performance improvement.

Keywords: translational equivariant; translational invariant; complementary information; object
recognition; convolutional neural networks

1. Introduction

Convolutional neural networks (CNNs) [1] have been successfully applied to computer vision
applications such as object detection, recognition, segmentation and tracking. In particular, CNNs’
success in object detection is due to their property of translational equivariance which allows multiple
cats to be detected in a single image. In object recognition, invariance is more important than
equivariance. The pooling layers, such as max-pooling and global average pooling [2], provide some
level of invariance. However, data augmentation [3] is essential to ensure a practical level of invariance.

Recently, several methods have been introduced focusing on obtaining scaling and rotational
equivariance as well as translational equivariance [4–6]. The capsule network [4] pointed out the
problem of max-pooling and proposed the dynamic routing to replace it. The main concept of the
capsule network is the grouping of a few convolutions. The concept of group convolution has been
successfully adopted for efficiency in many convolutional networks [7–10]. There are still several open
issues with the appropriate number of filter groups, overlapping filter groups, and group size.

Several methods on facial image analysis have reported that feature images tailored to a given
specific application domain are effective as input [11–14]. As additional information, they use the local
binary pattern (LBP) mapped coded image [11,12], the neighbor-centered difference image (NCDI) [13],
and Gabor response maps [14]. The success of these methods is largely due to the capability of CNNs
to effectively learn texture information. However, CNNs have been reported to be generally vulnerable
when it comes to learning geometry information. To overcome this drawback, Geirhos et al. [15]
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proposed the use of the style transfer network [16] for texture augmentation while preserving the main
geometric shape. The success of this method indicates that CNNs are biased towards learning from
local textures. Learning local texture does not require invariance of networks. Instead, equivariance
is sufficient.

Geometric information as well as texture is important for object recognition. Therefore, the feature
representation schemes have to obtain geometrical invariance. Several papers have applied the polar
coordinate system to mitigate variations coming from geometric transforms [17–19]. This transform
converts the rotational variant problem into the translational variant problem so that it can be easily
learned by convolutional layers. Jaderberg et al. [20] proposed the localization and grid generator
layers to cope with geometric transformations, but it requires mandatory augmentation to train the
proposed layers.

In this paper, we investigate how vulnerable CNNs without pooling or augmentation are to
translation in object recognition. In addition, motivated by the use of additional information as input
to CNNs [7–11], we propose a method to explicitly transform an image into a global feature image and
then provide it as input to the neural network since CNNs are specialized in learning local textures,
but encounter difficulties when learning global geometric information. For this purpose, we firstly
adopt the 2D-discrete Fourier transform (2D-DFT) [21] which transforms spatial images into the global
invariant magnitude response images. We can use the fast Fourier transform (FFT) [22] algorithm to
estimate 2D-DFT. For additional invariance, we can consider a mixture model [23] based on a statistical
transform such as independent component analysis (ICA) [24]. Our experimental results clearly show
that the convolution layers are extremely vulnerable to a few pixels of translation, and the proposed
method is far superior to the baseline network in terms of the performance improvement.

This paper is organized as follows. Section 2 briefly reviews equivariance and invariance.
In Section 3, we describe the properties of frequency images and three network structures for using
frequency images as additional input. Section 4 presents an experimental setup to demonstrate the
weaknesses of equivariant convolutional networks for translation and shows that the utilization of
frequency images improves translational invariance. We give conclusion remarks in Section 5.

2. Equivariance versus Invariance

Formally, a function f is equivariant with respect to a transform T if f (T(x)) = T( f (x)). This means
that applying the transformation T to x is equivalent to apply it to the result f (x). Meanwhile, a function
f is invariant with respect to a transform T if f (T(x)) = f (x). In other words, the result by the function
f does not change when you apply the transformation T to the input x. Figure 1 modified from [6]
illustrates the translational equivariance. A transform T translates the star object of the input image
I(x) into right side resulting in the transformed image T[I]. The function f is a feature representation
of the input. The result T[ f (I)] by applying the transform T to the feature representation f (I) is the
same to the feature representation of the transformed image f (T[I]).
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The CNNs achieve the property of translational equivariance by the concept of weight sharing, i.e.,
convolutional layers [10]. This equivariant property is effective for multiple occurrences of objects in an
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image. Meanwhile, invariance is more important than equivariance in object recognition. The CNNs
have some level of invariance by pooling layers, especially max-pooling layers, but it is not sufficient
to obtain strong invariance. That is generally achieved by a proper data augmentation [2].

3. Fusion Strategy for Frequency Image as Complementary Information

According to the translational property of the Fourier transform known as the shift theorem [21],
two images have the same magnitude when they differ by translation, i.e., the magnitude has a
translational invariant property. Figure 2 shows spatial images and their corresponding frequency
images (the log-scaled magnitude) with different translations where all the frequency images are the
same, while the spatial images are shifted by 0 to 5 pixels, respectively. Here, we can easily get the
frequency images by FFT [22].
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Figure 2. Spatial images and their corresponding frequency images. (a) spatial images of a
zero-pixel shift to 5-pixel shifts from the center, (b) their corresponding frequency images having the
same appearance.

The frequency images are translational-invariant, so they are not affected by pixel shifts in spatial
images. Therefore, we can regard that frequency images are appropriate for translational invariance.
However, we should note that the discrimination power of frequency images is not strong because
local information is lost in frequency images. The phase spectrum represents local information,
but this information is initially excluded from frequency images. In Figure 3, we can notice that all
the frequency images share the bright center area. This property of frequency images can reduce
discrimination power.
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Therefore, we propose to use both spatial images and frequency images as complementary
information to CNNs for translation invariance. To utilize both images, we propose one early-fusion
strategy and two late-fusion strategies. Figure 4 illustrates these strategies. The early-fusion strategy
feeds CNNs the concatenation of spatial and frequency images. The late-fusion strategy creates a
two-stream model with convolutional networks of the same structure, and then fuses the features of
each stream followed by fully-connected layers. For the late-fusion strategies, we simply design a
fusion layer for addition and concatenation respectively.

The early-fusion strategy learns features by feeding two heterogeneous sets of information together
as the input. Meanwhile, the late-fusion strategy learns features by feeding each heterogeneous input
image separately.
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4. Experimental Results

In this section, we demonstrate how vulnerable convolutional layers are to translation, and
that the proposed late-fusion strategy can compensate for convolutional layers of translational
equivariant. Thus, we design the networks that consist of convolutional layers only for feature
representation. Note that we do not adopt any max-pooling layers and we do not take any data
augmentation. Such a simple architecture is advantageous to prove our goal instead of achieving a
state-of-the-art performance.

4.1. Dataset

The MNIST dataset [25] consists of 60,000 and 10,000 centered images for training and testing,
respectively. The size of the images is 28 × 28. For analyzing translational invariance, we generate
noncentered test images by applying N-pixel shifts. To prevent the digits from leaving image boundary,
we convert the images to be 38 × 38 size by padding 10 pixels. We use the 60,000 MNIST training
dataset to train the networks. For test evaluation, we use N-pixel shifted 10,000 images generated from
the original 10,000 test images in which we vary N from 0 to 5.

4.2. Experimental Setup

We perform the comparative analysis for the four networks; the network trained with spatial
images only, and three networks for the proposed fusion strategies. All the networks consist of
convolutional layers followed by one fully connected layer and a softmax layer. For each network,
we vary the number of convolutional layers by K times for deep architecture. For simplicity, we named
the repeated K convolutional layers Net-K. For the maximum number of convolutional layers, K varies
from 1 to 17 and the kernel size varies from 3 × 3 to 37 × 37. The number of nodes for the fully
connected layer is 32, and 10 nodes for the softmax layer. Without max-pooling and preserving the
size of feature maps, a convolutional layer of 3 × 3 kernel reduces the size of feature maps by 2 pixels,
which results in 17 layers at maximum for 38 × 38 input images. We focused on the representation
capability of convolutional layers, so we set the number of nodes of the fully connected layer mainly in
charge of classification to 32, the minimum number that can obtain 99% training accuracy. Finally, the
number of nodes of the softmax layer is set to 10 considering 10 numbers to be classified.

We set training hyperparameters as follows: The RMSprop optimizer with an initial learning rate
of 0.001 is used. The batch size is 5000, and the training epoch is 100. For a fair comparison, we fixed
100 epochs for all the experiments, where all the networks are sufficiently trained to achieve more
than 99% training accuracy. We do not provide a loss-by-epoch graph since the MNIST dataset is well
known for easy training, even by a simple network.
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4.3. On the Transalational Invariance of Spatial Image Trained Networks

In this experiment, the network took spatial images only as inputs where the input images are
shifted from 0 to 5 pixels. Even if images are shifted by just 2-pixel, the accuracy of the Net-1 network
drops dramatically to less than 60% as shown in Figure 5.
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Even utilizing a deep network and a large receptive field, we obtained similar results. For deep
networks, we trained the Net-K network with 3× 3 kernels by varying K from 1 to 17. For large receptive
fields, we trained the Net-1 network of varying kernel sizes from 3 × 3 to 37 × 37. The receptive
fields of the network cover the entire image at 17 layers and 37 kernel size, respectively. Only 2-pixel
translation (green line) significantly decreases accuracy regardless of the larger number of layers or
larger kernel size as shown in Figure 6.
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(a) for the deep networks with varying convolutional layers of up to 17 with the same 3 × 3 kernel size,
(b) for the Net-1 network with varying kernel sizes of up to 37.

From the experimental results in this section, we can remark that convolutional layers alone are
extremely vulnerable to translation, even on larger kernel sizes and deeper networks.

In addition, we conducted experiments on all networks that can be combined with up to 17 layers
and up to 37 × 37 kernel size. All the results for these networks are almost the same as Figure 6, so they
are not included in this paper.

4.4. On the Translational Invariance of Fusion Strategy

In this section, we compared the four networks by varying translation from 0 to 5 pixels. We selected
three results; one for a shallow network with a small kernel size, another for a deep network with a
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small kernel size, and the other for a shallow network with a large kernel size. The test error rates are
shown in Tables 1–3, respectively.

Table 1. Test error rate for a shallow network with a small kernel size (Net-1 with 3 × 3 kernel).

Translation
by Pixel

No Fusion
Baseline Early Fusion Late-Fusion

Concatenation
Late-Fusion

Addition

0 1.98 1.66 (19.28) 1.74 (13.79) 1.56 (26.92)
1 8.47 6.04 (40.23) 5.08 (66.73) 5.03 (68.39)
2 42.55 30.63 (38.92) 25.59 (66.28) 26.56 (60.20)
3 74.86 66.62 (12.37) 58.06 (28.94) 60.66 (23.41)
4 87.25 81.06 (7.64) 73.08 (19.39) 79.48 (9.78)
5 92.16 85.75 (7.48) 79.14 (16.45) 86.05 (7.10)

No fusion denotes the network trained with spatial images only. Fusion denotes the network trained with both
spatial and frequency images. The numbers in brackets denote performance improvement over the baseline.

Table 2. Test error rate for a deep network with a small kernel size (Net-8 with 3 × 3 kernel).

Translation
by Pixel

No Fusion
Baseline Early Fusion Late-Fusion

Concatenation
Late-Fusion

Addition

0 1.08 1.19 (−9.24) 1 (8.00) 0.99 (9.09)
1 4.51 3.67 (22.89) 2.95 (52.88) 4.07 (10.81)
2 31.16 26.67 (16.84) 19.17 (62.55) 29.62 (5.20)
3 70.93 71.15 (−0.31) 53.18 (33.38) 68.14 (4.09)
4 90.83 89.70 (1.26) 72.36 (25.53) 88.07 (3.13)
5 96.77 96.01 (0.79) 79.03 (22.45) 94.33 (2.59)

No fusion denotes the network trained with spatial images only. Fusion denotes the network trained with both
spatial and frequency images. The numbers in brackets denote performance improvement over the baseline.

Table 3. Test error rate for a shallow network with a large kernel size (Net-1 with 15 × 15 kernel).

Translation
by Pixel

No Fusion
Baseline Early Fusion Late-Fusion

Concatenation
Late-Fusion

Addition

0 1.07 0.93 (15.05) 0.99 (8.08) 1.03 (3.88)
1 3.44 3.22 (6.83) 2.74 (25.55) 2.87 (19.86)
2 24.1 20.14 (19.66) 13.86 (73.88) 17.77 (35.62)
3 67.51 64.02 (5.45) 45.1 (49.69) 54.79 (23.22)
4 88.67 89.07 (-0.45) 69.23 (28.08) 79.05 (12.17)
5 96.15 95.69 (0.48) 79.18 (21.43) 87.12 (10.37)

No fusion denotes the network trained with spatial images only. Fusion denotes the network trained with both
spatial and frequency images. The numbers in brackets denote the performance improvement over the baseline.

From Table 1, all the networks obtained over 98% in accuracy in the case of zero translation.
This indicates that all the networks were successfully trained with the original centered training
dataset. For all the networks, the error rates significantly increase as the pixel translation increases,
especially after 2-pixel translation. However, focusing on relative performance improvement, we can
note that all the fusion networks outperform the baseline network regardless of pixel translation.
The late-fusion networks achieved at least 13.79% to 26.29% performance improvement in the absence of
pixel translation. In addition, the concatenation network achieved a 66.28% performance improvement
in the case of 2-pixel translation. We can remark that the fusion networks are far superior to the baseline
network in terms of translational invariance.

Experimental results for a typical deep CNNs with a 3 × 3 kernel size are shown in Table 2.
The error rate was reduced compared to Table 1 for all cases. In the case of early fusion, there are
cases where the performance improvement is lower than the baseline network. Overall, all the fusion
networks are superior to the baseline network. For late fusion by concatenation, it is still far superior to
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the baseline network by 62.55% in the case of 2-pixel translation. We can remark that the concatenation
strategy consistently achieves high performance improvements over the baseline network.

Table 3 shows the experimental results for a very large kernel size, but a shallow network.
Compared to Table 2, the error rates were reduced in all cases. This indicates that the kernel size is
more effective for translational invariance than for network depth. Early fusion performs relatively
well in the absence of pixel translation. Overall, the concatenation strategy is superior to all the other
networks. The performance improvement of this strategy compared to the baseline network is 20.35%
for 1-pixel translation and 73.88% for 2-pixel translation. Table 3 remarks that it is intrinsic to increase
the kernel size to improve translational invariance when the network depth is shallow. We note that
the concatenation strategy still achieves high performance improvements.

4.5. On the Translational Invariance of Max-Pooling and Augmentation

This section demonstrates the well-known property of max-pooling layers and augmentation in
terms of translational invariance. For this purpose, we provide three comparative results. One is for
max-pooling, another is for augmentation within 2-pixel translation to partially cover the test images
of 2-pixel translation, and the last one is for augmentation within 5-pixel translation to fully cover the
test images of 5-pixel translation. For the network with max-pooling, we repeat a pair of convolutional
and max-pooling layers K times, and name it Net-K for simplicity. We obtained all the test results by
varying translation from 0 to 5 pixels. We note that the Net-4 network with max-pooling is the deepest
one for 38 × 38 input images.

Figure 7 shows that the networks with max-pooling are always superior to the networks without
max-pooling. The deeper the network, the greater their difference, but they suffer from the large-pixel
translation. However, augmentation is much more effective for translation as shown in Figure 8.
The augmentation within 2-pixel translation partially covers test images. In the case of 3-pixel
translation, they achieve more than a 90% accuracy regardless of the network depth.
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We also investigated how effective the models with max-pooling and augmentation within 2-pixel
translation, as shown in Figure 9a. In the case of 4-pixel translation, the accuracy is almost 80%. It
is about 60% by augmentation only, as shown in Figure 8d. This means that using them together
is synergetic when augmentation does not fully cover test images. Figure 9b demonstrates that
augmentation that fully covers test images is almost translational invariant. However, we should note
that it is not cost-effective or intractable to do such augmentation to cover the entire test images in
real-world applications.Appl. Sci. 2020, 10, 3161 9 of 11 
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In Figures 7–9, we demonstrated that max-pooling provides some level of invariance in deep
layers, and that augmentation is crucial to obtain translational invariance.

5. Conclusions

The convolution layers are intrinsically translational-equivariant. The CNNs generally achieve
small translational invariance by max-pooling. In this paper, we demonstrated that CNNs without
pooling or augmentation are extremely vulnerable to translation, even on larger kernel sizes and deeper
networks in our experiment on the modified MNIST dataset. From this result, we can recommend that
the augmentation for translational invariance should be performed by 2-pixel interval or less.

In this paper, we proposed the use of frequency images which are global and translational
invariant features. We demonstrated that the fusion strategies outperform the conventional baseline
network, and that late fusion is superior to the early-fusion strategy. We remark that the concatenation
strategy consistently achieves high performance improvement over the baseline network. For example,
late-fusion by concatenation is far superior to the baseline network by 62.55% in the case of 2-pixel
translation. We also demonstrated that augmentation is crucial to obtain translational invariance.

We conclude that the fusion strategy can compensate for convolution layers that are vulnerable to
translation. It is also valuable to note that kernel size is more effective for translational invariance than
network depth. Finally, we expect that our fusion strategies using frequency images can be applied to
conventional networks to achieve better performance.

As future work, we will extend the proposed approach by applying the Fourier–Mellin
transform [26] which is scale- and rotational-invariant as well as translational-invariant.
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