Special Issue on Advances in Deep Learning
1. Introduction
2. Content
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gu, J.; Lan, C.; Chen, W.; Han, H. Joint Pedestrian and Body Part Detection via Semantic Relationship Learning. Appl. Sci. 2019, 9, 752. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Chen, S.; Zhang, Z. Parts Semantic Segmentation Aware Representation Learning for Person Re-Identification. Appl. Sci. 2019, 9, 1239. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Bouindour, S.; Snoussi, H.; Hittawe, M.M.; Tazi, N.; Wang, T. An On-Line and Adaptive Method for Detecting Abnormal Events in Videos Using Spatio-Temporal ConvNet. Appl. Sci. 2019, 9, 757. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, H.; Zhang, L.; Wu, X.; He, X.; Hu, X.; Wen, X. Multiscale Object Detection in Infrared Streetscape Images Based on Deep Learning and Instance Level Data Augmentation. Appl. Sci. 2019, 9, 565. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Zhang, H.; Wang, H.; Yan, Y.; Zhang, M.; Zhao, W. An Algorithm for Scene Text Detection Using Multibox and Semantic Segmentation. Appl. Sci. 2019, 9, 1054. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Mao, K.; Zhao, J.; Chang, H.; E, D.; Tan, Z. Heated Metal Mark Attribute Recognition Based on Compressed CNNs Model. Appl. Sci. 2019, 9, 1955. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wang, Y.; Li, Y. A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection. Appl. Sci. 2019, 9, 2110. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.; Kim, J. Efficient Weights Quantization of Convolutional Neural Networks Using Kernel Density Estimation based Non-uniform Quantizer. Appl. Sci. 2019, 9, 2559. [Google Scholar] [CrossRef] [Green Version]
- Li, H.T.; Lin, S.C.; Chen, C.Y.; Chiang, C.K. Layer-Level Knowledge Distillation for Deep Neural Network Learning. Appl. Sci. 2019, 9, 1966. [Google Scholar] [CrossRef] [Green Version]
- Park, K.m.; Shin, D.; Chi, S.D. Variable Chromosome Genetic Algorithm for Structure Learning in Neural Networks to Imitate Human Brain. Appl. Sci. 2019, 9, 3176. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wu, J. Learning Deep CNN Denoiser Priors for Depth Image Inpainting. Appl. Sci. 2019, 9, 1103. [Google Scholar] [CrossRef] [Green Version]
- Bai, W.; Quan, C.; Luo, Z.W. Improving Generative and Discriminative Modelling Performance by Implementing Learning Constraints in Encapsulated Variational Autoencoders. Appl. Sci. 2019, 9, 2551. [Google Scholar] [CrossRef] [Green Version]
- Sung, T.L.; Lee, H.J. Image-to-Image Translation Using Identical-Pair Adversarial Networks. Appl. Sci. 2019, 9, 2668. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, X. Unsupervised Domain Adaptation with Coupled Generative Adversarial Autoencoders. Appl. Sci. 2018, 8, 2529. [Google Scholar] [CrossRef] [Green Version]
- Bonechi, S.; Andreini, P.; Bianchini, M.; Pai, A.; Scarselli, F. Confidence Measures for Deep Learning in Domain Adaptation. Appl. Sci. 2019, 9, 2192. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Tan, Y.a.; Jiang, H.; Zhang, Q.; Kuang, X. Boosting Targeted Black-Box Attacks via Ensemble Substitute Training and Linear Augmentation. Appl. Sci. 2019, 9, 2286. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Liu, Q.; Zhou, S.; Wu, C. Review of Artificial Intelligence Adversarial Attack and Defense Technologies. Appl. Sci. 2019, 9, 909. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.H.; Choi, I.; Kim, N.S. Disentangled Feature Learning for Noise-Invariant Speech Enhancement. Appl. Sci. 2019, 9, 2289. [Google Scholar] [CrossRef] [Green Version]
- Tursunov, A.; Kwon, S.; Pang, H.S. Discriminating Emotions in the Valence Dimension from Speech Using Timbre Features. Appl. Sci. 2019, 9, 2470. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, Y.; Yang, Y.; Lv, W. Deterministic and Probabilistic Wind Power Forecasting Based on Bi-Level Convolutional Neural Network and Particle Swarm Optimization. Appl. Sci. 2019, 9, 1794. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.; Hu, Y.; Xiao, Z.; Xi, J. Fertility Detection of Hatching Eggs Based on a Convolutional Neural Network. Appl. Sci. 2019, 9, 1408. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, O.; Liu, G.; Zhang, C. An Automatic Modulation Recognition Method with Low Parameter Estimation Dependence Based on Spatial Transformer Networks. Appl. Sci. 2019, 9, 1010. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.; Lv, H.; Xu, J.; Huang, Z.; Qin, W. A Deep Learning Method for Bearing Fault Diagnosis through Stacked Residual Dilated Convolutions. Appl. Sci. 2019, 9, 1823. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.J.; Lo, S.H.; Young, H.T.; Hung, C.L. Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction Using Vibration Signal Analysis. Appl. Sci. 2019, 9, 1462. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.T.; Chen, J.Y.; Liang, N.; Sangaiah, A.K.; Jiang, Y.; Zhao, C.Z. A Deep Temporal Neural Music Recommendation Model Utilizing Music and User Metadata. Appl. Sci. 2019, 9, 703. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Son, Y.; Youm, S. Chronic Disease Prediction Using Character-Recurrent Neural Network in the Presence of Missing Information. Appl. Sci. 2019, 9, 2170. [Google Scholar] [CrossRef] [Green Version]
- Karpathy, A. Multi-Layer Recurrent Neural Networks (lstm, gru, rnn) for Character-Level Language Models in Torch, 2015. Available online: https://github.com/billzorn/mtg-rnn (accessed on 4 April 2020).
- Han, X.W.; Zheng, H.T.; Chen, J.Y.; Zhao, C.Z. Diverse Decoding for Abstractive Document Summarization. Appl. Sci. 2019, 9, 386. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, D.; Wang, Y.; Fang, Y.; Xiao, W. Abstract Text Summarization with a Convolutional Seq2seq Model. Appl. Sci. 2019, 9, 1665. [Google Scholar] [CrossRef] [Green Version]
- Stefanovič, P.; Kurasova, O.; Štrimaitis, R. The N-Grams Based Text Similarity Detection Approach Using Self-Organizing Maps and Similarity Measures. Appl. Sci. 2019, 9, 1870. [Google Scholar] [CrossRef] [Green Version]
- Fentaw, H.W.; Kim, T.H. Design and Investigation of Capsule Networks for Sentence Classification. Appl. Sci. 2019, 9, 2200. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Krizhevsky, A.; Wang, S.D. Transforming auto-encoders. In International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2011; pp. 44–51. [Google Scholar]
- Bologna, G. A Simple Convolutional Neural Network with Rule Extraction. Appl. Sci. 2019, 9, 2411. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Liu, Q.; Zhou, S.; Luo, Y. A Spam Filtering Method Based on Multi-Modal Fusion. Appl. Sci. 2019, 9, 1152. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Ni, F.; Chen, X. Obtaining Human Experience for Intelligent Dredger Control: A Reinforcement Learning Approach. Appl. Sci. 2019, 9, 1769. [Google Scholar] [CrossRef] [Green Version]
- Radac, M.B.; Precup, R.E. Data-Driven Model-Free Tracking Reinforcement Learning Control with VRFT-based Adaptive Actor-Critic. Appl. Sci. 2019, 9, 1807. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gragnaniello, D.; Bottino, A.; Cumani, S.; Kim, W. Special Issue on Advances in Deep Learning. Appl. Sci. 2020, 10, 3172. https://doi.org/10.3390/app10093172
Gragnaniello D, Bottino A, Cumani S, Kim W. Special Issue on Advances in Deep Learning. Applied Sciences. 2020; 10(9):3172. https://doi.org/10.3390/app10093172
Chicago/Turabian StyleGragnaniello, Diego, Andrea Bottino, Sandro Cumani, and Wonjoon Kim. 2020. "Special Issue on Advances in Deep Learning" Applied Sciences 10, no. 9: 3172. https://doi.org/10.3390/app10093172
APA StyleGragnaniello, D., Bottino, A., Cumani, S., & Kim, W. (2020). Special Issue on Advances in Deep Learning. Applied Sciences, 10(9), 3172. https://doi.org/10.3390/app10093172