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Abstract: In this paper, a multi-task learning U-shaped neural network (MTU-Net) is proposed
and applied to single-channel speech enhancement (SE). The proposed MTU-based SE method
estimates an ideal binary mask (IBM) or an ideal ratio mask (IRM) by extending the decoding
network of a conventional U-Net to simultaneously model the speech and noise spectra as the target.
The effectiveness of the proposed SE method was evaluated under both matched and mismatched
noise conditions between training and testing by measuring the perceptual evaluation of speech
quality (PESQ) and short-time objective intelligibility (STOI). Consequently, the proposed SE method
with IRM achieved a substantial improvement with higher average PESQ scores by 0.17, 0.52, and 0.40
than other state-of-the-art deep-learning-based methods, such as the deep recurrent neural network
(DRNN), SE generative adversarial network (SEGAN), and conventional U-Net, respectively. In
addition, the STOI scores of the proposed SE method are 0.07, 0.05, and 0.05 higher than those of
the DRNN, SEGAN, and U-Net, respectively. Next, voice activity detection (VAD) is also proposed
by using the IRM estimated by the proposed MTU-Net-based SE method, which is fundamentally
an unsupervised method without any model training. Then, the performance of the proposed
VAD method was compared with the performance of supervised learning-based methods using
a deep neural network (DNN), a boosted DNN, and a long short-term memory (LSTM) network.
Consequently, the proposed VAD methods show a slightly better performance than the three neural
network-based methods under mismatched noise conditions.

Keywords: speech enhancement; deep neural network; U-shaped network; ideal ratio mask;
multi-task learning; voice activity detection

1. Introduction

Speech enhancement (SE) has been widely used as a preprocessing step in speech-related tasks,
such as automatic speech recognition, speaker recognition, hearing aids, and enhanced mobile
communication. It attempts to remove background noise from a noisy signal using a single microphone
or a microphone array. There have been many studies on statistical SE techniques, including Wiener
filtering, the minimum mean square error (MMSE)-based spectral amplitude estimator [1], and
non-negative matrix factorization (NMF) [2,3]. Among them, sparse NMF (SNMF) achieves the best
performance in noise reduction with matched noise that is modeled by the noise basis. In the last decade,
single-channel SE methods based on deep learning have significantly improved the performance of
such statistical approaches, even though these techniques require a large amount of training data due
to their more complex neural network (NN) architectures for better SE performance.

Deep learning-based SE methods can largely be classified into two categories depending on what
they estimate. The SE methods in the first category estimate the magnitude spectrum of clean speech,
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such as the deep denoising autoencoder [4], deep recurrent NN (DRNN) [5], and convolutional NN
(CNN) [6]. These methods provide a high signal-to-noise ratio (SNR) due to their good estimated
magnitude spectrum matching to clean speech, but the intelligibility of the estimated clean speech is
somewhat degraded when using the noisy input speech phase for clean speech estimation. To overcome
this problem, the SE methods belonging to the second category estimate time-domain clean speech
using WaveNet [7] or the SE generative adversarial network (SEGAN) [8]. While these approaches in
the time domain improve speech intelligibility, they can lead to the issue of missing high-frequency
components, thus resulting in degraded speech intelligibility [9,10]. On the other hand, an NN can
be applied in the time-frequency domain [11–15] and is motivated by the computational auditory
scene analysis (CASA). As used in CASA, which has shown considerable promise in preserving speech
intelligibility [16], various deep learning-based SE methods have been proposed to estimate the ideal
binary mask (IBM) [12]. Although speech intelligibility could be improved through IBM-based SE,
this improvement depends largely on the IBM estimation performance. To reduce this dependency,
the ideal ratio mask (IRM) is defined by the ratio of the clean signal energy to the mixture energy at each
time-frequency bin, and the IRM-based SE method provides better speech quality and intelligibility
than the IBM-based one [17].

Among the many IRM estimation methods, the U-shaped NN (U-Net) has shown excellent speech
enhancement performance as the skip connections in the U-Net helped restore the speech spectrum [15].
Since the U-Net was trained only using the clean speech spectrum as the target of the network, as with
most deep learning-based methods, the accuracy of the estimated IRM was highly dependent only
on the accuracy of the clean speech estimate [5]. However, if an NN could simultaneously estimate
both clean speech and noise that has been contaminated in the noisy input speech, the estimation
performance of the IRM could be improved by computing the IRM as the ratio between the estimated
clean spectrum and the sum of the estimated clean and noise spectra at each time-frequency bin.

In addition to SE, voice activity detection (VAD) plays an important role in speech-related
applications [18]. Typically, VAD is carried out using the clean speech estimates from SE modules
in noisy environments [19–21]. In this case, statistical or NN-based VAD requires hand-labeled
annotations to train the VAD models. In practice, it is hard to annotate precise voice activity for noisy
speech signals when their corresponding clean speech signals are not available; this problem is more
severe for NN-based VAD [22–24] because it requires a large amount of training data. Moreover, since
the performance of VAD relies on that of SE, VAD must be re-trained whenever the SE is changed in its
application or applied to different noise environments. This re-training of VAD also requires a new
annotated dataset, which is impractical in terms of the development costs for VAD.

In this paper, a single-channel SE method is proposed based on a multi-task learning U-Net
(MTU-Net) architecture to provide a better estimate of the IRM and to simultaneously perform VAD.
Inspired by the DRNN-based SE method [5], which jointly optimizes both the speech and noise spectra,
the proposed MTU-Net extends the decoding network of a conventional U-Net so that it can estimate
the speech and noise spectra together. Then, the IRM is estimated by using the spectra estimated for
both clean speech and noise. Finally, the estimated IRM is applied to noisy input spectra to produce
a clean speech spectrum estimate, which is more accurate than that obtained from the conventional
U-Net. The speech quality and intelligibility of the proposed MTU-Net-based SE method are compared
to those of statistical SE methods, especially SNMF [3], and several deep learning-based SE methods,
including the conventional U-Net [15], SEGAN [8], and DRNN [5]. In addition to estimating the clean
speech spectrum, the estimated IRM can be used to detect voiced intervals. This is because the speech
presence probability for VAD can be represented by the mask. Thus, if the sum of IRMs along
the frequency bins is greater than a given threshold, the noisy input speech at the time frame is
detected as a speech frame. The performance of the proposed mask-based VAD is also compared with
the performance of the VAD methods based on the boosted DNN (bDNN) [24] and long short-term
memory (LSTM) [22].
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This paper is organized as follows. Section 2 reviews a single-channel SE based on a conventional
U-Net. Then, Section 3 proposes the MTU-Net-based SE method, where the MTU-Net is developed by
extending the conventional U-Net under a framework of multi-tasking learning. After that, a VAD
method is also proposed by incorporating the mask estimated from the MTU-Net-based SE. Section 4
evaluates the performance of the proposed MTU-Net-based SE method using objective measurements
and comparing these measurements with those of a statistical and NN-based methods. In addition,
the performance of the proposed mask-based VAD method is evaluated in terms of the area under
the receiver operating characteristic curve objective measurements, which are compared with those of
several NN-based methods. Finally, Section 5 concludes the paper.

2. U-Net-Based Speech Enhancement

The U-Net-based SE method is inspired by the observation that the U-Net was developed for
medical image segmentation [25], and regions of interest in medical images could be used as target
speech spectrograms in noise. Thus, the U-Net can be constructed by using the spectrogram of
noisy input speech as an input feature to estimate the IRM between a pair of noisy input and clean
target spectrograms.

Figure 1 shows the network architecture of the U-Net-based SE method [15], which consists of
an encoding network and a decoding network with skip connections between the two networks. As
the input features, the noisy input speech sampled at 16 kHz is segmented into consecutive frames of
25 ms with a 10 ms overlap. Then, a 512-point fast Fourier transform (FFT) was applied to each frame,
and 256 spectral magnitudes from 32 frames are concatenated into a (256 × 32 × 1)-dimensional image.
Next, the input image is passed into the encoding network composed of three 2-dimensional (2D)
convolution layers at a stride of 2 × 2. Each convolution layer with a kernel size of 5 × 5 is followed
by a batch normalization (BN) layer, where the leaky rectified linear unit (ReLU) activation function
is applied. The decoding network is also composed of three 2D deconvolution layers at a stride of
2 × 2, which operate in a reverse sequence to that of the encoding network. The outputs of each
deconvolution layer are concatenated with those of their corresponding convolution layer, and they are
brought together as the input features for the next deconvolution layer. After that, the outputs of the last
deconvolution layer are passed through a sigmoid activation function to estimate the IRM between
the 2D spectral images between the noisy input speech and the target speech. Finally, the estimated
IRM is multiplied to the noisy input speech spectrum, which results in the estimation of the clean
speech spectrum; then, the estimated clean speech in the time domain is reconstructed by applying an
inverse FFT (IFFT) to the estimated clean speech spectrum.
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To train the U-Net, Xavier initialization [26] is utilized for the initial weights of the configured
model, and the biases are initialized to zero. The objective of U-Net-based SE is to minimize the mean
square error (MSE) between the spectrogram of the target clean speech,

∣∣∣Xi(k)
∣∣∣, and that of the estimated

clean speech. That is, the spectrogram of the estimated clean speech,
∣∣∣X̂i(k)

∣∣∣, is obtained by multiplying

the estimated IRM, Ĥi(k)
(
0 ≤ Ĥi(k) ≤ 1

)
, with the spectrogram of noisy input speech,

∣∣∣Yi(k)
∣∣∣. Thus,

the loss function for the U-Net is defined by

LU−Net(X) =
1

NK

N−1∑
i=0

K−1∑
k=0

(
Ĥi(k)

∣∣∣Yi(k)
∣∣∣− ∣∣∣Xi(k)

∣∣∣)2
(1)

where k and i denote the frequency bin and frame, respectively. In addition, N is the total number
of frames in each minibatch (N = 32 in this paper), and K is the half number of FFT points (K = 256).
Adaptive moment estimation (Adam) optimization [27] is utilized for the backpropagation algorithm,
and the first- and second-moment decay rates are set as 0.9 and 0.999, respectively, with a learning
rate of 0.001. Training is done up to 50 epochs. In addition, the dropout technique is utilized with
a keep probability of 0.9 [28]. Note here that the U-Net estimates Ĥi(k) instead of directly estimating∣∣∣X̂i(k)

∣∣∣. In other words, the estimated clean speech spectrum is obtained by multiplying Ĥi(k) with
Yi(k). Then, the clean speech signal is estimated by applying an IFFT to Ĥi(k)Yi(k), such as:

x̂i(n) = IFFT
{
Ĥi(k)Yi(k)

}
= IFFT

{
Ĥi(k)

∣∣∣Yi(k)
∣∣∣ exp( j∠Yi(k))

}
. (2)

3. Proposed MTU-Net-Based Speech Enhancement

This section proposes a single-channel SE method by extending the U-Net with multi-task
learning—the so-called MTU-Net. In other words, the proposed MTU-Net is defined as a U-Net
possessing both clean speech and noise spectra as the network outputs. Since MTU-Net can provide
estimates of clean speech and the noise magnitude spectrum, the estimated clean speech magnitude
spectrum can be directly used to reconstruct the estimated clean speech. Simultaneously, the IRM or
IBM can be estimated via the MTU-Net through the ratio between the estimated clean spectrum and
the sum of the estimated clean and noise spectra, while the U-Net described in Section 2 only estimates
the IRM.

3.1. Model Architecture

In previous studies, multiple-target-based SE was proposed to improve speech enhancement
performance [5,29,30]. Inspired by these approaches, the proposed MTU-Net-based single-channel
SE has a network architecture as shown in Figure 2. First, the encoding network in the MTU-Net has
the same structure as in the conventional U-Net, which is described in Section 2. However, there is
a difference in the decoding network in which an additional decoding path is attached to estimate
the noise spectra. In other words, the output of the encoding network is decoded through two paths
that are used to estimate the clean speech and noise spectra, respectively. The architecture for the noise
decoding path is identical to that for the speech decoding path, and the layers of each decoding path are
reversely composed of those in the encoding network. Here, a spectrogram of the noisy input speech is
used as the input feature, while its corresponding clean speech and noise spectrograms are used as
target features. Note that there is a difference between the U-Net and proposed MTU-Net in mask
estimation. The IRM of the U-Net is the output of the network; however, the mask of the proposed
MTU-Net is calculated by using estimated speech and noise from the two outputs of the network,
which will be explained in Section 3.3.
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3.2. Multi-Task Learning

To train the MTU-Net, the input and output features are first normalized from 0 to 1 with minimum
and maximum values over all training data. Next, the Xavier initialization technique is utilized for
weight initialization [26], and the biases are initialized to 0. Similar to [5], the loss function for multi-task
learning is defined to accommodate both speech and noise targets as

LMTL(X, D) =
1

NK

N−1∑
i=0

K−1∑
k=0

{(∣∣∣X̂i(k)
∣∣∣− ∣∣∣Xi(k)

∣∣∣)2
+

(∣∣∣D̂i(k)
∣∣∣− ∣∣∣Di(k)

∣∣∣)2
}

(3)

where
∣∣∣Xi(k)

∣∣∣ and
∣∣∣Di(k)

∣∣∣ are the spectral magnitude components of the target speech and noise
at the k-th frequency bin at the i-th frame, respectively, and

∣∣∣X̂i(k)
∣∣∣ and

∣∣∣D̂i(k)
∣∣∣ are the outputs of

the decoding network, which are actually the estimates of
∣∣∣Xi(k)

∣∣∣ and
∣∣∣Di(k)

∣∣∣, respectively. As explained
in (1), N is the total number of frames in each minibatch, and K is the half number of FFT points,
which are set to 32 and 256, respectively, and are the same as those in U-Net. The model parameters
are updated up to 50 epochs through the backpropagation algorithm using the Adam optimization
technique [27], and the first- and second-moment decay rates are set to 0.9 and 0.999, respectively,
with a learning rate of 0.001. A dropout technique [28] is applied only to the first layer of the decoder
network with a ratio of 0.5.

3.3. Inference

After finishing the training procedure described in Section 3.2, the clean and noise magnitude
spectra for a given noisy input spectrum are estimated and are denoted as

∣∣∣X̂i(k)
∣∣∣ and

∣∣∣D̂i(k)
∣∣∣, respectively.

As the first approach to estimate clean speech,
∣∣∣X̂i(k)

∣∣∣ can be directly used as an estimate of the clean
speech magnitude spectrum. Thus, the estimated clean speech, x̂i(n), is reconstructed by applying
the phase of the noisy input speech, ∠Yi(k) as

x̂i(n) = IFFT
{∣∣∣X̂i(k)

∣∣∣ exp( j∠Yi(k))
}
. (4)

As a second approach, the mask is estimated and then applied to the spectrum of the noisy input
speech. In other words, the IRM can be inferred from

∣∣∣X̂i(k)
∣∣∣ and

∣∣∣D̂i(k)
∣∣∣ as

HIRM
i (k) =

∣∣∣X̂i(k)
∣∣∣∣∣∣X̂i(k)

∣∣∣+ ∣∣∣D̂i(k)
∣∣∣ (5)
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where HIRM
i (k) is the IRM of the k-th frequency bin at the i-th frame. Simultaneously, the IBM of

the k-th frequency bin at the i-th frame, HIBM
i (k), can be estimated as

HIBM
i (k) =

{
1 i f HIRM

i (k) > θIBM

0 otherwise
(6)

where θIBM is the threshold to obtain the IBM from the IRM and is set to 0.5 according to [11]. This
is because the SNR between the estimated clean and noise magnitude spectra,

∣∣∣X̂i(k)
∣∣∣ and

∣∣∣D̂i(k)
∣∣∣,

becomes zero if |X̂i(k)| = |D̂i(k)|, i.e., SNRi(k) = 20 log
(
|X̂i(k)|
|D̂i(k)|

)
= 0(dB). Next, the estimated clean

speech, xi(n), is reconstructed by multiplying the IRM or IBM with the noisy input speech spectrum,
Yi(k), followed by an IFFT, as follows:

xi(n) = IFFT
{
Hi(k)

∣∣∣Yi(k)
∣∣∣ exp( j∠Yi(k))

}
(7)

where Hi(k) corresponds to either HIRM
i (k) or HIBM

i (k).
Figure 3 summarizes the three different methods for estimating clean speech from MTU-Net: (i)

the estimation of clean speech from the estimated clean speech spectrum and the phase of noisy input
speech by using (4), referred to as MTU-Net(spec); (ii) the estimation of clean speech by applying
IRM using (5) and (7), referred to as MTU-Net(IRM); and (iii) estimation by applying IBM using
(6) and (7), referred to as MTU-Net(IBM). Since the loss function of MTU-Net takes into account
the squared error between

∣∣∣X̂i(k)
∣∣∣ and

∣∣∣Xi(k)
∣∣∣, sometimes

∣∣∣X̂i(k)
∣∣∣ is greater than

∣∣∣Xi(k)
∣∣∣ or greater than∣∣∣Yi(k)

∣∣∣. This degrades the quality of the estimated clean speech reconstructed by MTU-Net(spec) due
to the fluctuation of the trajectory of

∣∣∣X̂i(k)
∣∣∣ over all the frame against that of

∣∣∣Xi(k)
∣∣∣. On the other

hand, Hi(k)
∣∣∣Yi(k)

∣∣∣ produced by either MTU-Net(IBM) or MTU-Net(IRM) is always smaller than
∣∣∣Yi(k)

∣∣∣
since 0 ≤ Hi(k) ≤ 1. Therefore, it is expected that MTU-Net(IBM) or MTU-Net(IRM) will provide better
performance than MTU-Net(spec).
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3.4. Mask-Based VAD Method

According to previous studies on the relationship between the IBM and the performance of speech
recognition [31,32], the binary mask was found to be highly related to the human auditory system, as
show in [31]. Human labelers for VAD annotation tasks listen to each noisy speech signal directly and
then mark the voice-activated intervals for each signal, a method that is similarly used to determine
the binary mask for the noisy input speech signal.



Appl. Sci. 2020, 10, 3230 7 of 15

The proposed mask-based VAD is described in this subsection based on the relationship between
the voice-activated intervals and the binary masks. Figure 4 provides two different block diagrams
showing how to combine the SE and VAD. Specifically, Figure 4a shows a combined approach in
which the SE module is used as a front-end for VAD. Thus, the VAD method in this category requires
large amounts of manually labeled data to train a VAD model. In contrast, the proposed approach
shown in Figure 4b does not require any manually labeled data for VAD. Instead, the voice-activated
intervals are estimated by using the IRM that has already been estimated from the MTU-Net-based SE,
as described in Section 3.3.
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To detect voice activity, the pre-estimated IRM in the inference stage, as described in Section 3.3, is
utilized to estimate the speech presence probability at the i-th frame, γi, which is defined as

γi =
1
K

K−1∑
k=0

HIRM
i (k). (8)

Finally, the decision about whether the i-th frame is voiced or not is done using γi, as follows:

VAD(i) =
{

1 i f γi > θVAD
0 otherwise

(9)

where θVAD is a threshold for VAD. This threshold can be set to minimize the equal error rate (EER) in
the training dataset as done in [33].

4. Performance Evaluation

This section first evaluates the performance of the proposed MTU-Net-based SE method and then
compares it with those of several conventional SE methods based on SNMF [3], SEGAN [8], DRNN [5],
and U-Net [15]. Here, SNMF, DRNN, SEGAN, and U-Net were trained with hyperparameters according
to [3,5,8,15], respectively. In particular, the proposed MTU-Net-based SE method was implemented in
three different ways: MTU-Net(spec), MTU-Net(IRM), and MTU-Net(IBM).

Next, the performance of the proposed mask-based VAD method was also evaluated and
compared with several NN-based VAD methods, including DNN [24], bDNN [24], and LSTM [22].
In this study, all the compared methods were implemented with the same hyperparameters used in
their reference papers. Here, spectrograms were used as input features for all the implementations,
while multi-resolution cochleagrams were used as per their original implementations in [22,24]. This
was done because the proposed VAD method uses mask values from the proposed MTU-Net-based
SE method that utilizes spectrograms as input features. All the methods for SE and VAD were
implemented in Python 3.5.2 with Tensorflow 1.13.1, and all the experiments were conducted on an
Intel Core i7-7700 workstation with an NVidia GTX 1080ti GPU.
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4.1. Experimental Setup

First, to train the model parameters for each of the five different SE methods and three different
VAD methods, 4620 speech utterances were excerpted from the TIMIT training database [34]. Then,
one of eight different noises (buccabber1, destroyerengine, destroyerops, factory1, hfchannel, leopard,
m109, and machinegun) from the NOISEX-92 database [35] was artificially added to each speech
utterance under four different SNR conditions in the range of −5–10 dB in a 5 dB step.

Table 1 compares the hyperparameters and model footprint of each SE method used in this
experiment, where the model footprints were measured using the 32-bit floating point format. As
shown in the table, speech and noise bases were only required to estimate speech signal from
the SNMF-based SE method, which was enough to model the bases with 1 MB. On the other hand,
the NN-based SE methods including MTU-Net required many model parameters. Among them,
SEGAN required the largest model size due to using time-domain signals as its input features.
The proposed MTU-Net had to be about 1.5 times larger than U-Net because the proposed method had
one more decoding network to estimate the noise spectrogram than U-Net.

Table 1. Comparison of the model footprints of each speech enhancement method used in
the experiment.

Method
SNMF DRNN SEGAN U-Net MTU-NetHyper-Parameters

Network
structure

- Speech Basis
(513 × 64)

- Noise Basis
(513 × 64)

- Input
(513 × 1000)

- Dense
(1000 × 1000)

- RNN
(1000 × 1000)

- Dense
(1000 × 1000)

- Output
(1000 × 513)
(1000 × 513)

- Input
(16,384 × 1)

- 1DConv_Enc
{8192 × 16, 4096 ×

32, 2048 × 32,
1024 × 64, 512 ×

64, 256 × 128, 128
× 128, 64 × 256,
32 × 256, 16 ×
512, 8 × 1024}

- 1DConv_Dec
{8 × 1024, 16 ×

512, 32 × 256, 64
× 256, 128 × 128,
256 × 128, 512 ×

64, 1024 × 64,
2048 × 32, 4096 ×

32, 8192 × 16}
- Output

(16,384 × 1)

- Input
(256 × 32)

- 2DConv_Enc
{128 × 16 × 64, 64
× 8 × 128, 32 × 4
× 256, 16 × 2 ×

512}
- 2DConv_Dec

{32 × 4 × 256, 64
× 8 × 128, 128 ×

16 × 64}
- Output
(256 × 32)

- Input
(256 × 32)

- 2DConv_Enc
{128 × 16 × 64, 64
× 8 × 128, 32 × 4
× 256, 16 × 2 ×

512}
- 2DConv_Dec

{32 × 4 × 256, 64
× 8 × 128, 128 ×

16 × 64}
{32 × 4 × 256, 64
× 8 × 128, 128 ×

16 × 64}
- Output
(256 × 32)
(256 × 32)

Feature type
Spectral

magnitude
(513)

Log spectral
magnitude

(513)

Time sample
(16384)

Spectral
magnitude (257)

Spectral
magnitude (257)

Model footprint 1.0 MB 40.2 MB 1.0 GB 27.5 MB 42.3 MB

Next, the performance of the SE and VAD methods was evaluated under two different noise
conditions, matched and mismatched noise conditions. To this end, 200 speech utterances from 129
males and 71 females were excerpted from the TIMIT test database where all the sentences selected
were not included in the training dataset. Then, the matched noise condition was simulated by mixing
the same types of noises used for the training dataset for each of the 200 utterances; the result was
referred to as the matched evaluation dataset. On the other hand, the mismatched evaluation dataset
was simulated by mixing one of four different noises (babble, f16, buccabber2, and factory2) from
the NOISEX-92 database, which was unseen noise in the training dataset; these noises were mixed to
each of the 200 utterances.
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4.2. Objective Quality Evaluation for Speech Enhancement

The performance of each SE method was evaluated using the perceptual evaluation of speech
quality (PESQ) [36] and short-time objective intelligibility (STOI) scores [37]. Figure 5 compares
the average PESQ and STOI scores of noisy input speech and estimated speech according to the seven
different SE methods using the matched evaluation dataset. Each bar in the figure was drawn after
averaging the objective values over all speech signals, and the vertical line at the top of each bar denotes
the standard deviation of each measurement. As shown in Figure 5a, the U-Net had a significantly better
PESQ score than the SNMF and SEGAN and had similar performance to the DRNN. On the other hand,
MTU-Net(IBM) had slightly lower and higher performance than the DRNN and U-Net, respectively.
However, MTU-Net(IRM) had PESQ scores that were 0.17 and 0.26 higher than those of DRNN and
U-Net, respectively.
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and (b) short-time objective intelligibility (STOI).

When comparing the SE performance considering STOI scores, as shown in Figure 5b, the deep
learning-based methods, such as DRNN, SEGAN, and U-Net, achieved lower STOI scores than
the unprocessed noisy speech because of the adverse effects on the speech components. In contrast,
the proposed MTU-Net with the spectrogram, IBM, and IRM showed higher STOI scores by 0.88, 0.89,
and 0.90, respectively, compared to the noisy input speech. Consequently, the proposed MTU-Net-based
SE method with the IRM outperformed all other methods in terms of its PESQ and STOI scores.

The performance evaluations of the SE methods were repeated under mismatched noise conditions.
Figure 6 compares the average PESQ and STOI scores of the noisy input speech and the estimated speech
according to the seven different SE methods applied to the matched evaluation dataset. Compared to
Figure 5, which presents the evaluation results under the matched noise conditions, the NN-based
SE methods, including DRNN, SEGAN, and U-Net, under the mismatched noise conditions had
significantly degraded PESQ and STOI scores. However, the proposed MTU-Net with IRM provided
similar PESQ and STOI scores under the matched noise conditions. This suggests that the proposed
MTU-Net-based SE method with IRM is more robust than that with a spectrogram and IBM and is
even more robust than other NN-based SE methods.
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Next, the performance of all the SE methods was decomposed according to noise types and
displayed in Tables 2 and 3 for PESQ and STOI, respectively. As shown in Table 2, the proposed
MTU-Net-based SE methods provided higher PESQ scores than the others. MTU-Net(IRM) was
the best in terms of PESQ for all noise types. In addition, MTU-Net(spec) and MTU-Net(IBM) showed
comparable STOI scores to SNMF-based SE and much higher STOI scores than the other three NN-based
SE methods of DRNN, SEGAN, and U-Net. MTU-Net(IRM) also had the highest STOI scores for all
noise types.

Table 2. Comparison of the perceptual evaluation of speech quality (PESQ) scores of seven different
speech enhancement methods applied to the mismatched evaluation dataset.

Methods
Noise

babble f16 buccabber2 factory2 Average

Noisy 2.26 2.25 2.19 2.47 2.29
SNMF 2.33 2.31 2.27 2.59 2.37
DRNN 2.50 2.68 2.68 2.83 2.67
SEGAN 2.13 2.43 2.41 2.57 2.40
U-Net 2.39 2.51 2.51 2.66 2.52

MTU-Net(spec) 2.60 2.79 2.78 2.94 2.78
MTU-Net(IBM) 2.23 2.76 2.55 2.70 2.56
MTU-Net(IRM) 2.77 2.95 2.98 3.02 2.92

Table 3. Comparison of the short-time objective intelligibility (STOI) scores of seven different speech
enhancement methods applied to the mismatched evaluation dataset.

Methods
Noise

babble f16 buccabber2 factory2 Average

Noisy 0.85 0.87 0.88 0.88 0.87
SNMF 0.84 0.88 0.87 0.88 0.87
DRNN 0.80 0.83 0.81 0.83 0.82
SEGAN 0.83 0.85 0.85 0.86 0.84
U-Net 0.82 0.85 0.84 0.85 0.84

MTU-Net(spec) 0.83 0.88 0.87 0.89 0.87
MTU-Net(IBM) 0.84 0.89 0.89 0.89 0.88
MTU-Net(IRM) 0.85 0.91 0.91 0.89 0.90
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4.3. Objective Quality Evaluation for Voice Activity Detection

This subsection evaluates the performance of each VAD method using both the matched and
mismatched evaluation datasets by measuring the area under the receiver operating characteristic curve
(AUC) and the EER scores [38]. First, the noisy input signal was directly applied to the DNN-, bDNN-,
and LSTM-based VAD methods. Second, MTU-Net(IRM) was used as a front-end for the DNN-,
bDNN-, and LSTM-based VAD methods. Table 4 compares the average AUC and EER scores under
the matched noise conditions. As shown in the table, each of the supervised learning-based VAD
methods that employed MTU-Net as a front-end achieved higher AUCs and lower EERs than those
directly using the noisy input signal. Moreover, all the supervised learning-based VAD methods
achieved higher AUCs and lower EERs than the proposed mask-based VAD method. This was because
the NN models for VAD were trained to accommodate the characteristics of the noises that commonly
appeared in both model training and testing. However, the proposed VAD method operated without
any training; thus, its performance was lower than that of the NN-based VAD methods. Nevertheless,
the performance degradation of the proposed VAD method was not severe.

Table 4. Comparison of the receiver operating characteristic curves (AUCs) (%) and equal error rates
(EERs) (%) of seven different voice activity detection methods according to their different signal-to-noise
ratios under matched noise conditions.

AUC (%) −5 dB 0 dB 5 dB 10 dB Average

Noisy + DNN 86.72 90.18 91.03 92.51 90.11
Noisy + bDNN 86.06 90.75 89.88 91.47 89.54
Noisy + LSTM 86.51 91.21 91.08 92.22 90.26

MTU-Net(IRM) + DNN 89.32 93.31 94.36 95.48 93.12
MTU-Net(IRM) + bDNN 89.47 92.39 92.30 93.52 91.92
MTU-Net(IRM) + LSTM 89.63 92.92 92.75 93.89 92.30

Proposed mask-based VAD 84.63 88.04 89.88 89.13 87.92

EER (%) −5 dB 0 dB 5 dB 10 dB Average

Noisy + DNN 23.16 17.28 15.74 14.34 17.63
Noisy + bDNN 23.64 18.62 20.40 18.687 20.34
Noisy + LSTM 24.17 19.07 19.36 17.72 20.08

MTU-Net(IRM) + DNN 21.42 16.70 15.89 14.06 17.02
MTU-Net(IRM) + bDNN 20.37 17.01 17.43 15.68 17.62
MTU-Net(IRM) + LSTM 20.25 16.66 16.78 15.30 17.25

Proposed mask-based VAD 22.70 19.36 18.17 18.71 19.73

Next, the performance evaluations of the VAD methods were repeated under the mismatched noise
conditions; these results are shown in Table 5. As shown in the table, the performance of the NN-based
VAD methods was significantly degraded compared to that under the matched noise conditions shown
in Table 4. The NN-based VAD methods directly using noisy input speech achieved especially higher
AUC and lower EER values than the VAD methods using the estimated clean speech processed by
MTU-Net. This was caused by the performance degradation of the SE methods under mismatched
noise conditions. However, the performance of the proposed VAD method had similar average AUC
and EER values when not considering the noise condition because the proposed VAD methods only
depend on the performance of MTU-Net(IRM) operating fairly well with noisy utterances under
matched and mismatched conditions. Moreover, the proposed mask-based VAD method provided
higher average AUCs and EERs than the three NN-based VAD methods.
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Table 5. Comparison of the AUCs (%) and EERs (%) of the seven different voice activity detection
methods according to their different signal-to-noise ratios under mismatched conditions.

AUC (%) −5 dB 0 dB 5 dB 10 dB Average

Noisy + DNN 81.05 86.02 88.94 91.43 86.86
Noisy + bDNN 79.05 85.10 87.85 90.59 85.65
Noisy + LSTM 80.60 86.37 89.02 90.84 86.71

MTU-Net + DNN 79.52 84.79 87.24 89.22 85.19
MTU-Net + bDNN 79.42 84.63 87.11 89.11 84.69
MTU-Net + LSTM 79.45 85.18 87.20 89.16 85.25

Proposed mask-based VAD 84.60 88.04 89.88 89.13 87.91

EER (%) −5 dB 0 dB 5 dB 10 dB Average

Noisy + DNN 27.56 23.21 19.82 16.32 21.73
Noisy + bDNN 30.30 24.41 21.98 19.75 24.11
Noisy + LSTM 27.39 22.20 19.92 18.05 21.89

MTU-Net + DNN 29.40 25.32 23.82 21.84 25.10
MTU-Net + bDNN 30.77 25.95 23.94 22.44 25.78
MTU-Net + LSTM 30.50 25.51 24.20 22.83 25.83

Proposed mask-based VAD 22.74 19.36 18.16 18.71 19.74

5. Conclusions

This paper proposed an MTU-Net-based single-channel SE method that extended the conventional
U-Net by employing a framework of multi-task learning. The proposed MTU-Net provided estimates of
clean speech and noise magnitude spectra. Thus, the estimated clean speech was directly reconstructed
using the estimated clean speech magnitude spectrum. In addition, an IRM or IBM was estimated
by the ratio between the estimated clean spectrum and the sum of the estimated clean and noise
spectra, thus allowing the clean speech to be estimated by applying the IRM or IBM to the noisy input
spectrum. The performance of the proposed MTU-based SE method was evaluated under matched
and mismatched noise conditions and compared to the performance of other neural network-based SE
methods, such as DRNN-, SEGAN-, and conventional U-Net-based SE. Consequently, it was shown that
the PESQ and STOI scores of the proposed SE method were higher than those of the other SE methods
under both matched and mismatched conditions. Under matched noise conditions, the MTU-based SE
method with IRM increased the average PESQ by 0.17, 0.52, and 0.40 compared to DRNN, SEGAN,
and U-Net, respectively. Moreover, the average STOI score of the proposed SE method was higher by
0.07, 0.05, 0.05 compared to DRNN, SEGAN, and U-Net, respectively.

Next, the IRM estimated by the proposed MTU-Net-based SE method was utilized for VAD. In
other words, the proposed VAD method operated in an unsupervised manner by using the by-product of
the proposed SE method. To compare the performance of the proposed VAD with that of the supervised
learning-based methods using deep neural networks such as DNN, bDNN, and LSTM, each was
trained using noisy speech utterances under the matched noise condition. Here, the proposed SE
method was applied to noisy speech utterances as a front-end for the deep neural network-based VAD
methods. The comparison showed that the proposed VAD method offers similar detection performance
(measured by the AUC and ERR) for whatever noise contaminates the noisy speech utterances,
while the performance of the deep neural network-based VAD methods degrades significantly under
the mismatched noise condition.

To improve the performance of the proposed MTU-Net-based SE method, especially under
mismatched noise conditions, future studies should employ an online noise adaptation technique using
non-negative matrix factorization [39]. Conversely, the domain adversarial training technique [40]
should be incorporated into the proposed SE method.

In future work, to further improve the performance of the proposed MTU-Net-based SE method,
the MTU-Net should incorporate a type of online noise adaptation using non-negative matrix
factorization [39] or domain adversarial training [40]. In addition, the effect of the proposed
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MTU-Net-based SE method on noisy speech under reverberant conditions will be investigated
in detail.
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