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Abstract: With the advantages of high-performance, easy to build and relatively low cost, the
multigap resistive plate chamber has been arousing broad interests over the last few decades. It has
become a new standard technology for the time of flight system in high energy physics experiments.
In this article, we will give a description of the structure and the operating principles of the MRPC
detector and focus on reviewing the applications on the time of flight system in several famous
experiments. The performances, including time resolution and particle identification, are discussed
in detail. Some recent advances and points of view for the future development of the next generation
MRPC are also outlined.

Keywords: multigap resistive plate chamber; time of flight; high energy physics experiments; particle
identification; time resolution

1. Introduction

To reveal many aspects of the physics program, techniques of particle identification
(PID) [1] are the key requirements in particle and high energy physics experiments. Differ-
ent particles can be identified through one or several combined detector systems to measure
their mass or how they interact with matter. More details can be found in [1]. Among them,
the time of flight (ToF) system is an essential part, especially for identifying hadrons. The
ToF system can provide the velocity information β of the charged particle by measuring
the traveling time t of a given distance L. Combined with the momentum p obtained from
the magnetic spectrometer, the mass m of the particle, as a basis for identification, can
be calculated:

β =
v
c
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If we want to identify particles with the same momentum, their flight time difference
can be obtained according to Equation (2):
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The separation power (nσToF ), used to evaluate the reliability of separation, is defined
as the ratio of the flight time difference and standard deviations. Usually nσToF > 3 is
required in many experiments. Assuming p� mc, it can be derived and given by:

nσToF =
|t1 − t2|
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where σToF is the time resolution of the ToF.
There are many candidate detectors that can be considered for the construction of

the ToF system. In the early 1990 s, the parallel plate chambers (PPC) [2,3], a gaseous
detector with only one gas gap between two metallic electrodes, were investigated for
possible use at the LHC. However, because its gas gain must be kept low to maintain its
avalanche mode, which leads to difficulty with both a high-efficiency (<90%) and a good
timing resolution (>250 ps), it wouldn’t be considered nowadays.

For advances in ToF techniques, the fast photon detectors have been considered and
had major improvements. Scintillators with photomultipliers are frequently used because
of their excellent time resolution. For example, the LIDAL system [4] use fast plastic
scintillators coupled with photomultiplier tubes (PMTs) to perform ToF measurements.
The beam test results have demonstrated that a time resolution below 100 ps can be
achieved. A systematic test of several medium-sized plastic scintillators [5] has shown
a time resolution below 10 ps. However, the light yield of scintillators [6] will change
under different magnetic fields; the magnetic field tolerance of PMTs demands careful
consideration due to the effect of both electric and magnetic field on the trajectories of
electrons; the scintillators are challenging to be highly segmented in order to determine
the hit multiplicity; the particle experiments are usually large in size, and the PMTs are
high-priced.

Over the years, Si-based technologies have gained much attention. For example,
silicon photomultipliers (SiPMs) [7–9] are indeed replacing the standard PMTs and are
playing a vital role in future collider experiments [10] like the high luminosity large hadron
collider (HL-LHC) [11] or medical applications like TOF-PET [12,13] thanks to the many
advantages: a higher efficiency, lower bias voltage, higher segmentation and insensitivity
to magnetic fields. Moreover, low gain avalanche diodes (LGAD) [14], which are n-on-p
silicon sensors with internal charge multiplication, have shown a time resolution of better
than 20 ps. The ATLAS and CMS experiments [15,16] are designing LGAD detectors to
address the good timing measurements and pile-up challenge at the HL-LHC.

A detector based on MCP-PMTs (microchannel plate PMTs) [17] is a promising solution
for the fast timing of single photon signals. Coupled with a quartz Cherenkov radiator, it
can provide ~10 ps time resolution [18,19]. The LQbar detector based on MCP-PMT [20]
is intended for the LHC pp-diffraction scattering experiment. However, issues like high
costs and crosstalk between anodes need to be further studied to significantly progress this
ToF technique.

Multigap resistive plate chamber (MRPC) is a relatively new and standard technology
for the ToF system. It is known for very high detection efficiency (>95%), excellent time
resolution (<100 ps) and relatively low cost. This detector is easy to build and possible
to cover a large area. It has been extensively employed as a ToF system in many nuclear
physics experiments, such as BESIII [21], ALICE [22–24], CBM [25,26], STAR [27–29] and
PHENIX [30].

This review will focus on the multigap resistive plate chamber (MRPC) and its ap-
plications as a ToF detector in large experiments. The description and detector physics
of MRPC are introduced in Section 2. Its applications in current large experiments and
developments for future ToF systems are discussed in Section 3.

2. Description of MRPC Detector

In the 1980 s, Santonico [31] built the first prototype of the RPC, which can be consid-
ered to substitute resistive electrodes for the metallic electrodes of the PPC detector. The
use of resistive electrodes is a major improvement, which allows the detector to operate
continuously (no need for pulsed HV (High Voltage) for discharge quenching) and restricts
discharges to a local area (the rest remains active). Unlike the early gas detectors, the high
voltage electrodes of RPC are separated from the signal readout electrodes. The carbon film
attached to the resistive electrode is used as the high voltage electrode and the conductive
material as the readout electrode. The choice of resistive electrode materials is crucial.
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On one hand, it is not supposed to affect the generation of induced signals due to the
movement of charge, which requires the resistive plate to have relatively high resistance.
Thus, the discharge durations (~10 ns) are far less than the characteristic time constant
(τ = RC ≈ 10 ms). Macroscopically, the resistive electrodes are called “transparent” to the
induced signals. On the other hand, the counting rate of the detector is related to the time
that the resistive electrode needs to recover and charge up again, which depends on the
resistivity of the electrode. Excessive resistivity will increase the detector’s dead time and
decrease the detector’s counting rate capability. Thus, RPC detectors generally adopt glass
or Bakelite as the resistive material, whose volume resistivity is usually within the range of
109–1013 Ω cm.

For trigger applications, typical RPCs can operate at around 95% efficiency with a
time resolution of sub-ns and at a counting rate of hundreds of Hz/cm2. Considering one
primary electron created somewhere in one gas gap, Riegler [32] derived a nice formula to
estimate the intrinsic time resolution for one-gap RPC:

σ(t) =
1.28

(α− η)v
(5)

where v is the electron drift velocity, α the Townsend coefficient (=1/lambda, lambda is
the mean distance between ionizing collisions), and η the attachment coefficient. They are
mainly determined by the gas mixture and working electric field. To improve the time
resolution for timing measurements, the effective approach is to decrease the gap width
as much as possible so that the electric field can be greatly increased under the avalanche
working mode. Hence, the effective Townsend coefficient (α− η) is much higher, and
the electron drift velocity is much faster. To maintain the efficiency and improve the
performance of normal RPCs, more gas gaps are introduced to increase the total gap
thickness of the detector and the number of primary electrons. Consequently, the multigap
RPC [33] was developed by M.C.S. Williams.

As shown in Figure 1, several equally spaced resistive plates are placed so that small
gaps can be created. Commonly nylon fishing lines are used to confirm a uniform gap
width. Thus, the avalanche is limited to a small space, and the electric field can be increased,
which leads to a much better time resolution. The high voltage is just applied to the graphite
layer coated on the outer resistive plates of each stack, while the intermediate resistive
plates are allowed to float electrically. Moreover, to separate the high voltage electrodes
from the readout electrodes, a thin insulating layer of Mylar is used and glued on the
printed circuit board (PCB) copper layer. The honeycomb boards are attached to the top
and bottom to support the whole detector. The core part of an MRPC is the working gas in
the gaps. Usually, the MRPC detector works in avalanche mode. To suppress the growth of
the avalanche in the high electric field, some electronegative gases are added to increase
the attachment coefficient. For example, the commonly used gas mixture consists of a large
part (even up to 90%) of tetrafluoroethane (C2H2F4) with a few percentages of isobutane
(i-C4H10) and sulfur hexafluoride (SF6).

Even though the detector’s geometry is simple, as shown above, the physics in MRPCs
is quite complicated. The incident particles will interact with the gas molecules in the
MRPC detector. Each interaction will deposit a certain amount of energy, which will cause
the ionization of extranuclear electrons and generate clusters of primary electron-ion pairs.
Each cluster contains one or more electrons, the number of which depends on how much
energy is deposited during the collision of the incident particles. The electrons generated by
ionization will drift towards the anode under the high electric field, while the positive ions
will drift towards the cathode. In the process of drifting towards the anode, the electrons
will obtain energy from the electric field and trigger secondary ionization. Similarly, the
secondary ionized particles are accelerated again and trigger new ionization. Here is
the cascade of electron multiplications known as Townsend avalanches [34]. When the
number of electrons in a cluster is large enough, the aggregation of electrons will create
a considerable local field, whose magnitude is comparable to the applied field but in the
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opposite direction. At this time, the avalanche will saturate and stop growing, which is
called the “space charge effect” [35]. The diffusion effect [36], due to collisions between
electrons/ions and the gas molecules, should be discussed for the real conditions. More
details about the detector physics and simulation can be found in [32,37,38].Appl. Sci. 2020, 10, x 4 of 25 
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As ionized electrons and ions move in the gas gap, a time-varying current signal will
be induced on the PCB’s readout strips or pads. The induced current signal [39] can be
derived by Ramo’s theorem [40] and given by:

i(t) =
Ew·v
Vw

e0N(t) (6)

where N(t) is the number of electrons at time t, e0 is the electron charge, v is the drift
velocity which can be simulated by Magboltz, Ew (weighting field) is the electric field
obtained by setting the selected electrode to potential Vw and others to 0.

Once the currents induced on the electrodes have been calculated, and all the resistive,
capacitive and inductive elements of the MRPC system have been introduced, the final
currents can be determined [41], and detailed discussions about the signal propagation and
signal integrity can be found in [42–44]. For the multi-conductor transmission lines readout
structure in MRPCs, the impedance [45,46] has been well studied through experimental
tests and simulations to help achieve impedance matching with the electronics and opti-
mize the detector structure. An approximate formula for the impedance of a multi-stack
MRPC [46] is given by:

Z0 =

386.73√
εeq+7.35

log 6.03nh2+0.677(n+1)h1
w−0.554 + 60

√
w

nh2+(n+1)h1
+ 37.8 log h1

h2

ns + 0.895
(7)

where n is the number of gas gaps in a stack, ns the number of stacks, h1 the glass thickness,
h2 the gap thickness and w the strip width. Considering the inhomogeneous dielectric
mediums between the paired strips of the MRPC, the equivalent dielectric constant can be
estimated as follows:

εeq =

(
nh2
√

εgas + (n + 1)h1
√

εg + 2hMylar
√

εMylar

nh2 + (n + 1)h1 + 2hMylar

)2

(8)
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where the relative dielectric constant of the gas (εgas) is set to 1, and εg is the relative
dielectric constant of the glass. One can know the impedance of the readout strips before
designing an MRPC detector, leading to significant time and cost savings.

3. Applications in Large Experiments

Since the early 2000s, MRPCs have been carefully investigated and have become
the new standard ToF technology, as seen in many physics experiments. Several typical
experiments, such as STAR, CBM and SoLID, and their MRPC-based ToF will be reviewed
in this section. The detailed configurations and working performances of MRPC detectors
in each ToF system will also be elaborated.

3.1. STAR Experiment in RHIC

The solenoidal tracker at the relativistic heavy ion collider (RHIC) [47], known as
STAR [48], is dedicated to searching for the quark-gluon plasma (QGP) that existed in the
early universe. It utilizes a large cylindrical time-projection chamber (TPC) with a large
solenoid magnet, providing a close to 4π angle tracking capability for charged particles
from collisions. The full-acceptance MRPC-based ToF system [49] was proposed to extend
STAR’s PID capability.

3.1.1. The STAR MRPC

The structure of the STAR MRPC module is demonstrated in Figure 2. This MRPC
has 6 gaps of 0.22 mm-thick in a single stack. It is assembled with float glasses of typical
resistivity on the order of 1012 Ω cm. The thickness of the inner and outer glass sheets are
0.54 and 0.7 mm, respectively. It operates in avalanche mode with a gas mixture of 95%
C2H2F4 and 5% i-C4H10. The working field is around 106 kV/cm.

The differential signals of each module are read out by six pads, each of 3.1 × 6.0 cm2,
and amplified by NINO chip [50,51] developed at CERN, which is an ultrafast and high-
performance chip with a rising edge of 1 ns, the low power consumption of 30 mW/channel
and a time resolution of 20 ps. The CERN HPTDC ASIC [52–54] is chosen to be the data
acquisition system (DAQ). Its time resolution is around 25 ps.

3.1.2. The STAR-ToF System

The cylindrical ToF consists of 120 trays, each of 32 MRPCs. Tsinghua University is
in charge of a majority of the MRPC production. To assure the quality of MRPC modules,
a rigid set of manufacturing criteria and quality assurance (QA) procedures [29] are set
up. Specifications of the dimensions and materials have been controlled strictly, and the
characteristics such as dark current, noise rate, efficiency and time resolution have been
validated. Moreover, the avalanche ratio, the ratio of avalanche to streamers, is found to
be related to the amplitude and time resolution. A high fraction of streamers will worsen
the time resolution, as shown in Figure 3. Therefore, the avalanche ratio is specified to
be larger than 80% to maintain the detector’s performance and save the QA time. Beam
tests [28] at CERN showed that the overall time resolution after time slewing correction
could reach 60 ps, and an efficiency of 97% was achieved.

The R&D and production of STAR-ToF were started in 2000 and completed in 2009.
The final trays [55] ran stably in different physics runs. The overall start and stop time
resolutions are reported in Table 1. The pseudo vertex position detector (pVPD) [56] records
the event start time, while the ToF system provides the stop times. Earlier runs 3–5 are the
initial tests of the MRPC prototypes, while run 8 and run 9 are for the final system trays.
From run 5, the rising and falling times of a signal are recorded by HPTDC and the time
slewing effects are corrected according to the time over threshold (ToT) values instead of
the signal amplitude for earlier runs. The time resolutions of the final system trays are
below 80 ps, which meets the physics requirement.
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Table 1. The time resolutions of the STAR MRPC during different physics runs. The stop times in
bold text are provided by the ToF system.

Operation Condition
Time Resolution (ps)

Start Time Overall Stop Time

Run 3
200 GeV d + Au ~85 ~120 ~85
200 GeV p + p ~140 ~160 ~80

Run 4

62 GeV Au + Au ~55 ~105 ~89

200 GeV Au + Au
FF/RFF ~27 ~74 ~70

HF ~20 ~74 ~71

Run 5
200 GeV Cu + Cu (ToT) ~50 ~92 ~75
64 GeV Cu + Cu (ToT) ~82 ~125 ~94

Run 8
5 trays 200 GeV p + p (ToT) ~83 ~112 ~75

Run 9
86 trays 500 GeV p + p (ToT) ~85 ~117 ~78

3.1.3. The PID Performance

In the 200 GeV d + Au collisions, the average MRPC ToF timing resolution alone was
measured to be 85 ps. The tracks of passing particles were reconstructed by the TPC, and
their momentum and dE/dx were also recorded. Then the particle path can be calculated
and extended to the ToF system. Figure 4a [57] shows the relationship between the inversed
velocity (1/β) measured by the ToF system and the momentum (p) obtained from TPC. The
ToF provides good PID capabilities with 1.6 GeV/c for π/K and 3 GeV/c for K/p separation.
The embedded pad shows the distribution of the square of the mass for momentum in the
range of 1.2 and 1.4 GeV/c. The pions, kaons and protons can be distinguished clearly.
Furthermore, it makes the separation between electrons and hadrons possible with the
help of velocity information from ToF and dE/dx obtained by TPC [58]. Figure 4b [59]
shows the relation between dE/dx and momentum when setting |1/β− 1| ≤ 0.03. Clear
separation of electrons from hadrons can be seen.Appl. Sci. 2020, 10, x 8 of 25 
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Another example that shows the synergy between dE/dx and the ToF is illustrated
with the observation of antimatter Helium-4 [60], as shown in Figure 5. The dE/dx
of 3He/4He and 3He/4He versus mass derived from TPC and ToF are demonstrated
separately on the top two views. The average masses of 3He (3He) and 4He (4He) are
around 2.8 and 3.7 GeV/c2. The bottom view shows statistics about 3He (3He) and 4He
(4He). The mass peaks of 3He and 4He can be separated obviously, which reveals the
importance of the ToF system.
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3.2. CBM Experiment in GSI

The compressed baryonic matter spectrometer (CBM) [61] is a heavy-ion experiment
located at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. The
goal is to make high-energy nuclei collide and study the quantum chromo-dynamics (QCD)
matter under a high baryon densities environment. Towards a high production of particles,
the interaction rate of the CBM experiment is intended to 10 MHz for the most demanding
probes. Such unprecedented rates require irradiation resistant detectors, high-performance
electronics and high-speed computation capability.

3.2.1. The CBM-ToF System

The CBM ToF wall [62,63] is currently under development and construction, and
it is designed to be composed of MRPC detectors. To achieve hadron identification of
momentum of 4 GeV/c, a system time resolution below 80 ps and efficiency above 95%
are required. To match the high-density particle fluxes, the detector’s rate capability is the
most challenging issue. These high rate requirements are no longer achievable with MRPCs
built in the standard technique with float glass resistive plates. The rate capability [64,65]
is limited by the voltage drop of the resistive plates and can be increased by reducing the
electrode thickness and resistivity. The efficient way is to look for low resistivity materials
for the electrodes to increase the operating current without reducing the voltage applied to
the gas.

A kind of low resistive glass [66,67] was developed at Tsinghua University. Its main
parameters are shown in Table 2. The bulk resistivity is about 1010 Ω cm. To meet the
requirement of CBM-ToF, around 1000 m2 of low resistive glass is produced. As a result
of the fragility of glass, the dimensions of one piece of low resistivity glass is limited to
32 cm × 30 cm. Large area detectors can be achieved by the mosaic MRPC [68]. Similar
MRPC prototypes composed of such low resistive glass were validated in a very high rate
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environment. As shown in Figure 6, at the rate of 70 kHz/cm2, the efficiency above 90%
and time resolution around 80 ps [66] are achieved.
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Table 2. The parameters of low resistive glass.

Parameters Values

Bulk resistivity ∼ 1010 Ω cm
Available thickness 0.7 mm, 1.1 mm

Thickness uniformity 20 µm
Surface roughness <10 nm

Maximal dimension 32 cm × 30 cm
Dielectric constant 7.5~9.5
DC measurement >1 C/cm2

The high-performance electronics for the whole CBM ToF wall is based on the
PADI [69] and the GET4-ASIC chips [70]. The PADI board has 32 channels, and the
threshold can be set via slow control. It can be directly connected to the MRPC readout
electrodes inside the gas box, which suppresses the electromagnetically induced noise from
outside and matches the impedance from electrodes to the preamplifier itself.

3.2.2. High-Rate MRPC

Towards the particle flux ranges from 1–5 kHz/cm2 in the intermediate rate region [63],
the double-stack MRPC prototype [26] developed at Tsinghua University has been consid-
ered. It is built by the low resistive glass plates described above. This MRPC (Figure 7a)
has 2 × 4 gaps with 250 µm gap size and 32 readout strips, each of 1 × 27 cm2. The results
of SPS beam time in 2015 for the prototypes were presented in [26]. The efficiency and time
resolution curves correspond well to the changes of high voltage and PADI threshold. The
efficiency is stable at the working point and maintains above 97% for all the run time. The
system time resolution tends to improve with time in the beginning and reaches a value of
about 85 ps. The first batch of 73 MRPC detectors [71] has been produced and installed
into STAR endcap ToF and mini-CBM ToF.

During the mass production and quality control process, the HV test of MRPC [71] is
quite important to ensure its performance. Figure 7b,c shows the monitoring results of the
dark current and noise rate after applying the HV. The dark current decreases to around
10 nA with time, and the noise rate finally stays around 1 Hz/cm2. It can be seen that the
noise and dark current are quite low when the particle (here is cosmic ray) rate is rather
low, which indicates the low noise and good response of the MRPC detector.

3.2.3. Aging Test of a High-Rate MRPC

The MRPC based on the new material—the low resistive glass, will operate at high flux
and be used in a large experiment for the first time. It is necessary to check its performance
stability under a high background environment. For example, an X-ray source can be
used to irradiate the detector; at the same time, its performances like efficiency and time
resolution can be tested using the cosmic ray, and other performances such as current
and counting rate can also be recorded. Figure 8 shows the performance of a high-rate
MRPC for a period of 36 days. The integrated charge can reach 0.1 C/cm2 [72], and there is
no obvious degradation of the operating performance, which meets the requirements of
CBM-ToF.

3.2.4. FAIR Phase 0 Programs

To create an environment where all aspects of the developed detector systems can be
verified under real conditions, the FAIR Phase 0 program [73] was carried out. The idea is
to install and operate existing FAIR related detector equipment in running experiments all
over the world. CBM ToF subsystem participates in two FAIR Phase 0 programs, which
will be discussed in the following.

mCBM (mini-CBM) is a scaled-down experiment for CBM located at the SIS18 facility
of GSI/FAIR. The primary goal is to validate and optimize the performance of the detector
systems, the electronics systems and the online and offline data analysis algorithms in such
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a high-rate environment. The ToF performance during mCBM beam time in 2019 can be
found in [74].

The endcap time-of-flight (eToF) project comprises the installation, commissioning
and operation of part of the CBM ToF modules positioned at the STAR apparatus during
the Beam Energy Scan II and the participation of data analysis. The eToF upgrade [75]
covers the rapidity range from −1.1 to −1.6 for the collider collision mode. For the fixed
target collision mode, the PID extension is between 1.6 and 2.1, which is essential to cover
the mid-rapidity range.

eToF consists of 36 modules grouped in 12 sectors, and the sectors are arranged in
3 layers in a wheel spokes structure around the beam axis. Each module houses 3 MRPCs,
which leads to a total of 108 counter and 6912 readout channels. The full hardware
installation was completed in Nov. 2018. After a commissioning phase of about 10 weeks,
the first data taking started in February 2019 by recording about 580 M Au + Au events
at
√

sNN = 11.5 GeV with an eToF efficiency of 85%. The readout system for eToF uses
the free-streaming architecture (no global hardware trigger) and hardware and software
components. It comprises 216 PADI (preamplifier and discriminator) and 216 GET4 (TDC)
boards (for 108 counters).

After offline calibrations of the TPC and eToF, the system time resolution with pions
can reach around 85 ps, as shown in Figure 9a. From the 1/β versus the particle momenta
plot in Figure 9b, a kaon to pion separation up to 2.5 GeV/c is demonstrated the good PID
capability of eToF.Appl. Sci. 2020, 10, x 11 of 25 
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3.3. Developments for Future ToF Systems
3.3.1. High Rate and Ultrahigh Time Resolution MRPC

Although the science of the electromagnetic force between the atomic nucleus and
the electrons is well understood, we still know little about the nucleon’s structure and the
quarks and gluons that compose the nuclei. The future experiments with higher luminosity
and beam energy, such as the 12 GeV program of JLab [76,77] and the electron-ion collider
(EIC) [78] at Brookhaven Lab, will provide a powerful tool and simultaneously impose
strict requirements on the detector devices.
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For the SoLID experiment [79,80] at JLab, the particle separation for different ToF
time resolutions and for the 8 m flight distance can be calculated according to Equation
(4), as shown in Figure 10. A ToF with a time resolution of 20 ps and a rate capability of
10 kHz/cm2 is required to achieve K/π separation at the momentum range of 1–7 GeV/c.
For hadron identification in the future EIC detector, the Cherenkov detector is thought to
be the only possibility of covering the high momentum range (5–50 GeV/c, depending
on the polar angle), while ToF or dE/dx (like a TPC) system is needed to cover the low
momentum range (up to a few GeV/c) [81]. At the typical distance of 4 m available on the
hadron-going side, a 10 ps ToF would provide π/K separation up to 7 GeV/c.
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Several R&D projects currently have been putting effort into investigating high-
performance detectors. M.C.S. Williams et al. [82] from the LHC-ALICE group developed
a 24 gap MRPC with a gap width of 160 µm. It was arranged into 4 stacks, each with
6 gaps. The 400 µm thick float glass plates were employed as the resistive plates. Using
the NINO electronics and the oscilloscope-based system, a time resolution of 27 ps for
cosmic ray test and 21 ps for beam test has been obtained. Z. Liu et al. [83,84] has built
and carefully studied three kinds of 20-gap MRPCs with very thin (0.28 mm) float glass
plates and different gap sizes of 160 µm, 140 µm and 120 µm. They are able to reach an
efficiency of 90% at a flux rate of around 20 kHz/cm2, while the 140 µm-MRPC gives the
best time resolution of 25 ps. In order to further improve the rate capability, they built a
10-gap MRPC [85] with the low-resistivity glass from Picotech SAS. During the beam test
at ELBE, this MRPC always keeps the efficiency above 95%. The time resolutions of 36 ps
and 50 ps are obtained at the rate of 2 kHz/cm2 and 100 kHz/cm2, respectively.

Tsinghua University and USTC [79] have been putting much effort into carrying
out R&D of the required detector for SoLID-ToF. Just like the CBM-ToF, the low resistive
silicate glass is employed as the resistive plate to achieve a high rate capability. To better
understand the detector’s working principles and improve the performance, a standalone
simulation framework of the MRPC detector has been built and carried out [86,87]. The en-
ergy deposition produced by the passing particles is simulated based on the PAI model [88],
which is proved to be effective for very thin absorbers. The ionized electrons drifting in
the gas gap will start the avalanche following the Townsend effect [33] under the applied
electric field as soon as they are created and generate an induced signal on the pick-up
electrodes according to Ramo theory [39]. The frontend electronics (FEE) response and
noise can be included to study the detector performance under different experimental
setups. By analyzing the simulation data and full signal information, the performance of
detectors with different structures at various working conditions can be easily studied.

Figure 11 [89] shows the relations of intrinsic time resolution and MRPC structural
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parameters. It is evident that reducing gap thickness and adding more gaps can achieve a
better time resolution. Moreover, to reach the goal of 20 ps time resolution, the possible
choices for future MRPCs are mainly the designs with thickness below 160 µm and at least
20 gas gaps, which ensures the detector resolution better than 10 ps. In general, gaps in this
kind of MRPCs are arranged into several stacks so that the applied working voltage can be
limited to a reasonable level. Figure 12 [89] shows the time resolution changes associated
with the number of stacks in a detector. We can see that when fixing the total number of
gaps and dividing them into more stacks, the time resolution becomes larger. It is because
more stacks mean a much thicker chamber and a longer distance between the very first
and last gaps, which will lead to a larger shift of the avalanche time.
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Based on the Monte Carlo simulation and the above study, a 32-gap MRPC detec-
tor [90] was developed. As depicted in Figure 13a, the MRPC is arranged into four stacks,
each stack with eight gaps. The thickness of each gap is only 104 µm. 6 readout strips with
1 cm pitch are configured on the PCB sheets. Five PCBs are required in this design. The
cathode and anode signals are transmitted through differential cables. During the prelim-
inary cosmic ray test, the high-performance analog frontend electronics (AFE) [91] from
USTC and the Lecroy oscilloscope were used. The crossing time of a signal is determined
when setting a fixed threshold, and it is related to the amplitude of the signal. Thus, the
time-slewing correction should be carried out, and a general formula is given below

t = a0 +
a1√

q
+

a2

q
+ a3q (9)

where t is the crossing time of a signal and q represents the signal amplitude or charge, to
are the undetermined coefficients that can be obtained by fitting the relations, as depicted
in Figure 13c,d.
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Figure 13. (a) Schematic picture of the 32-gap MRPC. (b) The time distribution and resolution results of the cosmic test. The
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et al., Journal of Instrumentation; published by IOP Publishing for Sissa Medialab, 2020 [90].
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After the slewing correction, the time distribution is shown in Figure 13b, and a time
resolution of 19.9 ps has been achieved at the electric field of 150 kV/cm. Now they are
working on the new MRPCs with low resistive glass to reach both high time resolution and
high rate.

3.3.2. The New Time Reconstruction Algorithm

In recent years, artificial neural networks (ANNs) have become a powerful and
popular machine learning (ML) method in many fields, including high energy physics
analysis [92–95]. As mentioned before, the ToT of an MRPC signal is usually discriminated
against and digitized by TDC. The main drawback is that the time jitter of each TDC
channel is typically 20 ps, which is a big issue to achieve a system resolution better than
20 ps. Moreover, the threshold crossing time is related to the pulse amplitude, so the
time-slewing effect should be carefully corrected. Wang et al. [96] proposed neural network
(NN) algorithms to reconstruct the MRPC time. The Monte Carlo simulation described
before provided labeled training datasets to train the network model, while the experiment
datasets are used to test. The FC (fully connected) and long short-term memory network
(LSTM) are detailed studied [96]. Moreover, they both give more accurate and precise time
resolution results compared to the ToT method.

F. Wang also proposed a combined LSTM (ComLSTM) neural network (see Figure
14), which combines the advantages of both the LSTM and FC. The detailed description of
the ComLSTM structure can be found in [97]. For the 32-gap MRPC, same as [90], timing
performances with both the ComLSTM neural network and the traditional threshold-based
method are shown in Figure 15. The best time resolution with the ComLSTM can reach
23.82/

√
2 = 16.84 ps, which is better than that of the ToT method. Although the neural

networks have shown better performance, many efforts need to be put into implementing
and validating them in high-energy physics and particle experiments.Appl. Sci. 2020, 10, x 17 of 25 

 
Figure 14. The structure of the combined long short-term memory network (ComLSTM) network. 
Reproduced with permission from Wang et al., Journal of Instrumentation; published by IOP 
Publishing for Sissa Medialab, 2020 [97]. 

 

  
(a) (b) 

Figure 15. The time resolution results of the thin-gap MRPC Reproduced with permission from Wang 
et al., Journal of Instrumentation; published by IOP Publishing for Sissa Medialab, 2020 [97]. (a) Time 
distribution at 𝐸 = 156 kV/cm  for the ComLSTM neural network. The blue line shows the 
distribution of the time difference and the red line is obtained from the gaussian fitting. (b) Time 
resolution with the change of the working field. The black markers and curves show the results given 
by the threshold method, while the red markers and curves given by the ComLSTM. 

3.3.3. Gas Related Studies 

The choice of the working gas mixture for MRPCs has always been an important topic. It should 
allow the MRPC detector to perform successfully and stably for different purposes, and however, be 
eco-friendly. This indicates that the gas mixture should have a low ozone depletion power (ODP) and 
global warming potential (GWP). The tetrafluoroethane currently used in MRPCs is ozone friendly 
but with a GWP of about 1430 (the reference GWP of CO2 is 1). Therefore, much research has gone 
into looking for possible replacements. Among the possibilities, HFO-1234ze [98,99] with a GWP of 
6 is one of the most popular candidates, and tests of gas mixtures based on it are ongoing. 

Another reasonable approach is to reduce gas consumption or recycle gas. The CSR external 
target experiment (CEE) in Lanzhou, China, will adopt a sealed technology of MRPC to construct the 
ToF system. The MRPC detector [100], shown in Figure 16, is sealed by gluing an integral 3D-printed 

Figure 14. The structure of the combined long short-term memory network (ComLSTM) network. Re-
produced with permission from Wang et al., Journal of Instrumentation; published by IOP Publishing
for Sissa Medialab, 2020 [97].

3.3.3. Gas Related Studies

The choice of the working gas mixture for MRPCs has always been an important topic.
It should allow the MRPC detector to perform successfully and stably for different purposes,
and however, be eco-friendly. This indicates that the gas mixture should have a low
ozone depletion power (ODP) and global warming potential (GWP). The tetrafluoroethane
currently used in MRPCs is ozone friendly but with a GWP of about 1430 (the reference
GWP of CO2 is 1). Therefore, much research has gone into looking for possible replacements.
Among the possibilities, HFO-1234ze [98,99] with a GWP of 6 is one of the most popular
candidates, and tests of gas mixtures based on it are ongoing.

Another reasonable approach is to reduce gas consumption or recycle gas. The CSR
external target experiment (CEE) in Lanzhou, China, will adopt a sealed technology of
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MRPC to construct the ToF system. The MRPC detector [100], shown in Figure 16, is
sealed by gluing an integral 3D-printed frame and the outermost electrodes together. It can
operate stably with a gas flux of 4 mL/min, which is extremely low compared to that when
MRPCs are placed in a sealed box.
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3.4. A Brief Summary

The main properties of the MRPC detectors used in large experiments are summarized
in Table 3. The efficiency of all these MRPCs is very close to 100%, which is quite good.
MRPCs with a gap thickness of around 0.25 mm can reach a time resolution of 60 ps,
while much thinner gaps and a higher working field can lead to a time resolution better
than 20 ps. The rate capability of MRPCs made of the float glass sheet is typically below
1 kHz/cm2. MRPCs based on the low resistive glass (ρ ∼ 1010 Ω cm), which can reach a
rate of up to 70 kHz/cm2, are considered by CBM and future experiments.

The main solution for the present readout electronics is a combination of amplifier
and TDC, shown in Table 4. Their overall time jitters are usually around 20 ps. The ToT
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method is regularly used to acquire the arriving time of a signal, and the time–amplitude
effect should be corrected. For future experiments such as SoLID and EIC, to achieve
ultra-high time resolution, an MRPC detector with many thin gaps and the signal sampling
technology are proposed. Thanks to the full signal sampling techniques, neural networks
can be used to reconstruct the detector time.

Table 3. Parameters and features of different MRPC detectors used in several large experiments. The
counting rate is the highest rate capability of MRPC detectors.

ALICE STAR HADES CBM Future (SoLID/EIC)

Gap Thickness (mm) 0.25 0.22 0.3 0.25 0.1–0.16

Gas Gaps 2 × 5 1 × 6 1 × 4 2 × 4 4 × 8

Working Gas
(C2H2F4/C4H10/SF6) 93/0/7 95/5/0 98.5/1/0.5 90/5/5 90/5/5

Working Field (kV/cm) 96 107 107 110 ~150

Glass Type Float Float Float Low res. Low res.

Detection Efficiency 99.9% 95% 95% 95% 95%

Time Resolution (ps) 60 60 70 60 10–20

Counting Rate (Hz/cm2) 50 10 700 30 k ~10 k

Table 4. Summary of the electronics and timing methods for MRPC detectors.

Electronics Time Jitter (ps) Time Reconstruction Algorithm

ALICE/STAR
NINO amplifier ~20

Time over threshold (ToT)HPTDC ~25

CBM
PADI ~10

Time over threshold (ToT)GET4 ~25

Future
(SoLID)

Fast AFE <5
Neural networkswaveform digitizer (SCA) <5

When you start digging into the operation of MRPC detectors, there are many im-
portant issues that should be well noticed and investigated. The working point varies
for MRPCs with different structures and working conditions. For example, the wide-
gap (~0.25 mm) MRPC in avalanche mode usually operates at the electric field of around
110 kV/cm, while the very thin-gap (~0.1 mm) MRPC can work well at 150 kV/cm to
achieve a good resolution; the working point will shift significantly for different gas mix-
tures [101–105]; MRPCs built with different resistive materials may have different working
voltage and efficiency plateau: we can see from ref. [102] that the 6-gap MRPC with low-
resistivity glass reaches the plateau at the electric field of around 110 kV/cm and the
normal 6-gap MRPC reaches its plateau at a higher electric field of 120 kV/cm. In addition,
temperature and pressure have a significant influence on the operation and performance of
MRPC detectors. On one hand, the temperature will affect the resistivity of the electrode
and hence influence the resistor—capacitance circuit and the current of the detector [106].
The resistivity generally decreases by order of magnitude for a temperature increase of
about 20 ◦C both for Bakelite and float glass, as shown in Figure 17a, and it has a direct
effect on the chamber’s rate capability [107,108]. On the other hand, the gas parameters
(such as drift velocity and Townsend coefficient) are determined by the gas mixtures and
their working electric field E, temperature T and pressure P. If the environmental conditions
change, the working voltage of the MRPC detector needs to be adjusted to keep MRPC
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performance stable. This is essential in the operation of large experiments. Thus, the idea
of “effective voltage” Ve f f is given to describe the relationship

Ve f f = Vapp ×
T

Tre f
×

Pre f

P
(10)

where Vapp is the applied high voltage, T and P are the actual temperature and pressure,
Tre f and Pre f are the reference values. The efficiency versus the high voltage at different
temperatures [109] is reported in Figure 17b. The working voltage varies at different
temperatures. For every 5 ◦C increase of temperature, the working points should be
decreased by± 200 V. If not, the overvoltage will cause big sparks and streamers. Therefore,
one must carefully take the environmental conditions into account when operating the
MRPC detectors in large experiments.
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4. Conclusions and Outlook

In summary, the MRPC detector is currently a standard technology for the time
of flight system. This paper has reviewed its famous applications on the ToF system
in several experiments. The performances, including the time resolution and particle
identification, were described in detail. Several important issues, such as the gas mixtures,
the applied high voltage and the effects of temperature and pressure, are elaborated during
the operation of the MRPC detector. The paper has also discussed some recent advances
and outlooks for the future development of the next generation MRPC.

However, there are still some new requirements and unclear problems that need to be
explored further.

1. At present, unfriendly gases with high GWP are used. A big research effort must
be continually put into studying the eco gas mixtures for MRPC to work stably in
different conditions;

2. High rate and high space–time resolution MRPCs with integration and reliability
would have considerable potential for development and future applications.
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