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Abstract: Smart railway maintenance is crucial to the safety and efficiency of railway operations.
Successful deployment of technologies such as condition-based monitoring and predictive mainte-
nance will enable railway companies to conduct proactive maintenance before defects and failures
take place to improve operation safety and efficiency. In this paper, we first propose to develop
a classification-based method to detect rail defects such as localized surface collapse, rail end bat-
ter, or rail components—such as joints, turning points, crossings, etc.—by using acceleration data.
In order to improve the performance of the classification-based models and enhance their appli-
cability in practice, we further propose a deep learning-based approach for the detection of rail
joints or defects by deploying convolutional neural networks (CNN). CNN-based models can work
directly with raw data to reduce the heavy preprocessing of feature engineering and directly detect
joints located on either the left or the right rail. Two convolutional networks, ResNet and fully
convolutional networks (FCN), are investigated and evaluated with the collected acceleration data.
The experimental results show both deep neural networks obtain good performance, which demon-
strate that the deep learning-based methods are effective for detecting rail joints or defects with the
expected performance.

Keywords: rail defects; rail joint; switch; acceleration data; wavelet; machine learning algorithms;
deep neural network; CNN

1. Introduction

The railway industry spent almost 40% of revenue on maintaining, renewing and
expanding infrastructure [1,2] over past decades. Advanced railway maintenance is cru-
cial to improve safety and reduce operational costs. Recently, condition monitoring of
railway infrastructure has become more and more important, leading railway companies
to take advantage of artificial intelligence (AI) based technologies. Fleet reliability is a
key lever for increasing efficiency and reducing total cost for smart railway operation.
Predictive maintenance represents a great opportunity to yield the next big efficiency leap
in maintenance—reducing the number of failures, the amount of unplanned maintenance
and, eventually, the required level of reserve asset capacity for rail operators [3].

Wheel failures and broken rails are two main factors that cause train derailments in
today’s railway operations. Wheel failures, which account for half of all train derailments,
cost billions of dollars to the North America rail industry [1,4]; and another main cause
of derailments is broken rails due to rail defects. To minimize rail breaks and help avoid
catastrophic events such as derailments [5], railways are now closely monitoring the
performance of wheels and trying to remove them before they start imparting high impact
forces to the rails. Many techniques for detecting wheel flats and out of round issues
have been developed [6] and installed at strategic locations on the rail network. These
detectors measure the vertical force or impact of each passing wheel. One of them is
called Wheel Impact Load Detectors (WILD) [7]. A central system receives the data in
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real-time and advises the staff when the impact of a given wheel is too high. In the North
American railway network, a set of threshold values has been developed and implemented
to flag the bad actor wheels since 2004. Building on WILD techniques, we have developed
the WILD Predictor [8-10] to predict wheel failures before they reach these threshold
values. The WILD predictor can predict wheel flats, out of round wheels, and estimate
the time for wheels to reach the impact force thresholds using the machine learning-based
predictive models.

There are many available techniques developed by the railway industry and com-
munity to detect rail surface defects [6,11-14]. One cost-effective method of detecting
rail surface defects such as shelling, squats, split heads, engine burns, etc. [15] is to use
accelerometers mounted to the bogie side frames or wheel axles. The collected acceleration
data from the sensors were processed with a pre-determined threshold value to judge the
rail surface defects. The technique is simple, useful, and applicable for detecting rail joints
or broken rails. However, much more work remains to be done in order to distinguish
the joint (or broken rail) from various track surface defects since these surface defects
generate high amplitude vertical accelerations in the axles and side frames as well. Due to
such limitations, the existing threshold-based algorithms usually require additional visual
inspection of these areas of track, which greatly increase the cost and complexity of the tech-
niques. Therefore, more intelligent algorithms are needed so that the accelerometers can
automatically distinguish the rail defects from rail joint (or broken rail) and other special
track features with discontinuities. As the first step to distinguish rail surface defects from
other track features, the present work is focused on the detection of rail joints on both sides
of the track. To this end, we first developed machine learning methods to build the models
to detect the rail joints using the accelerating data collected from an inspection vehicle [16].
The developed models can detect the rail joints with high accuracy. However, this method
has two weaknesses: (1) the model requires the feature data from raw data and (2) each
side of the track needs a separate model for detection. This creates difficulties to deploy
or apply the models in railway operations. To address these limitations, we propose to
develop deep learning-based models by applying convolutional neural networks (CNN).

The state-of-the-art developments with deep learning neural networks, especially the
CNN, demonstrate an end-to-end time series classification approach, which is able to deal
with raw data without any data preprocessing. Meanwhile, it is possible to develop one
single model for identifying rail joints on both sides of the railway. After introducing the
classification-based method for rail joint detection, the paper investigates this approach for
the detection of rail joints with acceleration data.

Following this section, the paper first provides an overview of rail joint detection
technologies; then Section 3 introduces the developed feature-based classification method.
Section 4 investigates the proposed deep learning-based methods. Section 5 presents the
preliminary results for joint identification. Section 6 discusses the results and future work;
and Section 7 concludes the paper.

2. Overview of Railway Defect Detection Techniques and Acceleration Data
2.1. Techniques of Rail Defect Detection

There have been many methods and techniques developed in order to reduce the
number of derailments. One way is to improve the quality of rail steel. For example,
harder steels will lead to longer life and reduce the probability of rail defects. However,
with the increasing of traffic on the railroad, the failure of rail still remains and seems
inevitable. Early detection of rail defects is still necessary in order to repair the rail track
before it causes any serious problems such as derailments. Rail defects are mainly detected
by using an instrumented train car [11], a railway-monitoring vehicle or an instrumented
in-service train car [12]. Such instrumented vehicles contain various sensors or devices,
including video cameras, accelerometers on the car body, acoustic sensors, and ultrasonic
wave sensors, GPS, linear potentiometers, strain gauges on the top chord, and so on.
A rail defect detection system consists of not only an instrumented vehicle, a sensor suite,
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but also a data acquisition system, data analytics tool, and knowledge extraction algorithms.
For rail inspection, the methods can be grouped into vision-based methods such as laser
scanner [14,17-19] and video image processing [17-19], and motion-based methods such
as acceleration [20], which measures the vertical motion of the vehicles to detect rail defects
and other track components.

2.2. Acceleration Data

An accelerometer is a sensor capable of detecting the impact of rail surface defects to
wheel or vehicle body when mounted on the wheel or the bogie of an in-service railway
vehicle. When a train passes over track with rail surface irregularities such as joints and
surface defects, the impact force that occurs at the wheel/rail interface will generate a peak
of high acceleration to the wheelsets, axle box, bogie, and vehicle body. The abnormal
motion can be monitored by the accelerometer.

In this study, the investigation uses the acceleration data collected by two accelerome-
ters installed on a rail inspection vehicle (as shown in Figure 1) owned by Transport Canada.
The two sensors measure acceleration signals in vertical directions at two locations—i.e.,
left and right—as shown in Figure 2. A segment of track with many rail joints was selected
to collect the acceleration data.

Figure 2. Test vehicle and accelerometers.

In order to collect enough data points during the high frequency impact due to the
joint discontinuity, a sampling rate of 464 Hz was used in the data acquisition system.
This particular sampling rate was set by the acceleration data system. Figure 3 shows a
typical piece of the time series data collected through a test run. As multiple accelerometers
are mounted on wheels of ‘right” and ‘left’ sides, a joint (or a surface defect) on one side
of the track can also be observed in the data of the other side and vice versa [21,22]. If the
data for the right and left rails is analyzed separately for the defect detection on each side,
extra verification tests have to be considered to decrease the false alarm rate. Therefore,
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a robust algorithm should take the data of both sides into account and identify if there is a
joint (or defect) at the location and on which side of the track the joint (or defect) is located.
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Figure 3. Original time histories of acceleration on two sides of a vehicle.

Other data collected during the test runs include vehicle speed by wheel axle encoder,
as well as the latitude and longitude coordinates by a GPS sensor. The speed channel will
be used later to convert the acceleration data into the distance domain, and the GPS data
is useful to map the locations of the identified joints (or defects). The Figure 3 shows an
example of the acceleration data collected from the rail inspection vehicle and Figure 4
shows a rail inspection technician inspecting a rail joint in the field. It is a time consuming
task to manually inspect the rail joint for maintenance decision-making.

Figure 4. Manual joint inspection by a technician in the field.

3. Feature-Based Classification Method

In this section, we provide an overview of classification-based methods for rail defect
detection. The main task is to build the classifiers (models) from the acceleration dataset
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obtained from the rail inspection car. These models must accurately recognize the particular
data signatures that indicate rail defects or other rail components. The classification-based
method consists of five main processes: data labeling, feature extraction, model building,
model evaluation, and the decision rules of rail component identification. The following
subsections describe each process in detail.

3.1. Labeling

We cast the rail defect or joint detection problem as a binary classification task with
two class values: joint/defect (1) and not joint/defect (0). Many supervised learning
techniques can be used to address this problem but they require that each instance in a
given acceleration dataset is pre-assigned to one of the class values. In this work, we use
the signal analytic result (threshold) to automatically label each instance into one of the
class values (1 or 0). These labels will become the ground truth in the model building and
evaluation process.

3.2. Wavelet Feature Extraction

As in all challenging machine learning applications, the quality of the representation
of the data input is a key factor for building high-performance models. In this work,
the acceleration data of both sides of the track was sampled with a given frequency of
464 Hz as mentioned above. The data was transformed by signal processing in the data
acquisition system mounted on the rail inspection car. After the exploration of acceleration
data, we believe it is necessary to perform the wavelet analysis in order to augment the
data by generating new features. Wavelet analysis is a signal processing technique that has
emerged over the last 30 years as an alternative to traditional signal processing methods,
like the Fourier transform. The wavelet transform [23,24] can extract local information in
the time-domain and frequency-domain. Discrete wavelet transform (DWT) is a common
method of wavelet analysis, which decomposes low /high-frequency components from
the original signals. The following describes the foundation of the standard discrete
wavelet transformation.

In DWT, a discrete signal can be expressed using a scaling function and a wavelet
function [24]. Using the Haar scaling function, and the Daubechies wavelet function,
the signal (f[n]) can be expressed in Equation (1).

fln] = \sz o Waljo K] Fjok[n \ﬁZ] oy Woli Kwiln], )

where f[n], ¢jox[n], and ;x[n] are discrete functions defined in [0, M — 1], with a total of
M points. By taking the inner product to obtain the wavelet coefficients: approximation co-
efficients (W [j0, k]) and detailed coefficients (Wy|j, k]) are given in Equations (2) and (3),
respectively.
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In this study, we generate the wavelet features based on Equations (2) and (3). The com-
puted wavelet features will be added on to the original data set as the new features for the
model-building step.

3.3. Model Building

Our goal is to build a classification model to classify acceleration data into rail defects
or other rail components such as joints, crossings, and turnouts. Many classification
algorithms are available from machine learning research, including instance-based learning
(IBL), naive Bayes, support vector machine (SVM), decision trees, and neural networks.
In this study, simple algorithms such as decision trees, random forest decision trees, and
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naive Bayes are preferable over more complex algorithms because they are quick and
produce models that are easily explained. We systematically apply the same algorithm
several times with varying attribute subsets (with wavelet features, without wavelet
features, etc.) to obtain a set of heterogeneous models for the model selection step to
evaluate and choose the final model for identifying rail defects or joints.

3.4. Decision Rules for Identificaion

With the outputs from the selected model, we can apply the following rules (Equation
(4)) to identify the final detection results.

RID—{ Reom iszNcand{xigw} ’ @
Rpef if Ny < N < Ncand {x; cw}

where, RID is the identification results for acceleration data given a specific window size
(w) of rail track length; Reom and Rp,y represent rail components such as joint and rail defect
in the rail inspection. N is the positive detection numbers in (w) which is determined
based on the sampling rate and speed of inspection car. N, is a constant decided based on
the signature of a rail defect, and N, is a constant decided based on the signature of rail
component such as a joint. For example, we decided N, = 5 based on the statistical result of
rail joints corresponding to the equipment used in this study.

3.5. Model Evaluation

In this work, the main task is to detect rail joints in which there may contain multiple
positive detections. In terms of the rule of identification, whenever minimum number of
positive acceleration data are greater than N, in a given length of rail track, this piece of
rail track will be detected as a joint. We define a detection rate as detected joint numbers
divided by total joint numbers in the testing dataset. Eventually, we use accuracy and
detection rate as the criteria for model evaluation and selection.

Following the described methods, we conducted extensive experiments to demon-
strate the feasibility and usefulness of the feature-based classification methods. The details
can be found in [16]. As mentioned above, the acceleration data were collected from a rail
inspection car. The data only covered a specific 64 km segment of rail track. There is not
any rail defect detection-related data. All data are related to rail joints. In the experiments,
we separated the collected data into a training dataset and a testing dataset. The training
dataset contains 11 joints on the left side of the track, and 12 joints on the right side of
the track. The testing dataset contains 19 left joints and 22 right joints. In the experiment,
the window size for the joint is set as 4 cm based on common railway practice. Table 1
shows the experimental results of the model performance for four decision tree classifiers
named by feature combinations. In Table 1, MA is trained with a decision tree learning
algorithm running on feature data set, OrigFeature-L (left rail only), MB is trained with
a decision tree learning algorithm running on feature data set, OrigFeature-R (right rail
only). Similarly, MC and MD are trained with decision trees on feature data set, Wavelet-R
and Wavelet-L. Since we applied a well-defined rule to combine the prediction from each
model (N, = 5), all false alerts are successfully filtered. Therefore, no false alerts of joint
detection are returned by any of the models.

Table 1. Performance of the developed models.

Model Feature Set Accuracy Detection Rate False Alerts
MA OrigFeature-L 0.99860 90% 0
MB OrigFeature-R 0.99834 89.5% 0
MC Wavelet-R 0.99832 84% 0
MD Wavelet-L 0.99834 100% 0
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The experimental results indicate that the models can detect rail joints with good
performance. However, there are two deficiencies: (1) the model requires feature engi-
neering for new feature generation and (2) each side of the track needs a dedicated model
for joint detection. This creates complexity in the deployment of the described models
and requires other solutions to identify the location of defects, including the side of track,
and the position of the defect on the railway. To address these issues we propose a deep
learning-based approach to develop one model for defect detection on both rails using the
raw data directly.

4. Deep Learning-Based Methods

As discussed above, the deep learning-based methods are developed to address the
modeling issues existing in the feature-based classification methods. The ultimate goal
is to develop one global model for detecting rail defects directly using raw data without
complex feature engineering. Deep neural networks are a proven technology for this
problem. We can cast detecting rail defects or components such as rail joints as a time series
classification task from the viewpoint of machine learning. Therefore, we have to represent
the time series of acceleration raw data in order to apply deep neural networks such as
convolutional neural networks. In this section, we present an overview of time series
classification using deep learning networks along with a proposed data representation
method.

4.1. Time Series Classification

A time series is a sequence of data points (measurements) which has a natural temporal
ordering. The goal of time series classification is to derive a label to an interval of data
points over time based on its behavior. The acceleration data used in this study is a type of
time series data as shown in Figure 3. Detecting joints from the acceleration data can be
fulfilled through the time series classification approach [25].

Conventional time series classification approaches can be grouped under two main
types: similarity-based and feature-based methods [26]. Similarity-based approaches are
based on similarity measurements—e.g., Euclidean distance—such that the testing samples
are assigned with class labels of the corresponding training samples where their similarity
measurements are minimized. 1-nearest neighbor (1-NN) and dynamic time warping
(DTW) are two widely used methods of this category. Feature-based methods transfer the
time series instances to a feature space where a set of features are analyzed to represent the
patterns of the time series instances. Classification systems run on these features to label
the time series instances. Both of these two approaches conduct heavy computations to
assess similarity measures for the similarity-based approach and feature extractions for the
feature-based approach.

Recently some works have demonstrated deep neural networks, especially convo-
lutional neural networks (CNN), for end-to-end time series classification [27,28]. Unlike
the traditional feature-based classification framework, CNN does not require handcrafted
features. Both features and classifier are learned jointly in one model. There are three basic
components to define a basic CNN: (1) the convolutional layer, (2) the pooling layer, and
(3) the output layer. Interested readers please refer to [29] for a more detailed introduction
to CNN. A convolution layer applies a sliding a filter over the time series [17]. The filter
is a generic non-linear transformation of a time series. The output of a convolution layer
(one filter) on an input time series can be considered as another time series that under-
went a filtering process to obtain discriminative features useful for classification tasks.
When applying several filters on an input time series, multiple discriminative features are
learned automatically. The pooling operation aggregates the time series over the entire
time dimension resulting in a single real value. Usually a global aggregation is useful to
reduce the number of parameters in a model thus decreasing the risk of overfitting. The
final discriminative layer takes the features from the convolution and pooling layers and
generates a probability distribution over the class labels for the input time series. In this
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paper, the state-of-the-art technology of the CNN is investigated to build an end-to-end
time series classification model to detect joints from acceleration data.

4.2. Deep Learning Networks

Convolutional neural networks have achieved groundbreaking performance in image
recognition and there are numerous variants of CNN architectures reported in the literature.
In [27], several deep learning networks were empirically studied for the task of univariate
and multivariate time series classification. These studies suggest ResNet [30,31] and fully
convolutional networks (FCN) [28] achieve better performances than the others. Therefore,
in this paper ResNet and FCN are investigated. The same network structures of ResNet
and FCN presented in [28] are adopted. They are reconfigured for bivariate time series
classification. Figure 5 shows their structures.

Input

Bivariate time series

Convolution, 8x2, 64
BN +ReLU

Convolution, 5x2, 64

Input

Bivariate time series

Convolution, 8x2, 128

‘ BN +ReLU ‘ ‘ Convolution, 3x2, 64 |
+

BN +ReLU

BN+ReLU ¢

Convolution, 5x2, 256

BN +ReLU Convolution, 8x2, 128

Convolution, 5x2, 128
[ |+

Convolution, 8x2, 128

BN +ReLU

Convolution, 5x2, 128

BN +ReLU

Convolution, 3x2, 128
BN +ReLU |«

Global pooling

Convolution, 3x2, 128

BN +ReLU

Global pooling

Output
(a) FCN

Output

(b) ResNet

Figure 5. Network structures of FCN and ResNet.

FCN is built with three convolution blocks followed by a global average pooling
layer and a soft-max layer. The basic convolution block is a convolutional layer followed
by a batch normalization (BN) layer and a ReLU activation layer. The kernel sizes are
{8 x 2,5 x 2,3 x 2} and filter sizes are {128, 256, 128} respectively to the three convolution
blocks (Figure 5a). ResNet is one of the most popular architectures in various computer
vision tasks. ResNet extends the neural networks to a very deep structure by adding a
shortcut connection between consecutive convolutional layers. These additional shortcut
connections link the output of residual blocks to their inputs thus enable the flow of the
gradient directly through these connections. In this structure, there are three residual
blocks with a shortcut connection, a global average pooling layer, and a soft-max layer.
A basic unit of a residual block is composed of a convolutional layer followed by a batch
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normalization (BN) layer and a ReLU activation layer. There are three basic units in each
residual block with the kennel sizes of {8 x 2,5 x 2,3 x 2}. The filter sizes of these three
residual blocks are set as {64, 128, 128} respectively (Figure 5b).

The input to the networks is a bivariate time series of acceleration data of ‘right” and
‘left’ sides; the output of the network is probability distributions over three class labels
of {“None-joint”, “Leftjoint”, “Right-joint”} for three circumstances: no joint detected,
a joint on “left” side, and a joint on “right” side. The class label is determined with the
largest probability. These models are implemented in Python taking advantage of the deep
learning package “Keras”.

4.3. Representation Method of Raw Data

To develop a deep network for smart railway inspection directly using raw acceleration
data, we have to provide an efficient data representation. To this end, we propose a
‘distance-domain data representation” method for data generation. The main reasons are:
(1) the acceleration data is collected with a constant sampling time interval, but the speed
of the inspection car varies, causing the data points to be unequally spaced in the time
domain; and (2) the goal of this research is to develop a global model to detect defects
either on the left rail or right rail. Therefore, we have to generate a data object that contains
equally spaced data points. The developed ‘distance-domain data representation” method
consists of four steps: data segmentation, data interpolation, data normalization, and data
resampling.

4.3.1. Data Segmentation

Each data point, indexed by the distance measure from the start point, is a vector of
two acceleration values of left and right sides of the rail. The whole dataset is ordered by
the distance measure in increasing order. Three class labels (“None-joint”, “Left-joint”,
“Right-joint”) are considered. To train a deep learning neural network model, the data
has to be formulated as D = {(x1,¥1), (x2,¥2) ... (Xn,yn) }. Each pair (x;,y;) (1 < i < n)
is one instance, with n instances in the data set. Each x; is an interval of time series with
fixed length, i.e., each x; has the same number of data points and each point has the same
number of elements; y; is a categorical value representing the class label. To manipulate the
acceleration dataset into the required format, the bivariate time series data is segmented by
sliding windows with each segmentation as a sample. The sliding window uses a fixed
distance interval. With the raw data (in the time domain), the number of data points in a
fixed distance interval varies at different locations due to the varied speeds of the inspection
vehicle. To resolve this issue, a data interpolation method is adopted. The interpolation
method is discussed in the next subsection. Associated with x;, y; is the class label taking a
value from {“None-joint”, “Left-joint”, “Right-joint”}.

4.3.2. Data Interpolation

The acceleration data was collected with a sampling time interval of 2.15 ms. The data
was converted into the distance domain by integrating the speed signal collected simulta-
neously with the two acceleration channels. Thus, the data points are indexed by distance
from the starting point. The running speed of the inspection vehicle is changing and the
data was collected with a fixed frequency, so the distance interval is not unique. To train a
model for time series classification, input samples require fixed-length signals. If the raw
data is directly divided with the same number of data points in each sample, the sequence
features of samples are not aligned.

If the distance interval between two adjacent data points is large, some data points may
be missed between them. Data interpolation is a method of constructing new data points
within the range of a discrete set of known data points. The method creates a function
by curve-fitting the data points; then the function is used to generate points anywhere
along the curve. In this work, the system was implemented in Python. Therefore the
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“interpld” class in the Python package “SciPy-interpolate” is a convenient method for this
task. Suppose there is a sample x; by sliding window, which is expressed in Equation (5).

x; = [ i ] = { NI ] 5)
T T. rm
Xl- xl- Xl- ...xl-

where, x; is a bivariate time series of acceleration data of left and right track respectively.
There are m data points in this sample, which is different from sample to sample. There is

another index vector d; = {d}, dl.z, e dlm} with each df indicating the location of the data

lj

point ( xij ) . The distance between two adjacent data points might be different but
i

the distance interval of the sample d = d" — d}, fixed by the sliding window size, is

the same for every sample. The first step is to create the curve-fitting functions by the

“interpld” class from Python package “SciPy-interpolate” [32] for left and right separately

as expressed in Equation (6) and Equation (7).

fi
fr = interpld(d;, x}, kind = cubic), (7)

interpld(d;, x', kind = cubic), (6)

The second step is to generate a fixed number of data points evenly distributed in this
distance interval. Suppose M is the fixed number, Equation (8) expresses new data vector.

1,new 12,new M, new
e = {apree, g, Lty ®)

where, d7°“ is a new distance vector contains M points equally spaced between the start
point of d} and the end point d". The new data points can be generated as x " = f; (d!'*?)

and x" " = f,(d""). Through data interpolation, each sample can be expressed as
Equation (9).
ew xg,new B xﬁl,new xéZ,new o xéM,new 9
X - r,new - rl,new _r2new rMnew |7/ ( )
X; X X X

An example to show the data representation method described above is given in
Figure 6. Figure 6 shows a data sample that contains 19 data readings (points) given the
window size is 4 cm from our application. Figure 6a is the original data points for two
sides of rail; and Figure 6b is the curve after fitting with the “SciPy-interpolate” algorithm.
With the fitted spline, we resample the curve with 100 data points, which are equally spaced
(0.4 mm).

40 —— cubic left
40 ® data left cubic right

data right
10
e

3 )
g E
A o8 2, s
5 01888c0 8 ° ]
3 10 i 2 -0
g I
L

20 B 20

-30

-30
-40
12.1280 12.1355 12.1430 12.1505 12.1580 12.1655 —40
distance (m) 12.1280 12.1355 12.1430 12.1505 12.1580 12.1655
distance (m)
(a) (b)

Figure 6. An example of data sample given a fixed window size (4 cm). (a) Original data; (b) cubic
interpolations.
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4.3.3. Data Normalization

To make the raw data have a consistent scale, the data need to be normalized before
training. Standardization is a widely used normalization method where the data have
zero-mean and unit-variance. The method calculates the mean and standard deviation
from a data column. Then the mean was subtracted from each data point of the data
column and the result is divided by the standard deviation.

The dataset was split into a training set and a testing set. The training set was
for learning the model and the testing set was used for validating the model. Generally,
the training set and testing set are assumed to be drawn from the same population and have
approximately the same mean and standard deviation values. The testing set represents
data from the real-world in the future. The testing set was normalized by the mean and
standard deviation calculated from the training set. Otherwise, if the mean and standard
deviation of the whole dataset were used, future information would be introduced in
model learning.

4.3.4. Data Resampling

Most locations along the track contain no joints and only a few locations have joints
on either the left or right side. When the data was manipulated, most of the samples
will be associated with the class label of “None-joint” and only a few are with the class
label of “Left-joint” or “Right-joint”. Consequently, the data set is unbalanced where the
“None-joint” class has a large amount of samples and the other two joint classes have very
few samples. Trained with the unbalanced data set, a classification model’s performance
on the small classes is usually very poor. The reason is the classification model was trained
to maximize the classification accuracy. Since the small classes have very little influence
on the classification accuracy, the model is prone to optimize for accuracy in the prevalent
class. To prevent the unbalanced data problem, the “None-joint” class is down-sampled
when training the model. The dataset is composed of a randomly selected subset of the
“None-joint” class mixed with the whole samples from the other two classes. What is an
appropriate ratio of down sample is uncertain. However, if the down sampling size is not
enough, the dataset is still unbalanced; if the down sampling size is too much, the model
will be prone to the other two classes resulting in a large number of false alarms. The down
sampling size can be decided through some empirical methods such as trial-and-error.

5. Experimental Results

There is no label information within the original datasets. To conduct these exper-
iments, another column was manually added to indicate whether or not there is a joint
the interval; and if there is a joint, which side track it is on (left or right). Three classes
are coded as 0—*“None-joint”, 1—“Left-joint”, 2—"Right-joint”. There are two datasets
collected from two different locations. For the first dataset, approximately 110,000 data
points were labeled with 25 joints on left and 29 joints on right. This data set was separated
into two parts with the front part as the training set and the latter part as the testing dataset.
15 left joints and 17 right joints are in the training set; and 10 left joints and 9 right joints
are in the testing dataset. For the second dataset, the data partition method is the same as
for the first data set with 134 joints on the left and 142 joints on the right in the training set;
and 50 joints on the left and 47 joints on the right in the testing set.

Table 2 shows the basic statistical results of the training dataset and testing dataset
samples for each rail joint. From the statistical results the data points for each joint varies
with a minimum value of 11 points and a maximum value of 19 in the training dataset and
15 in the testing dataset. As mentioned in the data representation algorithm, each data
object for deep nets will be resampled with identical value of 100 data points after applying
“SciPy-interpolate” algorithm.
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Table 2. Statistical results of the data samples (raw data).

Data Points Training Dataset Testing Dataset
Min 11 11
Max 19 15
Mean 13.34 13.32

The training data was manipulated into the required format. Since a joint affected zone
is around 2 cm wide on the rail, the sliding window interval is set up as 4 cm expanding
around 1 cm to each end. After the data manipulation the training dataset is a matrix of
three dimensions 100 x 2 x n, where 100 is the number data points in each sample after
applying interpolation algorithm; 2 indicates the bivariate time series; and 7 is the number
of samples. Most samples are labeled with 0 (“None-joint” class). After several empirical
tests, this class was randomly downsized to 200 for the first data set and 1000 for the second
dataset. Therefore nn = 200 + 15 + 17 = 232 for the first dataset and n = 1000 + 50 + 47 = 1097
for the second dataset. This data matrix is normalized before training the model. The class
label vector y = [y1, Y2, . .. y»] with each y; taking a value from [0, 1, 2] as the class label of
sample x;.

The test dataset was segmented with overlapping sliding windows. For the training
data, the joint locations were assumed to be known such that each joint can be segmented
into one sample inclusively. However, the testing data was assumed unseen from the real
world. By using the same segmentation method of sliding windows, it is possible that a
sequence of data points representing a joint may be divided into several adjacent intervals
and generate duplicate data objects for an identical joint. Consequently, a joint can be
difficult to identify correctly. To prevent this occurrence, overlapping sliding windows
are used, i.e., a sliding window with an overlap of front half with the previous window
and an overlap of latter half with the next window. In this way, a joint can be fully
covered by a window. The same interval of 4 cm is used thus the overlapped windows
with an overlap of 2 cm with the previous window and an overlap of 2 cm with the next
window. Each window was taken as one test sample. The output is a vector of class labels
corresponding to each sample. However, with the overlapping sliding windows, a joint
can be segmented in multiple successive windows (samples). These samples might be
labeled with a joint label 1 or 2 but not consistent. This indicates that there a joint in this
area but not sure on which side. To deal with this inconsistency, the samples with labels of
joint classes (1 or 2) were taken. If several samples are from several successive overlapped
windows (can be decided by their start and end locations), these samples will be merged
as one sample. These selected samples will be re-classified to get the final class labels.

The training set was composed by randomly downsizing the “None-joint” class.
This factor may vary the models’ performance. Ten models are trained by 10 different
subsets of the “None-joint” class plus the two joint class samples, and tested with the same
testing dataset. Thus the average results from the ten models can be reported. Both ResNet
and FCN are trained and tested with the same datasets in all runs in order to compare
their performance fairly. Finally, the model performance evaluated by the recall, precision
and F-measure values on the two joint classes is presented in Table 3. From the results,
it is obvious that both ResNet and FCN achieve good results on the two testing datasets.
ResNet performs slightly better than FCN for the first dataset and they both achieve similar
results on the second dataset.
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Table 3. Performance of deep learning-based models.
ResNet
Recall Precision F-Measure
Data 1 Left (10 joints) 0.83 + 0.07 0.83 + 0.08 0.83 &+ 0.06
Right (9 joints) 0.94 + 0.06 0.89 + 0.06 0.91 £+ 0.08
Data 2 Left (134 joints) 0.98 £+ 0.04 0.77 £0.03 0.85 + 0.04
Right (142 joints) 0.89 + 0.03 0.87 + 0.02 0.88 &+ 0.03
FCN
Recall Precision F-Measure
Data 1 Left (10 joints) 0.82 £ 0.12 0.71 +0.13 0.74 £ 0.15
Right (9 joints) 0.96 + 0.08 0.81+0.13 0.86 = 0.13
Data 2 Left (134 joints) 0.98 £+ 0.03 0.76 = 0.06 0.87 £ 0.05
Right (142 joints) 0.95 + 0.04 0.83 + 0.05 0.89 &+ 0.05

6. Discussion

Based on the preliminary results obtained from the experiments, it is obvious that
the feature-based method can detect the joint with high detection rate but requires two
independent models for right and left rail respectively. The deep learning-based method
can address this limitation with one global model to detect a joint on either the left rail
or right rail with the expected performance. Another advantage is deep neural networks
can directly deploy the raw time history data as the model input without complex data
engineering which makes the model more useful in practice and applicable in real applica-
tions. The experimental results shown in Table 3 demonstrate that ResNet and FCN both
achieved good performance in joint detection, with ResNet performing slightly better than
FCN on the first dataset and similarly on the second dataset. It is worth mentioning that
the deep learning-based model will unable to detect the joints that appear simultaneously
on the both side since the models were trained only for each side of the rails.

It is worth noting that there are a few parameters that require special attention in the
proposed methods: the window size, the number of data points in the data object, and the
length of the joint. These parameter settings or configurations will have a great impact
on the model performance and applicability of the developed models. In this work, these
parameters are set up based on the requirement of rail joint detection. In the future, if we
want to use the model to detect other rail components—such as turning points, crossings,
etc.—these parameters have to be reconfigured based on the new requirements.

Although this preliminary study was focused on detecting rail joints, we believe that
the developed approach can be easily extended to other railway inspections such as rail
defect detection or rail component identification. The next step of the research is to apply
the approach to other rail defects such as localized surface collapse (LSC), rail end batter
(REB), or crushed head (CH) prior to rail failure.

7. Conclusions

This paper presented machine learning-based methods for railway inspection, includ-
ing a feature-based method and a deep neural network-based method using acceleration
data. The deep learning-based method is an end-to-end time series classification ap-
proach for the detection of rail joints on railway track by training convolutional neural
networks. It enhances the classification-based detection method with applicability and
easy-deployment features. The advantages of the deep neural network-based approach
are: (1) a significant reduction in the heavy data preprocessing for feature extraction; and
(2) ability to detect joints on left or right rail using one global model. Our approach over-
comes the interference issue with acceleration data, i.e., a discontinuity (joint or defect) on
one side of rail also generates high amplitude of the acceleration signal on the other side
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of the rail. This interference effect can increase the false alarm rate if a separate model for
each side of the rail is used. With a unified model trained by data collected on both sides,
this effect is learned in the model such that the model is able to distinguish joints on left or
right rail specifically. The experimental results demonstrated that ResNet and FCN both
achieved good performance in joint detection.

Although this study was focused on detecting rail joints, we believe that the developed
approach can be easily extended to other conditions on rail surface. The next step of the
research is to apply the approach to other rail surface defects [33]—such as localized surface
collapse (LSC), rail end batter (REB), or crushed head (CH)—prior to rail failure. These
defects have been identified by a recent derailment investigation as leading indicators for
rail failure and derailment.
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