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Abstract: In geotechnical engineering, the consolidation of unsaturated soil is a common issue of
great interest. Considering the multi-layered property and impeded drainage boundary condition of
the soil stratum in real engineering, this study aimed to develop a general semi-analytical solution
for assessing the one-dimensional (1D) consolidation behavior of multi-layered unsaturated soil
that is subjected to a general impeded drainage boundary condition and a time-dependent loading.
To achieve the final solution, the proposed consolidation system is firstly decoupled and solved in
the Laplace domain. Then, the semi-analytical solutions for the excess pore-air pressure and excess
pore-water pressures as well as the soil settlement are formulated. The Crump method is employed
to provide their final results in the time domain. The correctness of the derived solutions was verified
against the available analytical and numerical solutions, and excellent agreements were found for the
two comparisons. Moreover, two studied examples are presented to illustrate the 1D consolidation
behavior of multi-layered unsaturated soil and the influences stemming from the impeded drainage
parameters are discussed.

Keywords: one-dimensional consolidation; multi-layered unsaturated soil; semi-analytical solution;
impeded drainage boundary; Laplace transform

1. Introduction

In geotechnical engineering, the consolidation of unsaturated soil is one of the most
important subjects. Because of having both an air and water phase, unsaturated soil shows
much more complex properties [1–3]. In order to describe the behavior of unsaturated soil
undergoing compression and consolidation, Alonso et al. [4] proposed a constitutive model
of unsaturated soil on the basis of framework of hardening plasticity with two independent
sets of stress variables. Rojas and Chavez [5] developed an elastoplastic framework to
account for the volumetric behavior of unsaturated soil. Skutnik et al. [6] discussed the
coefficient of consolidation of unsaturated soil on the basis of a set of experimental results.
For the consolidation of unsaturated soil, the past few decades have witnessed significant
progress in developing various consolidation theories [7–9] and the most popular one was
propounded by Fredlund and Hasan [10], which used a second-order partial differential
system to characterize the dissipating phenomenon of excess pore-air pressure and that of
excess pore-water pressure simultaneously. Fredlund and Rahardjo [11] further employed
the assumption that all the soil parameters do not change during the consolidation process
to develop a simplified form of the previous consolidation system. Afterwards, this
consolidation system was expanded to the two- and three-dimensional situations [12,13]
and it has also extensively inspired a noticeable number of studies on the consolidation
behavior of unsaturated soil [14–16]. However, most studies treated both the top surface
and bottom base as fully drained or absolutely undrained boundaries for seeking the
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theoretical solutions more easily. In reality, these boundaries are commonly impeded
drainage [17–20]. To capture this feature, Gray [21] defined a novel impeded drainage
boundary by taking advantage of the third kind of boundary condition. This boundary
can approach the fully drained one or undrained one by changing the drainage parameter.
Using this boundary, Zhou and Zhao [22] proposed a numerical solution for the 1D
consolidation system of unsaturated soil on the basis of the differential quadrature method.
Wang et al. [23,24] derived semi-analytical solutions for this topic by considering the
impeded drainage boundary conditions in one way or the double way. However, these
studies are only confined to a simple homogenous soil stratum.

In nature, the soil stratum generally consists of multi-layers due to the complex
sedimentation. Under this situation, it seems to be unreasonable to treat this type of soil
stratum as a homogenous one. Therefore, it is significant to address the consolidation
problem of multi-layered unsaturated soil. To the best knowledge of the authors, however,
the studies on the consolidation of multi-layered unsaturated soil are rare. Shan et al. [25]
focused on the 1D consolidation system of multi-layered unsaturated soil only catering
to the situation that all the soil layers have the same coefficient of air volume change
and also have the same coefficient of water volume change. Actually, these coefficients
generally vary with increasing depth. Moreover, they only considered ideal single-drainage
boundary condition. For the case of the impeded drainage boundary condition, Moradi
et al. [26] introduced the well known incremental differential quadrature method (IDQM)
to formulate a numerical method for assessing the 1D consolidation behavior of multi-
layered unsaturated soil. This kind of numerical solution shows a good accuracy and
efficiency, but there are still shortcomings in the application to mixed boundary [27,28].
In particular, because of the cumbersome and complex mathematical derivations, it is
very difficult to be used by practicing engineers. Therefore, it is crucial to derive an
accurate and simple solution for assessing the 1D consolidation behavior of multi-layered
unsaturated soil. Compared with the numerical methods, theoretical solutions (analytical
and semi-analytical solutions) can be more accurate and simpler. Moreover, they can be
also applied to verify the numerical method. To date, however, no effort has been devoted
to developing a theoretical solution for assessing the 1D consolidation behavior of the
common multi-layer unsaturated soil that caters to a general impeded drainage boundary
condition.

This study aimed to propose a general semi-analytical solution for assessing the 1D
consolidation behavior of the multi-layered unsaturated soil stratum that is subjected to an
impeded drainage boundary condition. The well known governing equations propounded
by Fredlund and Hasan [10] are adopted to simulate the consolidation process in each soil
layer and formulate the consolidation system of the multi-layered unsaturated soil stratum.
To obtain the final solution, the formulated consolidation system is firstly decoupled and
solved in the Laplace domain. Then, the semi-analytical solutions for the excess pore-air
pressure and excess pore-water pressures as well as the soil settlement are developed. The
Crump method is employed to obtain their final results in the time domain. The correctness
of the derived solutions is verified with the analytical and numerical solutions from the
literature. Moreover, two worked examples are presented to illustrate the 1D consolidation
behavior of multi-layered unsaturated soil and the influences stemming from the impeded
drainage parameters are discussed.

2. Problem Description
2.1. Governing Equations

Without a loss of generality, as schematically in Figure 1, we consider a 1D consoli-
dation system that consists of several contiguous unsaturated soil layers. Each soil layer
is indexed with i (i = 1, 2, . . . , n) and its thickness is hi. Both the top surface and bottom
base are treated as impeded drainage to the air and water phases. Assume that a time-
dependent loading q(t) is uniformly acted on the top of the top soil layer. The flows and the
soil settlement are assumed to only occur along the vertical direction. In each soil layer, the
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coefficient of air permeability and that of water permeability are denoted as k(i)a and k(i)w ,
respectively. This study adopted all the basic assumptions of 1D consolidation theory for
unsaturated soil [1,10], and employed the well known governing equations of Fredlund
and Hasan [10] to characterize the 1D consolidation process of each soil layer, that is:

C(i)u(i)
,t + K(i)u(i)

,zz = Q(i)
,t (1)

where:

u(i) =

{
u(i)

a

u(i)
w

}
, C(i) =

[
1 C(i)

a

C(i)
a C(i)

a /C(i)
w

]
,

K(i) =

[
ca(i)

v 0
0 cw(i)

v C(i)
a /C(i)

w

]
, Q(i) =

{
ca(i)

σ

cw(i)
σ C(i)

a /C(i)
w

}
σz

(2)

where the superscript (i) denotes the ith soil layer; u(i)
a and u(i)

w are the excess pore-air
and pore-water pressures; C(i)

a and C(i)
w are two interactive constants related to the air

and water phases; ca(i)
v and ca(i)

σ are two consolidation parameters of the air phase; cw(i)
v

and cw(i)
σ are two consolidation parameters of the water phase; u,z and u,t stand for the

derivatives against depth z and time t; and σz is the total normal stress in the vertical
direction, respectively.
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Figure 1. The one-dimensional consolidation system of multi-layered unsaturated soil under im-

peded drainage boundaries. 

The interactive constants and consolidation parameters in Equation (2) are: 

Figure 1. The one-dimensional consolidation system of multi-layered unsaturated soil under impeded
drainage boundaries.

The interactive constants and consolidation parameters in Equation (2) are:

C(i)
w = mw(i)

1 /mw(i)
2 − 1, cw(i)

v = k(i)w /
[
mw(i)

2 γw

]
, cw(i)

σ = mw(i)
1 /mw(i)

2

C(i)
a =

{[
ma(i)

1 /ma(i)
2 − 1

]
− n(i)

0

[
1− S(i)

r

]
/
[
ma(i)

2 u(i)
a

]}−1

ca(i)
σ =

{
1−ma(i)

2 /ma(i)
1 − n(i)

0

[
1− S(i)

r

]
/
[
ma(i)

1 u(i)
a

]}−1

ca(i)
v =

k(i)a RT
gM

{
ma(i)

2 u(i)
a

[
ma(i)

1 /ma(i)
2 − 1

]
− n(i)

0

[
1− S(i)

r

]}−1

(3)

where mw(i)
1 and mw(i)

2 are the coefficients of the water volume change stemming from
a variation in the net normal stress and that stemming from a variation in the matric
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suction, respectively; ma(i)
1 and ma(i)

2 are the coefficients of air volume change stemming
from a variation in the net normal stress and that stemming from a variation in the matric
suction, respectively; n(i)

0 and S(i)
r are the soil porosity and the degree of saturation; u(i)

a =

u(i)
a0 + uatm and uatm is the atmospheric pressure; g is the acceleration of gravity; R is the

universal gas constant; T is the absolute temperature; M is the molecular mass of air; and
γw is the unit weight of water.

2.2. Solution Conditions

In each soil layer, the excess pore-air and pore-water pressures are supposed to be
uniformly distributed at the initial time, that is:

u(i)(z, 0) = u(i)
0 =

{
u(i)

a0 , u(i)
aw

}T
(4)

where u(i)
a0 and u(i)

aw are the initial pore-air and pore-water pressures in the ith soil layer,
respectively.

Assume that both the top surface and bottom base are impeded drainage to the air
and water phases, that is [23,26]:

u(1)
a,z (0, t)− h−1Rtau(1)

a (0, t) = 0, u(1)
w,z(0, t)− h−1Rtwu(1)

w (0, t) = 0 (5a)

u(n)
a,z (h, t) + h−1Rbau(n)

a (h, t) = 0, u(n)
w,z(h, t) + h−1Rbwu(n)

w (h, t) = 0 (5b)

where Rta and Rtw are the drainage parameter of the air phase and that of the water phase
at the top surface, respectively; and Rba and Rbw are the drainage parameters of the air
phase and that of the water phase at the bottom base, respectively.

The continuity conditions of the excess pore pressures and those of the flow rates at
an interface between two adjacent soil layers can be addressed as below:

u(`)
a (z`, t) = u(`+1)

a (z`, t), u(`)
w (z`, t) = u(`+1)

w (z`, t) (6a)

k(`)a u(`)
a (z`, t) = k(`+1)

a u(`+1)
a (z`, t), k(`)w u(`)

w (z`, t) = k(`+1)
w u(`+1)

w (z`, t) (6b)

where ` = 1, 2, · · · , n− 1.
In the matrix form, these boundary and interface continuity conditions can be rewritten

as
u(1)

,z (0, t)− h−1Rtu(1)(0, t) = 0, u(n)
,z (h, t) + h−1Rbu(n)(h, t) = 0 (7)

u(`)(z`, t) = u(`+1)(z`, t), k(`)u(`)
,z (z`, t) = k(`+1)u(`+1)

,z (z`, t) (8)

where:

Rt =

[
Rta 0
0 Rtw

]
, Rb =

[
Rba 0
0 Rbw

]
, k(`) =

[
k(`)a 0
0 k(`)w

]
(9)

3. Solution Formulations

In the Laplace domain, the excess pore pressure vector can be defined as

~
u
(i)
(z, s) =

∫ ∞

0
u(i)(z, t)e−stdt (10)

where s is the Laplace transform parameter.
Using the initial conditions (4) to perform the Laplace transform of the system (1)

leads to:

W(i)~
u
(i)
,zz − s

~
u
(i)

+
~
F
(i)

= 0 (11)
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where:

W(i) = −
[
C(i)

]−1
K(i),

~
F
(i)

=
[
C(i)

]−1
[

s
~
Q

(i)
−Q(i)

0

]
+ u(i)

0 (12)

Note that the matrix W(i) has the following diagonalized form:

W(i) = θ(i)Λ(i)
[
θ(i)

]−1
(13)

with:

θ(i) =

[
1 θ

(i)
12

θ
(i)
21 1

]
, Λ(i) =

[
Λ(i)

1 0

0 Λ(i)
2

]
,

Λ(i)
1,2 =

{
2
[
C(i)

a C(i)
w − 1

]}−1
{

ca(i)
v + cw(i)

v ±
[
ψ(i)

] 1
2
}

ψ(i) =
[
ca(i)

v − cw(i)
v

]2
+ 4C(i)

a C(i)
w ca(i)

v cw(i)
v , θ

(i)
12 = C(i)

a cw(i)
v

{[
C(i)

a C(i)
w − 1

]
Λ(i)

2 − ca(i)
v

}−1

θ
(i)
21 = C(i)

w ca(i)
v

{[
C(i)

a C(i)
w − 1

]
Λ(i)

1 − cw(i)
v

}−1

(14)

Reformulate the system (11) using Equation (13) as[
θ(i)

]−1 ~
u
(i)
,zz − s

[
Λ(i)

]−1[
θ(i)

]−1 ~
u
(i)

+
[
Λ(i)

]−1[
θ(i)

]−1 ~
F
(i)

= 0 (15)

This system is diagonal for the vector of
[
θ(i)

]−1 ~
u
(i)

and has the general solution:

~
u
(i)

= θ(i)
[
E(i)

1 (z, s)A(i)
1 + E(i)

2 (z, s)A(i)
2

]
+ s−1 ~

F
(i)

(16)

with:

E(i)
1 (z, s) =

[
E(i)

2 (z, s)
]−1

=

 e
√

s/Λ(i)
1 (z−zi−1) 0

0 e
√

s/Λ(i)
2 (z−zi−1)

 (17)

where A(i)
1 and A(i)

2 are the two coefficient vectors for the ith soil layer.
The Laplace transforms for the boundary conditions (7) and continuity conditions (8)

are:
~
u
(1)
,z (0, s)− h−1Rt

~
u
(1)

(0, s) = 0,
~
u
(n)
,z (h, s) + h−1Rb

~
u
(n)

(h, s) = 0 (18)

~
u
(`)

(z`, s) =
~
u
(`+1)

(z`, s), k(`)~
u
(`)

,z (z`, s) = k(`+1)~
u
(`+1)
,z (z`, s) (19)

Substituting Equation (16) into these equations further produces:



T(1)

Ξ(1) Γ(2)

. . . . . .
Ξ(i−1) Γ(i)

Ξ(i) Γ(i+1)

. . . . . .
Ξ(n−1) Γ(n)

B(n)


4n×4n



X(1)

X(2)

...
X(i)

X(i+1)

...
X(n−1)

X(n)


4n×1

=



−s−1Rt
~
F
(1)

Ψ(2)

...
Ψ(i)

Ψ(i+1)

...
Ψ(n)

−s−1Rb
~
F
(n)


4n×1

(20)

with
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Ξ(i) = −Γ(i)Ω(i), Γ(i) =

[
θ(i) θ(i)

k(i)θ(i)ρ(i) −k(i)θ(i)ρ(i)

]
, Ω(i) =

[
J(i)1 0
0 J(i)2

]
, ρ(i) = h

[
s/Λ(i)

]1/2

Ψ(i+1) = s−1

{
~
F
(i)
−

~
F
(i+1)

0

}
, X(i) =

{
A(i)

1

A(i)
2

}
, T(1) =

{
Rtθ

(1) − θ(1)ρ(1) Rtθ
(1) + θ(1)ρ(1)

}
B(n) =

{
Rbθ

(n) + θ(n)ρ(n) Rbθ
(n) − θ(n)ρ(n)

}
Ω(n), J(i)1 = E(i)

1 (zi, s). J(i)2 = E(i)
2 (zi, s)

(21)

Obviously, the coefficient vectors A(i)
1 and A(i)

2 can be directly solved from Equa-
tion (20). Then, we can obtain the excess pore pressures from the inversion of the solution
(16) as

u(i)(z, t) =
1

2π j

∫ c+j∞

c−j∞

~
u
(i)
(z, s)estds (22)

where j =
√
−1; and c is a real constant that exceeds the real part of all the singular points

of
~
u
(i)

.
For a layered unsaturated soil, Equation (22) is commonly difficult to analytically

achieve. Herein, the well known Crump’s method [29] is employed to approximate its
result as

u(i)(z, t) =
ect

T

{
1
2

~
u
(i)
(z, c) +

∞

∑
k=1

Re
[

~
u
(i)
(

z, c +
jkπ

T

)
e

jkπ
T t
]}

(23)

where T is a real parameter exceeding one half of the largest time tmax.
Once knowing the values of the excess pore-air and pore-water pressures in each soil

layer, we can calculate the related volumetric strain ε
(i)
v from the below expression [9,15]:

ε
(i)
v (z, t) = ms(i)

1 [σz(t)− σz(0)] + ms(i)
[
u(i)(z, t)− u(i)(z, 0)

]
(24)

where ms(i) =
{

ms(i)
2 −ms(i)

1 , −ms(i)
2

}
; ms(i)

1 = mw(i)
1 + ma(i)

1 is the coefficient of the

soil volume change that is caused by an evolution of the net normal stress; and ms(i)
2 =

mw(i)
2 + ma(i)

2 is the coefficient of the soil volume change that is caused by an evolution of
the matrix suction. This equation takes the following Laplace transform:

ε̃
(i)
v (z, s) = ms(i)

1

[
σ̃z(s)− s−1σz(0)

]
+ ms(i)

[
~
u
(i)
(z, s)− s−1u(i)(z, 0)

]
(25)

Integrating this equation against z from zi-1 to zi and summing these integrations of
all the soil layers leads to:

S̃(s) =
n
∑

i=1

{
him

s(i)
1
[
σ̃z(s)− s−1σz(0)

]
+ his−1ms(i)

[
~
F
(i)
− u(i)

0

]
+hms(i)θ(i)

[
ρ(i)
]−1[

J(i)1 − I
][

A(i)
1 + J(i)2 A(i)

2

]} (26)

where S̃(s) is the Laplace transform of the ground settlement of the multi-layered unsatu-
rated soil; and I is an identity matrix. Similarly, we can adopt the Crump’s method [29] to
calculate the ground settlement in the time domain as

S(t) =
ect

T

{
1
2

S̃(c) +
∞

∑
k=1

Re
[

S̃
(

c +
jkπ

T

)
e

jkπ
T t
]}

(27)
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4. Verifications and Examples
4.1. Verifications

In this part, two consolidation cases of three-layered soil strata are investigated to
verify the correctness of the derived semi-analytical solution against the available analytical
and numerical solutions. One case is from the work of Shan et al. [25], which has a fully
drained top surface and an undrained bottom boundary. For seeking an analytical solution,
this case takes the same coefficient of air volume change and that of water volume change
for different soil layers. The other case is from the work of Moradi et al. [26], which caters
to impeded drainage top and bottom boundaries. In addition, the coefficient of air volume
change and that of water volume change are considered to be different in different soil
layers. For this case, Moradi et al. [26] proposed an IDQM solution. For these two cases,
the specifications of the soil profile and material parameters are given in Table 1 [25,26].

Table 1. Parameters of the two cases of three-layered soil strata adopted from the literature [25,26].

Case
No.

Layer
No.

hi(m) ms
1 ms

2 mw
1 mw

2 kw ka Sr n0(×10−4 kPa−1) (×10−9 m/s)

I
Shan et al. (2014)

1 3 −2.5 −1.0 −0.5 −2.0 0.1 1 0.8 0.45
2 4 −2.5 −1.0 −0.5 −2.0 1 10 0.6 0.5
3 3 −2.5 −1.0 −0.5 −2.0 0.1 1 0.7 0.4

II
Moradi et al. (2019)

1 3 −2.5 −1.0 −0.5 −2.0 1 10 0.7 0.5
2 4 −3.5 −1.0 −0.65 −2.5 0.1 1 0.8 0.4
3 5 −1.5 −0.5 −0.3 −1.5 0.5 5 0.9 0.45

Other parameters: γw = 10 kN/m3, uatm = 101 kPa, T = 293.16 K, R = 8.31432 J/(mol ·K), and M = 0.029 kg/mol.

For the first case, the drainage parameters at the top surface and bottom boundary
are taken as infinities and zeros (i.e., Rta = Rtw = ∞ and Rba = Rbw = 0), respectively.
This indicates that the top surface is fully drained while the bottom base is undrained to
pore-air and pore-water. The applied loading is a constant load of 100 kPa, and at the
initial time, both the excess pore-air and pore-water pressures are given as zeros. On the
basis of Equation (23), the excess pore pressures are attained and the results are graphically
shown in Figure 2a,b in the forms of excess pore pressure distributions. As a comparison,
these figures also plot the results of Shan et al. [25] from the analytical solution. For the
second case, the top surface is taken as fully drained to pore-air and pore-water, while the
bottom base is given as undrained to pore-water but impeded drained to pore-air. The
applied loading is an exponential load with the asymptotic value of 100 kPa. The excess
pore-air and pore-water pressures are taken as zeros at the initial time. Similarly, the results
of excess pore pressures are calculated from Equation (23). For the graphic presentation,
the point z = 9.5 m was chosen to be investigated. In Figure 3a,b, the evolutions of excess
pore-air and pore-water pressures are depicted. As a comparison, the results of Moradi
et al. [26] from the IDQM solution are also given. As seen in Figures 2 and 3, excellent
agreements are obtained in these comparisons, which demonstrates the correctness and
reliability of the derived semi-analytical solution. Therefore, the proposed solution is
feasible to predict the 1D consolidation behavior of multi-layered unsaturated soil stratum
with the general impeded drainage boundary conditions.
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4.2. Worked Examples

In this part, two worked examples of three-layered unsaturated soil strata under
the impeded drainage boundaries are investigated, and the influences stemming from
the drainage parameter of air phase and that of the water phase are discussed. The
specifications of the soil profile and material parameters listed in Table 1 for the second case
are adopted in the calculations. Two typical types of external loadings including constant
and exponential loads are incorporated in the calculation procedure. The excess pore-air
and pore-water pressures are given as zeros at the initial time. Herein, at the bottom base,
the drainage parameter of the air phase is taken as Rba = 10 and that of the water phase is
given as Rbw = 5, respectively; while at the top surface, they are changed one by one from
2 to 100. Based on the derived solutions, the excess pore-air and pore-water pressures as
well as the ground settlement of these multi-layered unsaturated soil strata are obtained
and the results are graphically demonstrated below.

The first worked example takes a changing drainage parameter of air phase at the
top surface while that of water phase is taken as Rtw = 5. For this situation, Figure 4a,b
depict the evolutions of excess pore-air pressure induced by constant and exponential
loads, respectively. As can be observed, the action of a constant load immediately results
in a great pore-air pressure, which gradually decreases with time passing; while the pore-
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air pressure first gradually increases as the exponential load increases, and then deceases
slowly after the increase in the exponential load becomes slow. In particular, the value of the
drainage parameter with respect to the air phase has a pronounced effect on the evolution
of pore-air pressure. A larger drainage parameter (i.e., greater drainage efficiency) of air
phase delivers a faster dissipation of excess pore-air pressure, especially during the middle
and later periods of the consolidation process. Similarly, the evolutions of pore-water
pressure are shown in Figure 5a,b. As observed, the evolution of pore-water pressure has
two distinct stages. The first one corresponds to the change of pore-air pressure and it
is the result of the drainage of pore-air; while the later one is proceeded by the drainage
of pore-water. The influence of the drainage parameter above mainly emerges on the
first stage, and a larger drainage parameter of air phase leads to a faster dissipation of
pore-water pressure. Once the value of this drainage parameter exceeds 100, the curves of
pore pressures tend to change as the same way. In addition, for the situation of the constant
load, Figure 6a,b demonstrate the isochrones of pore-air pressure and those of pore-water
pressure at different times, respectively. As seen, being subjected to a constant load, both
the pore-air and pore-water pressures induced in one soil layer are different from those
caused in another soil layer. As shown in Table 1, the coefficient of soil volume change
in the second layer is the largest one, indicating that the second layer is the softest one.
Therefore, being subjected to an external load, this layer may provide a smaller resistance
than the other two layers. Under this situation, the air and water phase in the second
soil layer have to undertake more load, which means larger pore pressures. It is worthy
to note that the drainage parameter (i.e., drainage efficiency) of the air phase shows a
profound effect on the distribution of pore-air pressure and that of pore-water pressure.
The larger drainage parameter of air phase can speed up their dissipation processes. This
effect firstly appears at the position near the top surface, and later spreads far away
gradually. The difference resulting from this influence is slightly small in the initial stage,
and then it gradually increases with time passing. Later, the induced difference decreases
or even disappears. Furthermore, Figure 7a,b show the evolutions of normalized soil
settlement under constant and exponential loads, respectively. Being similar to the results
in Figure 5a,b, the normalized soil settlement undergoes two distinct developing stages
and the influence of the drainage parameter above mainly occurs at the first stage. The
larger the drainage parameter of the air phase is, the faster the soil settles. Once the value
of this drainage parameter is larger than 100, the curves of the soil settlement also tend
to develop as the same pattern. Under this scenario, the influences stemming from the
drainage parameter related to the air phase can be ignored, and the top surface approaches
full drainage to the air phase.
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Figure 5. Pore-water pressure evolutions with different Rta: (a) constant load; and (b) exponential load. 
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The second worked example adopts the changing drainage parameter of the water
phase at the top surface whereas that of the air phase is taken as Rta = 5. For this example,
the evolutions of excess pore-air pressure under the external excitations of constant load
and exponential load are shown in Figure 8a,b, and the evolutions of excess pore-water
pressure for the same external excitations are illustrated in Figure 9a,b, respectively. As
observed, this drainage parameter has no influence upon the evolution of excess pore-
air pressure while it shows a pronounced effect on the dissipation of excess pore-water
pressure. This influence is different from that caused by the drainage parameter of air
phase, as shown in Figures 4 and 5. This phenomenon can be explained that the excess
pore-water pressure dissipates significantly after the excess pore-air pressure dissipates
completely, as depicted in Figures 5 and 9. Herein, the drainage parameter of the water
phase mainly induces a pronounced difference during the later period of the dissipation of
excess pore-water pressure. Thus, a change in this drainage parameter will not produce an



Appl. Sci. 2021, 11, 133 11 of 14

effect on the evolution of excess pore-air pressure. In general, the larger drainage parameter
of the water phase gives rise to a faster dissipation of excess pore-water pressure. When
the value of this drainage parameter is larger than 100, its influences on the evolution
of excess pore-water pressure can be disregarded. Furthermore, for the situation of the
constant load, the distributions of excess pore-air pressures and those of excess pore-water
pressures at different times are shown in Figure 10a,b. The results show that the drainage
parameter of the water phase does not influence the distributions of excess pore-air pressure
at all, but it affects those of excess pore-water pressure significantly. This phenomenon is
identical to that in Figures 8 and 9. For the excess pore-water pressure, the larger drainage
parameter generally brings about a quicker dissipation. During the consolidation process,
the difference caused by this drainage parameter firstly increases to a noticeable value, then
gradually decreases or even disappears. Being similar to the phenomena of Figure 6a,b,
this drainage parameter initially delivers a noticeable influence at the position near the
top surface, and then gradually affects the positions far away. Furthermore, Figure 11a,b
demonstrate the changes of the soil settlement induced by the constant and exponential
loads, respectively. As seen, the drainage parameter of the water phase mainly produces a
noticeable influence during the later period of the soil settling process. Specifically, a larger
drainage parameter of the water phase results in a faster settlement rate. When the value
of this drainage parameter exceeds 100, its influence in the evolution of the soil settlement
can be ignored. Under this scenario, the top surface can be assumed to be a fully drainage
boundary for the water phase.
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5. Conclusions

This study incorporates a general impeded drainage boundary condition into 1D
consolidation system of multi-layered unsaturated soil. The technique of the Laplace
transform and the Crump method are employed to develop a semi-analytical solution for
this system. The verifications of the three-layered unsaturated soil conducted in this study
exhibit good agreements with the related analytical solution for the traditional boundaries
and the numerical incremental differential quadrature method for the impeded drainage
boundary condition. The present semi-analytical solution has effectively predicted the
evolution of excess pore-air pressure and that of excess pore-water pressures, and it is
applicable for the 1D consolidation problems of multi-layered unsaturated soil under
various impeded drainage boundaries. The application of an external load to a multi-
layered unsaturated soil commonly generates different excess pore-air pressure as well
as different excess pore-water pressure in different soil layer. The drainage parameter
of the air phase shows great effects on the evolution of excess pore-air pressure and that
of excess pore-water pressure as well as the soil settling process; while that of the water
phase only affects the evolution of excess pore-water pressure and the soil settling process.
These influences initially appear at the position near the boundary and then gradually
spread far away. A larger drainage parameter generally expedites the excess pore-pressure
dissipations and the soil settling process. Once the drainage parameter is large enough (i.e.,
larger than 100), the boundary approaches fully drainage.
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