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Abstract: One of the challenges in predicting the remaining useful life (RUL) of rolling element
bearings (REBs) is determining a proper failure threshold (FT). In the literature, the FT is usually
assumed to be a constant value of an extracted feature from the vibration signals. In this study, a
degradation indicator was extracted to describe damage to REBs by applying principal component
analysis (PCA) to their run-to-failure data. The relationship between this degradation indicator and
the vibration peak was represented through a joint probability distribution using statistical copula
models. The FT was proposed as a probability distribution based on the fluctuation increase in the
vibration trend. A set of run-to-failure tests was conducted. Applying the proposed method to this
dataset led to various FTs for the different failure modes that occurred. It is shown that, for inner
race degradation, a higher FT can be assumed than for rolling element degradation. This could help
extend the lives of REBs regarding the degrading elements. A dataset for an industrial machine was
also analyzed and it is shown that the proposed model estimated a reasonable and proper FT in an
actual case study.

Keywords: rolling element bearing; remaining useful life; failure threshold; vibration fluctuation;
principal component analysis; copula models; failure mode

1. Introduction

Rolling element bearings (REBs) are one of the most common mechanical components
of rotary machines. The failure of these components is the main reason for 45% to 55% of
machines breakdown [1]. This is why researchers have paid more attention to predicting
the remaining useful life (RUL) of REBs over the past two decades. The RUL of REBs is
defined as the remaining time until a vibration feature reaches the predetermined failure
threshold (FT) [2], which is often assumed to be a constant value in the literature. There-
fore, the accuracy of the RUL prediction depends on selecting a proper FT. Furthermore,
the determination of FTs for various vibration features is a challenging issue. In general,
to achieve protective or predictive goals in preventing the breakdown of rotary machines,
the FT is determined experimentally, based on the manufacturers′ recommendation or
using the recommendations of standard codes (e.g., ISO 10816-3 [3]). The recommendations
in ISO 10816-3 and other similar codes correspond to different fault types in machines in
the frequency range of 10 to 1000 Hz. They are thus not specifically for the failure of REBs.
Therefore, employing a suitable and proper FT for REBs leads to the more reliable and
economical operation of rotary machines.

Reviewing the literature, three different approaches can be considered for defining
the FT: (1) as a constant value of a vibration feature, (2) as a probability distribution of a
vibration feature or (3) as a specific level of physical damage. In most research studies on
the RUL prediction of REBs, the FT is defined as a constant value of a vibration feature
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(e.g., the root mean square (RMS) or the time signal entropy) [4–8]. This approach is the
most convenient method for this issue. For instance, in the PRONOSTIA dataset [9], which
is a set of run-to-failure tests of REBs conducted by the FEMTO-ST institute in 2011, the
constant value of the vibration peak (20 g) was employed as the stop criterion of the tests.
After the publication of this dataset at the PHM 2012 conference, many researchers used it
to validate their studies [10–12]. Most of them have used the test stop criterion as the FT in
their RUL prediction problems.

In the second approach, the FT is defined as a probability distribution of a vibration
feature. This approach has been widely used in reliability literature. In this regard, Wang
and Coit [13] studied the effect of different FT distributions on equipment reliability.
Nystad et al. [14] used the gamma distribution of the degradation indicator for the FT,
the parameters of which were determined by experts, to estimate the probability of chock
valves’ RUL accurately. In another study, Yu and Fuh [15] studied the failure of an element
in the crack propagation problem. They proposed a probability distribution of the crack
size to define a failure threshold in the fatigue test results.

Using a specific level of physical damage as a FT is less common than the previous
approaches. Another dataset that has been employed in the RUL prediction literature is
that of the REB run-to-failure tests conducted by the Center for Intelligent Maintenance
Systems (IMS) at the University of Cincinnati [16]. In this dataset, the test stopping
criterion was defined as a specific contaminant level in the REB lubrication feedback
system. Reaching this level led to the activation of an electrical switch that stopped the
test running. The dataset included three run-to-failure experiments on four similar parallel
REBs mounted on a single shaft. These experiments stopped with the same physical
damage criterion, which was explained earlier. However, investigating the results of the
vibration records revealed a significant difference between the levels of various vibration
features at the end of these three tests. This means that the stopping criterion in this dataset
employed led to extremely different results from the first approach, which was explained
earlier. Some researchers [17,18] have used the stopping criteria of these tests as the FT in
their studies on the IMS dataset. However, others [19,20] have employed a constant value
of the vibration features as the FT in IMS tests. Therefore, the end of life (EoL) may differ
from the end of the test in these studies.

Reviewing the literature, it can be seen that the details of defining a proper FT were less
extensively considered in the RUL prediction of REBs. As the second class of approaches
mentioned in the previous paragraphs deal with the uncertainty of the FT, a proposal of a
probability distribution for the FT is accordingly desired. In this paper, a procedure to define
the FT for REBs is proposed. The extracted feature from the principal component analysis
(PCA) is employed to describe the defect growth in the elements of REBs. The copula
method is used to relate the fluctuation of the vibration features to the defect growth and
selection of a proper FT. The procedure proposed in this paper is applied to experimental
run-to-failure data, including accelerated life tests in the lab and the actual field data of
an industrial machine. For the accelerated life test dataset, three different scenarios for
types of failure that could occur in the tests are planned and studied. The results show that
different FTs can be used for the various probable failure modes in REBs. Furthermore,
applying the proposed method to the actual field data shows that it provides a proper FT
suggestion in the industrial case.

2. Proposing a New Failure Threshold

In this section, different features extracted from the vibration signals are studied.
Then, by using PCA, the first principal component is extracted as a degradation feature.
Copula models are used to investigate the statistical relationship between the first principal
component and the other popular features. The new proposed criterion for the FT is
introduced based on this relationship. This proposed criterion will be applied to the
experimental test results in the next sections.
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2.1. Feature Extraction

In this paper, fifteen popular features (from the time and frequency domains) [21,22]
are employed to study the degradation of REBs. These features and their formulas are
introduced in Table 1. Each of these features can describe degradation in different ways
and they may reveal various points of information about the hidden, growing defects in
a degrading REB. Therefore, all of them are considered for analysis to extract a proper
degradation indicator in the next subsection.

Table 1. Definition of signal features in time and frequency domains.

Feature Definition Feature Definition

Peak amplitude 1
2 (max(x(n)) − min(x(n)) ) Skewness 1

N ∑N
n=1

(
x(n) − −x

)3

RMS(x(n))6

Peak-to-peak max(x(n)) −min(x(n)) Margin factor Peak(x(n))(
1
N ∑N

n=1

√
|x(n)|

)2

Root mean square
√

1
N

N
∑

n=1
(x (n))2 Shape factor RMS(x(n))

1
N ∑N

n=1|x(n)|

Kurtosis 1
N ∑N

n=1

(
x(n) − −x

)2

RMS(x(n))4
Clearance factor max(x(n))(

1
N ∑N

n=1

√
|x(n)|

)2

Crest factor Peak(x(n))
RMS(x(n))

Mean frequency 1
K

K
∑

k=1
X(k)

Mean amplitude 1
N

N
∑

n=1
x(n) Frequency center ∑K

k=1(f (k) ∗ X(k))
∑K

k=1 X(k)

Standard
deviation

√
1
N

N
∑

n=1
(x (n) − −

x
)2 Root mean square

frequency

√
∑K

k=1(f (k)
2 ∗ X(k))

∑K
k=1 X(k)

Impulse factor Peak(x(n))
1
N ∑N

n=1|x(n)|

2.2. PCA Algorithm

The features introduced in the previous subsection were employed as the inputs of
the PCA algorithm. This algorithm uses the matrix characteristics to create a new feature
that describes the maximum data variance. This feature is known as the first principal
component (PC1). The PC1 can be used as a degradation indicator in prognostic problems.
Some researchers have assumed a linear relationship between PC1 and the size of the
growing defect [23].

The PCA algorithm is an orthogonal linear transform used to reduce the dimensions
of data. This algorithm creates new features based on their importance (eigenvalues)
so that the primary features have more data variance and better illustrate the nature of
data. Assume X n × L = [x 1 x2 x3...xL] represents the input data, where L is the number of
observations in an n-dimensional space of which n is the number of rows (features). The
PCA algorithm converts X data into X̂ m × L = [x̂1 x̂2 x̂3...x̂L] via Equation (1):

X̂ m × L = WT
m × nXn × L (1)

where m is smaller than n and WT
m × n is the transformation matrix. The algorithm then

uses eigenvalues and eigenvectors, as in Equation (2), to calculate matrix W, where λ is the
eigenvalue, Vi is the eigenvector and Cx is the covariance matrix of the X matrix that is
calculated through Equation (3). As a result, the covariance matrix of the new components
(new features) is diagonal and these components lack any correlation.

λ Vi = C x Vi (2)

C x =

 σ 1 × 1 · · · σ 1 × n
...

. . .
...

σ n × 1 · · · σ n × n

 (3)
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Finally, the PCA algorithm outputs the eigenvalues in descending order (Equation (4)).
The first component of the new features (PC1) that corresponds to the largest eigenvalue
explains the most data variance and is as assumed to be the best indicator of data. In the
rest of this paper, this component is called the degradation indicator.

λ 1 > λ 2 > λ 3 . . . > λ m (4)

2.3. Copula Statistical Models

In the next step, Pearson’s correlation coefficient (PCC) was applied to analyze the
correlation between PC1 and the time domain features. The feature with the highest
correlation was selected for the next step of the analysis. Then, copula models were
employed to indicate the statistical relationship between PC1 and the selected feature.
Hence, using the copula model to create a joint probability distribution, it is possible to
obtain a conditional probability distribution for the selected feature and PC1. In other
words, the probability distribution of the time feature can be determined for different
defect sizes.

The copula models are mathematical functions used to create a joint probability distri-
bution of two random variables, such as X and Y, in the form H (X, Y) = P (X ≤ x, Y ≤ y).
Sklar’s theory [24] claims that if H is a cumulative joint distribution function and F and G are
univariate marginal distributions, there is a C copula model where H (X, Y) = C (F(X), G(Y)).
This copula is unique if F and G are continuous. Similarly, if H is joint distribution, u = F(X)
and v = G(Y), the copula model is obtained by equation C (u, v) = H (F−1(u), G−1(v)).
One of the most common copula families in the literature is the Gaussian copula, which is
defined as follows:

Cθ = ΦΣ [φ−1(u), φ−1(v)
]

(5)

where ΦΣ is the cumulative joint normal distribution function with a mean of zero, Σ is the
covariance matrix and φ−1 is the inverse indicator of the standard Gaussian distribution.
Moreover, the conditional probability distribution is determined using the copula model
as follows:

H (Y | X = x) =
C (F(X = x) , G(Y))

F(X = x)
(6)

In this study, eight parametric models of copula families, with details listed in Table 2,
were employed [25]. Moreover, the model parameters were updated using the Bayesian
method. The root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE) criteria
were also used to assess the goodness of model fit.

RMSE =

√√√√∑n
i=1

(∼
yi − yi(θ)

)2

n
(7)

NSE = 1−
∑n

i=1

(∼
yi − yi(θ)

)2

∑n
i=1

(∼
yi −

∼
yi

)2 (8)

In an ideal model, we would have RMSE = 0 and NSE = 1. In these equations, yi and
∼
yi represent the model values and the observation values, respectively.
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Table 2. Mathematical description of copulas [25].

Name Mathematical Description Parameter Range

Gaussian ∫ φ−1(u)
−∞

∫ φ−1(v)
−∞

1
2π
√

1−θ2
exp( 2θxy − x2 − y2

2(1−θ 2)

)
θ ∈ [−1, 1]

Clayton max (u−θ+v−θ−1 , 0)
−1
θ θ ∈ [−1, ∞)\0

Gumbel exp{−[ (− ln(u))θ+(− ln(v))θ
] 1

θ } θ ∈ [−1, ∞)

Frank −1
θ ln[1+ (exp (−θu)− 1)(exp (−θv) − 1)

(exp (−θ)−1)

]
θ ∈ R\0

Joe 1 − [(1 − u)θ + (1− v)θ − (1− u)θ(1 − v)θ
] 1

θ θ ∈ [1, ∞)

Gumbel–
Barnett u + v − 1+(1 − u)(1 − v)exp[−θ ln(1 − u) ln(1 − v)] θ ∈ [0, 1]

Nelsen −1
θ log[1+ (exp (−θu) − 1)(exp (−θv)−1)

(exp (−θ) − 1)

]
θ ∈ (0, ∞)

Galambos uv. exp {−[ (− ln(u))−θ+(− ln(v))−θ
] −1

θ } θ ∈ (0, ∞)

2.4. Proposing a New Criterion for the FT

REBs are usually the weak and failure-prone elements of rotary machines. Various
mechanisms may lead to the failure of these elements [26]. If an REB is designed accurately,
adequately lubricated and installed, continuously aligned during operation and is kept
away from moisture, corrosive materials and excessive loading, the only mechanism
that can lead to the failure of the REB is rolling contact fatigue (RCF) [27]. The failure
caused by RCF can include soft failure and hard failure stages. In the soft failure stage,
degradation occurs gradually over a long period of time and the REB does not entirely lose
its efficiency. However, in the hard failure stage, the REB undergoes sudden impacts that
can impose catastrophic damage on the equipment and the machine completely loses its
function [4]. When the hard failure stage begins, fast growth is observed in the vibration
level trend (Figure 1). 
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Figure 1. Soft failure and hard failure stages in a run-to-failure test [Error! Reference source not 
found.]. 

  

Figure 1. Soft failure and hard failure stages in a run-to-failure test [9].

Guidelines highly recommended terminating the operation of a machine when its
vibration level passes a specific limit. Manufacturers and some standard codes [3] suggest
values for this limit based on the type and properties of the machines. This limit is employed
to define a high-risk zone for the equipment. Moreover, the transformation of degradation
from soft failure to hard failure corresponds to the changing vibrations from the stable stage
to the unstable stage. The beginning the unstable stage can be interpreted as entering the
high-risk zone. Therefore, if one can predict this transition point (from soft failure to hard
failure), it can be used as the FT and define the end of life for the machine. Furthermore,
instead of considering a static FT, predicting a probability distribution of the FT can enhance
the reliability estimation.
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There is no accurate and unanimous definition for the physical point of failure for
a machine. Therefore, the recommendations of experts in the relevant field can be helpful
in considering a limit for the high-risk region and decreasing failure possibility. In this
paper, it is proposed that the high fluctuation occurrence in the vibration trend can be used
as the FT in order to prevent machine operation in the high-risk zone. High fluctuation is
assumed here to be an amount of 2 dB or ±25% variation of the vibration feature.

As mentioned in Section 2.2, PC1, which was proportional to the defect growth,
was used as the degradation indicator. To provide a new suggestion for the FT, the rela-
tionship between vibration features and PC1 must be studied. With this aim, a conditional
probability distribution of the vibration feature given variable PC1 was obtained through a
proper copula model.

The conditional probability distribution function, in which 95% of the data are scat-
tered in the range of ±25% around the mode of distribution, was used as the indicator
of the initiation of high fluctuation in the vibration trend in this study. In other words,
this distribution, H (F | PC1 = pc1), should satisfy the equation below:

1.25 fm∫
0.75 fm

H ( F | PC 1 = pc1) df = 0.95 (9)

In Equation (9), F is the vibration feature most highly correlated with PC1, which was
described in the previous subsections. The parameter fm is the mode of H (F | PC1 = pc1).
Since H was assumed to correspond to high fluctuation initiation, it represents the FT
probability distribution and fm is suggested as an FT.

The procedure proposed in this paper to estimate the FT of REBs is summarized in the
flowchart depicted in Figure 2. First, different vibration features in the time and frequency
domains were extracted from the run-to-failure history. These features were the inputs to
the PCA algorithm that produced a feature as a degradation indicator (PC1). Afterward,
the vibration feature most highly correlated with PC1 was selected. By using the copula
models, a suitable joint probability distribution was fitted for the selected feature and PC1.
Finally, the FT probability distribution was obtained based on the proposed criterion.
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Figure 2. Process of estimating the failure threshold (FT) for rolling element bearings (REBs).

3. Introducing Two Bearing Datasets

In this section, two experimental run-to-failure datasets are introduced to study
the effectiveness of the method proposed in this paper. Dataset 1 corresponds to seven
accelerated life tests of an REB in the laboratory. Dataset 2 corresponds to three run-to-
failure tests of an REB in an industrial machine. The details of these two datasets will be
introduced in the following subsections.

3.1. Dataset 1: Accelerated Life Test Dataset

A set of run-to-failure experiments were designed and conducted for the purpose
of this research. The platform of these experiments is shown in Figure 3. Using this
platform, an accelerometer was installed vertically on the housing of the test REB. The test
REB was a 6907 deep groove single-row bearing (55 mm OD, 35 mm ID). The accelerated
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life experiments were conducted under constant operating conditions of 2000 rpm speed
and 9000 N radial load. The sampling frequency for the accelerometer was 25.6 kHz.
In these experiments, reaching an amplitude of 30 g in the acceleration signals was the test
stop criterion.
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3.2. Dataset 2: Industrial REB Dataset

As well as the accelerated life test dataset, the industrial data for a cylindrical roller
bearing NU 2309 ECP (45 mm ID, 100 mm OD) of a sanding machine in a wood-based
products manufacturing company was studied. These data were provided by Behravesh
Vibration Engineering Company. The offline recorded vibration of this REB from March
2011 to June 2016 was provided for this research. In total, thirty-eight acceleration measure-
ments in the frequency range of 10 to 8000 Hz were collected for this period. The trends for
the RMS and the peak of the recorded signals in the mentioned period of time are depicted
in Figure 5. During this period, three REB failures were detected and the machine was
repaired. These three points are illustrated with a star (*) in the graph. These measurements
were considered as three run-to-failure tests and their use in the study is described in the
next section.
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4. Results

This section describes the application of the proposed method for FT determination to
the two datasets introduced previously.

4.1. Calculating FT for Dataset 1 (Accelerated Life Test Dataset)

Three different scenarios were designed and considered in order to analyze the ex-
perimental data for this section. The results of the scenarios are presented as three models.
In the first model, the features of all the data, without considering the failure modes,
were given to the PCA algorithm to obtain the degradation indicator PC1. Then, a joint
probability distribution was fitted between PC1 and the best correlated feature. With this
distribution in hand, the approach proposed in Section 2.4 was applied to determine the FT.
In the next two models, the experimental data were separated in order to be analyzed with
regard to their occurred failure mode. In the second model, PC1 was extracted similarly
to the previous model. However, data classified according to the failure mode was used
to extract the joint probability distribution separately. Thus, considering separated joint
distributions led to specific FTs for each failure mode. In the third model, a specific PC1 was
extracted for each failure mode. Then, the FT was estimated similarly to the second model.

The reason for introducing the second and third models was to include consideration
of the failure mode in the FT estimation. Model 1 did not include consideration of the
failure mode at all. Model 2 included consideration of the failure mode only to generate
the copula models. However, Model 3 considered the failure mode in the PCA algorithm
as well as in the generation of the copula models.
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4.1.1. Model 1: Proposing the FT without Considering the Failure Modes in PCA
and Copulas

The time and frequency domain features (Table 1) were extracted from the run-to-
failure test data. These features were given to the PCA algorithm as inputs and PC1 was
calculated as the output of this algorithm. The five features most highly correlated with
PC1 are specified in Table 4. It can be seen that the peak of the time signal had the highest
correlation with PC1.

Table 4. Correlation of time signal features with PC1. PCC, Pearson’s correlation coefficient.

Feature PCC

Peak amplitude 0.9421

Peak-to-peak amplitude 0.9421

Margin factor 0.8761

Root mean square 0.8756

Standard deviation 0.8756

Next, using the statistical copula models (described in Table 2), the Gumbel copula
was selected as the best to create the joint probability distribution function. The criteria of
the model fitness evaluation (RMSE and NSE) and corresponding parameter values are
listed in Table 5. Thus, the Gumbel copula was employed to provide the joint probability
distribution of the peak and PC1 (Figure 6).

Table 5. Comparing the copula models’ goodness-of-fit parameters. RMSE, root mean square error;
NSE, Nash–Sutcliffe efficiency.

Copula Family RMSE NSE Parameter Value

Gumbel 0.2273 0.9996 4.3586

Gaussian 0.3168 0.9993 0.9395

Frank 0.4348 0.9987 15.1301

Clayton 0.7400 0.9963 9.8183
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Equation (6) can be used to obtain the conditional probability distribution function
of the peak given PC1. According to the definition proposed for the FT in this paper,
high vibration fluctuation occurred when PC1 was 13.5. The estimated distribution of
the FT using the proposed method is represented in Figure 7. Moreover, the mode of
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distribution was 3.5 g. This value can be used as the constant value for the FT in predictions
for the RUL problem.
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4.1.2. Model 2: Proposing the FT by Considering the Failure Modes in Copulas

In this model, PC1 was obtained using a similar approach to that described for the
previous model. However, in the current model, the data classified by the failure modes
were used to extract the joint probability distribution separately. Thus, having separated
joint distributions resulted in a specific FT for each failure mode.

The experimental data used in this study were classified into two groups according to
the observed failure mode (inner race failure or rolling element failure) at the end of each
experiment (Table 3). Following the analysis of the correlation between vibration features
with PC1, the peak of the time signal had the highest correlation for both failure modes
(Table 6). Therefore, using the statistical copula models (Table 2), Gumbel and Gaussian
copulas were chosen as the best to create the joint distribution functions for inner race and
rolling element failure modes, respectively. The criteria of the model fitness evaluation and
corresponding parameter values are listed inTable 7.

Finally, the conditional probability distribution function of the peak given PC1 was
obtained using Equation (6). According to the definition of the FT proposed in this paper,
the high fluctuation of vibration occurred for the rolling element degradation and inner
race degradation when PC1 was equal to 15.1 and 35, respectively. Furthermore, the con-
ditional distributions of the peak for the mentioned values of PC1 were extracted from
the corresponding joint probability distributions. These distributions, which were used as
the FT distributions, are depicted in Figure 8. Additionally, the mode of each distribution
can be used as the FT value for the degradation of each component (3.1 g for the rolling
element and 8.7 g for the inner race).

Table 6. Correlation of time signal features with PC1 for two classes of experimental data.

Inner Race Failure Mode Rolling Element Failure Mode

PCC Feature PCC Feature

0.9349 Peak amplitude 0.9462 Peak amplitude

0.9349 Peak-to-peak amplitude 0.9462 Peak-to-peak amplitude

0.8906 Shape factor 0.9214 Margin factor

0.8883 Clearance factor 0.92 Shape factor

0.8721 Crest factor 0.915 Impact factor
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Table 7. Comparing the copula models’ goodness of fit parameters for each failure mode.

Parameter Value NSE RMSE Copula Family Failure Mode

11.2529 0.9995 0.1142 Gumbel

Inner race34.9998 0.9994 0.1214 Frank

0.9919 0.9993 0.1348 Gaussian

34.8317 0.9989 0.1654 Clayton

0.9489 0.9997 0.1986 Gaussian

Rolling element4.9209 0.9994 0.2533 Gumbel

17.281 0.9987 0.3804 Frank

10.1493 0.9975 0.5368 Clayton
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4.1.3. Model 3: Proposing the FT by Considering the Failure Modes in the PCA
and Copulas

In this model, the classification of accelerated life tests was also considered in the PCA
step. The data based on the rolling element or inner race failure modes were categorized
and given to the PCA algorithm and PC1 was obtained for each failure mode separately.
Then, considering the results of the correlation analysis displayed inTable 8, the peak
feature for both failure modes was specified as the highest correlated feature. Comparisons
of the goodness-of-fit parameters for different copulas are shown inTable 9. In light of the
results shown in this table, the Gumbel copula was chosen as the best fitted copula model
for both failure modes.

Table 8. Correlation of time signal features with PC1 for two classes of experimental data.

Inner Race Failure Mode Rolling Element Failure Mode

PCC Feature PCC Feature

0.9552 Peak amplitude 0.9694 Peak amplitude

0.9552 Peak-to-peak amplitude 0.9694 Peak-to-peak amplitude

0.8835 Root mean square 0.9537 Clearance factor

0.8835 Standard deviation 0.9504 Shape factor

0.8406 Shape factor 0.921 Root mean square
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Table 9. Comparing the copula models’ goodness-of-fit parameters for each failure mode.

Parameter Value NSE RMSE Copula Family Failure Mode

12.1686 0.9991 0.1512 Gumbel Inner race

35 0.9989 0.1672 Frank

0.9941 0.9989 0.17 Gaussian

34.9996 0.9985 0.193 Clayton

3.834 0.9995 0.2509 Gumbel Rolling element

0.9182 0.9995 0.2525 Gaussian

13.0052 0.9982 0.4628 Frank

3.834 0.9958 0.6985 Clayton

Finally, by calculating the conditional probability distribution function of the peak
given PC1, the FTs were specified for rolling element degradation and inner race degra-
dation when PC1 was equal to 11.2 and 40, respectively. Similar to the results reported
for model 2, the FT distributions for the degradation of each failure mode are depicted
in Figure 9. The mode values of the FT distributions were 5 g and 14.5 g for the rolling
element degradation and the inner race degradation, respectively. These values can be
considered as constant FTs.
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4.2. Calculating FT for Dataset 2 (Industrial REB Dataset)

In order to explore the significance of FTs in industrial applications, the approach
presented in this study was applied to dataset 2. Since this dataset included limited sets
of run-to-failure data (three sets in total), only model 1 was investigated. Furthermore,
models 2 and 3 could not be employed since the failure modes were not clear in this dataset.
As can be seen in Table 10, the peak of the time signal had the highest correlation with the
PC1 resulting from the PCA algorithm. By comparing various copula families, the Gumbel
copula was obtained as the most accurate one to model the joint probability distribution of
data (Table 11).

The probability distribution of the FT was estimated through the aforementioned
criterion (Figure 10). This distribution showed that the mode value of 10.5 g could be used
as a proper FT value in this industrial REB.



Appl. Sci. 2021, 11, 160 13 of 18

Table 10. Correlation of time signal features with PC1.

Feature PCC

Peak amplitude 0.9548

Peak-to-peak amplitude 0.9548

Root mean square 0.9053

Standard deviation 0.9053

Shape factor 0.8669

Table 11. Comparing the copula models’ goodness-of-fit parameters.

Parameter Value NSE RMSE Copula Family

5.7139 0.999 0.0685 Gumbel

0.965 0.9986 0.0791 Gaussian

20.6243 0.9982 0.0912 Frank

15.676 0.9962 0.1311 Clayton
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5. Discussion
5.1. Discussion on the Results of Dataset 1

As previously mentioned, the experimental accelerated life test data included seven
run-to-failure tests, classified into two groups according to the type of final observed failure
(Table 3). This subsection describes the application of the results of the FT estimation by the
three models in Section 4.1 to these run-to-failure tests in order to compare their outputs.

The graphs in Figure 11 illustrate the trends for the vibration peak feature for three
tests corresponding to inner race failure. In these graphs, three proposed values for the
FT using the three models described in Section 4.1 are shown. The EoL estimation of each
model is depicted by a star (*) on the trend. As can be seen, the estimated EoLs of the first
and second models were close together and represent more conservative failure points than
the third model. However, all of the models prevented unstable vibration. Also, the third
model provided a more extended lifetime.
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Similarly, the trends for the vibration peak in the four tests with the rolling element
failure are shown in Figure 12. In this figure, it can be seen that the first and second models
estimated the same EoL for all four tests. The third model also estimated a similar EoL
in three tests out of four. However, in one test (test 7), the EoL estimated by model 3 was
somewhat later than the two other models.

The results of the three FT estimation models with regard to useful life for the seven
tests are given in Table 12. The parameter ∆ is used to show the difference in useful
life between the proposed models and the predetermined test stop criterion. The reader
should note that this difference does not represent the error of the models presented in this
paper since the predetermined criterion is just an assumption for stopping the tests and
not the ideal.
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Table 12. The effect of FTs on REB useful life.

Failure Mode Test No.
Test Duration

(s)
Useful Life (s) ∆ (%) 1

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Inner race
1 10,961 9804 10,490 10,830 10.56 4.30 1.20
2 4181 342 342 1482 91.82 91.82 64.55
4 26,448 24,530 25,230 25,750 7.14 4.61 2.64

Rolling element

3 81,535 78,660 78,660 78,660 3.53 3.53 3.53
5 30,450 27,550 27,550 27,550 9.52 9.52 9.52
6 6498 6032 6032 6032 7.17 7.17 7.17
7 5546 4596 4596 5192 17.13 17.13 6.38

1 ∆ = 1–useful life/test duration.

The highest value of ∆ was obtained in test 2. Comparing the vibration trends from
all seven tests reveals the different behavior of the REB degradation in test 2. The vibration
trend started to grow gradually from the beginning of its life. Furthermore, this REB had
a relatively short life. The lack of a healthy stage in this test (unlike in the others) led to the
high value of ∆.

Comparing the degradation trends for two groups of data shows that the degradation
data included a soft failure stage when the growing defect was on the inner race. However,
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when the defect was on the rolling element, the soft failure stage did not exist. So, sudden
growth and hard failure occurred after a healthy stage. The physical reason behind this
behavior difference can be explained by the stress states in the rolling element and inner
race. The smaller curvature radius in the rolling element (compared to the inner race) led
to more severe stress and resulted in quicker degradation. Another explanation for this
behavior could be the sharp edge flattening of spall regions that occurs in the inner race
after removing particles from the surface. However, this flattening does not occur in the
spall region of rolling elements [28].

In the third model proposed in this paper, the type of growing defect was considered
in detail. Its output was therefore more accurate in estimating a proper EoL in the tests.
However, model 1 proposed an EoL regardless of the type of failure and its output was
more conservative than the others.

5.2. Discussion on the Results of Dataset 2

The peak trend for the industrial data on the three REB lifespans is depicted in a single
plot in Figure 13. The total lifespans and the fluctuations of the vibrations in the three REBs
can be compared in this figure. The FT extracted by analyzing these data with the approach
proposed in this paper is depicted by a red dashed line in the figure.
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Keeping in mind that there is no suggested FT for the acceleration of REBs in the
guidelines, comparing the output of the proposed method with the actual decision of
the condition monitoring (CM) group, which is based on their own experiences with the
machine, shows that the proposed FT seems reasonable.

It should be noted that, since these data were gathered from an actual industrial
field, the failure point in this dataset does not correspond to catastrophic failure and
repairing activities were conducted to prevent such failure, based on CM recommendations.
However, in the accelerated life tests which were previously discussed, the final failure
referred to more severe and controlled damage under laboratory conditions.

In industrial applications, many of the machines are under the offline CM program.
The available record during the degradation period is thus very limited. Since the good-
ness of fit in copula model estimation directly depends on the amount of available data,
this limited data could affect the performance of the proposed algorithm.
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6. Conclusions

In this paper, a method was suggested to determine the FT of REBs using vibration
data. In this method, PCA was used to produce PC1 as a degradation growth indicator
from vibration features. Moreover, copula models were applied to reveal the relationship
between the vibration features and PC1. With the best-fitted copula model in hand, the FT
distribution was defined as a probability distribution based on a 25% vibration fluctuation
criterion and the mode of this distribution was used as a constant value for the FT. The pro-
posed method was applied to one accelerated life test dataset as well as an industrial
dataset. Applying the method to the accelerated life tests led to the development of three
different models for the failure mode. The third model, which used the separated data of
each failure mode for PCA and copula analysis, provided more accurate FTs that took the
type of failure into account. It was shown that the estimated FT for the rolling element was
less than that for the inner race. this was because of prompt growth of degradation after
the initiation of the defect in the rolling element. Additionally, using model 1 to estimate
the FT regardless of the failure mode led to a more conservative FT. Applying the method
to the industrial data showed that the proposed method provided reasonable FTs for actual
field data too. Due to the limitations of industrial data, only model 1 was used to estimate
the FTs for this dataset.

FT selection plays a significant role in the RUL prediction of REBs. Since the method
proposed in this paper estimates FTs using the high fluctuations in the degradation trend,
it can provide a more accurate RUL prediction. Also, the provided FT distribution can
be used in the reliability analysis of rotary machines. Furthermore, the method proposed
in this paper can be used to estimate FTs under different machine operating conditions,
which is what we plan to investigate in our future work.
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