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Abstract: This research paper evaluates the feasibility of cold boot attacks on the Supersingular
Isogeny Key Encapsulation (SIKE) mechanism. This key encapsulation mechanism has been included
in the list of alternate candidates of the third round of the National Institute of Standards and Technol-
ogy (NIST) Post-Quantum Cryptography Standardization Process. To the best of our knowledge, this
is the first time this scheme is assessed in the cold boot attacks setting. In particular, our evaluation
is focused on the reference implementation of this scheme. Furthermore, we present a dedicated
key-recovery algorithm for SIKE in this setting and show that the key recovery algorithm works for
all the parameter sets recommended for this scheme. Moreover, we compute the success rates of our
key recovery algorithm through simulations and show the key recovery algorithm may reconstruct
the SIKE secret key for any SIKE parameters for a fixed and small α = 0.001 (the probability of
a 0 to 1 bit-flipping) and varying values for β (the probability of a 1 to 0 bit-flipping) in the set
{0.001, 0.01, . . . , 0.1}. Additionally, we show how to integrate a quantum key enumeration algorithm
with our key-recovery algorithm to improve its overall performance.

Keywords: cold boot attacks; key enumeration; key-recovery algorithm; post-quantum cryptography;
Supersingular Isogeny Key Encapsulation (SIKE) Mechanism; Side-channel Attacks

1. Introduction

This research paper assesses the viability of cold boot attacks on the Supersingular
Isogeny Key Encapsulation (SIKE) Mechanism [1], which is built upon a key-exchange
construction known as Supersingular Isogeny Diffie–Hellman (SIDH) [2]. This key en-
capsulation mechanism has been included in the list of alternate candidates of the third
round of the National Institute of Standards and Technology (NIST) post-quantum cryp-
tography standardization process. According to the status report on the second round of
this standardization process (NISTIR 8309) [3], the alternate candidates are considered as
potential candidates for future standardization. This report also states the main drawback
to SIKE is that its performance is approximately an order of magnitude worse than many
of its competitors. So improvements on its implementations have been carried out so far
to ameliorate this disadvantage [4–8]. The report additionally states that more research is
needed to add more side-channel protection on SIKE’s operation. This paper looks into
side channel attacks against SIKE and in particular assesses SIKE in the cold boot attack
setting. To the best of our knowledge, this is the first time this scheme is assessed in this
setting and our evaluation focus on this scheme’s reference implementation, in particular
version v3.3 [9].

In the cold boot attack setting, an adversary having physical access to a computer
may retrieve any content from the computer’s main memory by carrying out a series of
steps on the target computer, such as shutting it down improperly, booting a lightweight
operating system (OS) on it and finally using this OS to dump remaining memory contents
to an external device. However, as a consequence of some physical effects on the targeted
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main memory, the retrieved content is altered [10]. This means that on the condition that
an attacker gets possession of a chunk of memory content, this content might be noisy,
which means that some 0 bits may have flipped to 1 bits and vice-versa. The next attacker’s
task is to try to recover secret information stored in the procured memory content, based
on what this attacker may learn from the error distribution that occurs during the data
acquisition process.

In order to evaluate a public key scheme in this setting, we assume that the attacker
procures memory content from a memory region in which the scheme’s secret key was
stored, and thus such adversary obtains a noisy version of it. On possession of this noisy
memory content, the adversary’s main task is to try to recover the original secret key
from its bit-flipped version. More specifically, the evaluation of a public key encryption
scheme in this setting entails three main tasks: (1) the attacker is required to learn the
in-memory representations of the scheme’s secret key, i.e., the data structures that are used
to store the scheme’s secret key, (2) the attacker is required to estimate error probability
distributions for the bit-flipping, and (3) finally, the attacker is required to devise and
develop a key-recovery algorithm for the scheme’s secret key.

To deal with the first task, the attacker may either study natural in-memory representa-
tions for the scheme’s secret key or review scheme’s actual implementations to further learn
the scheme’s secret key memory formats. We follow the latter approach, since it is more
realistic, and hence we make a deep review of the SIKE reference implementation (Version
v3.3) [9]. Regarding the second task, we assume the attacker estimate α, the probability
for a 0 bit of original content to turn to a 1 bit, and β, the probability for a 1 bit of original
content to turn to a 0 bit, as per the cold boot model described in Section 2.2. Lastly, we
develop our key-recovery algorithm based on a general key-recovery strategy introduced
in [11]. Basically, by exploiting and combining the optimal key enumeration algorithm [12],
and a non-optimal key enumeration algorithm, as in [11–27], we are able to get a suitable
algorithm for the key-recovery task. In particular, this algorithm takes advantage of the
SIKE secret key in-memory representation and the estimations for both α and β to generate
suitable key candidates for the secret key.

This paper presents two contributions: our first contribution is the evaluation of
SIKE against this class of attack. Considering SIKE is one of the alternate candidates, this
evaluation represents an important part of the overall assessment of this scheme within
the NIST standardization process. Our second contribution is a dedicated key-recovery
algorithm for SIKE in the cold boot attack setting. This contribution is in alignment with the
current tendency of devising and constructing novel key-recovery algorithms for various
schemes in this setting, as our review of the literature, discussed at length in Section 2.3,
reveals.

The organization of this research paper is as follows. In Section 2, we discuss the
required background on cold boot attacks, detailing on how this attack may be carried out
by an attacker. Additionally, we describe the cold boot attack model we assume throughout
this paper and also review the literature relevant to our work, focusing on the evaluation
of various cryptographic schemes in this setting. Finally, we detail our approach to key-
recovery, i.e., the general technique we use to design our key-recovery algorithm. In Section
3, we describe the supersingular isogeny key encapsulation mechanism and its reference
implementation, mainly focusing on the key generation algorithm. In Section 4, we give
a detailed account of our key-recovery algorithm and our choice for key enumeration
algorithms. In Section 5, we evaluate our key-recovery algorithm, focusing on the success
rate of our algorithm and how to integrate a quantum key search algorithm with it to
improve its overall performance. Finally, in Section 6, we conclude our paper and give
insight into a research line to continue with our work.

2. Background

In this section, we give a detailed description of cold boot attacks, the attack model
we use through this article and an overview of the previous papers focusing on cold boot
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attacks on several cryptographic schemes, and finally present a description of the general
approach to key recovery we use in this article.

2.1. Cold Boot Attacks

A cold boot attack is a type of data remanence attack in which an attacker could
retrieve sensitive data from a computer’s main memory after supposedly having been
deleted. This attack relies on the data remanence property of Dynamic RAM (DRAM) and
allows an attacker to recover memory content that remains readable for a period of time
after the computer’s power has been turned off. The first time this attack was discussed was
about a decade ago in [10], and, since then, it has been studied extensively against multiple
cryptographic schemes. In this attack, an adversary, who is assumed to have physical
access to a computer, might retrieve portions of memory content from a running operating
system via carrying out a cold-rebooting on it. This means the running operating system is
forced to shut down improperly, making it to bypass all shut-down-related processes, for
example, file system synchronization, that would normally take place during an ordinary
shutdown. As a consequence of this improper shutdown, the attacker may use an external
disk to start and run a lightweight operating system to copy memory contents of pre-boot
DRAM to a file. In an alternative way, such attacker may take the memory modules out of
the computer and place them in an adversary-controlled computer, which is then booted,
allowing the attacker to have access to the memory content and be able to copy chunks of
memory content to an external drive.

As soon as the attacker procures data from the main memory, the adversary may
carry out a detailed analysis on that data in order to find sensitive information, such as
cryptographic keys, via running several key finding algorithms [10]. Due to some physical
effects on the main memory, some bits in the memory experience a process of degradation
after the computer’s power is turned off. Therefore, the extracted data obtained by the
attacker from the target machine’s main memory will be recognizably different from the
original memory data. In particular, some 0 bits of the original content may have flipped
to 1 bits and vice-versa. The authors in [10] remarked that the degradation of bits in
memory can be slowed down via spraying some chemical compounds (liquid nitrogen) on
the memory modules and thus the original bits may be preserved for a longer period of
time. Nevertheless, the attacker has yet to extract the memory content before restoring any
important information (or sensible) from the target machine’s main memory. To this end,
the attacker has to handle several possible issues that may occur. For example, the BIOS of
the target computer, on rebooting, may overwrite a fraction of memory with its own code
and data, even though the affected fractions are usually small. Moreover, the BIOS during
its Power-On Self Test (POST) might execute a destructive memory check, yet this test may
be disabled or bypassed in some computers.

To properly handle this problem, some small-scale special-purpose programs, like
memory-imaging tools, may be used and are expected to produce correct dumps of memory
contents to any external device, as was reported in [10]. These programs generally make
use of trivial amounts of RAM, and their memory offsets are usually adjusted so as to
guarantee that information of interest remains unchanged. Furthermore, if an attacker
cannot force boot memory-imaging tools, the attacker could pull out the memory modules
and place them in a compatible machine controlled by the attacker and subsequently
dump the content, like that mentioned by the authors of [10]. After extracting memory
content, the attacker needs to profile it to learn the memory regions and to estimate the
probability for both a 1 flipping to 0 and a 0 flipping to 1. Furthermore, according to the
results of the experiment reported in [10], almost all memory bits in a memory region
tend to decay to predictable “ground” states, with only a portion flipping in the opposite
direction. Additionally, the authors of [10] mention the probability of a bit flipping in the
opposite direction stays constant and is very small (circa 0.01) as time elapses, while the
probability of decaying to the “ground state” increases over time. These results suggest
that the attacker could model the decay in a portion of the memory as a binary asymmetric
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channel, i.e., we can assume that the probability of a 1 flipping to 0 is a fixed number, and
that the probability of a 0 flipping to a 1 is another fixed number in a given time. Note
that by reading and counting the number of 0 bits and 1 bits, the attacker can discover
the “ground state” of a specific memory region. Additionally, the attacker can estimate
the bit-flipping probabilities by comparing the bit count of original content in a memory
region with its corresponding noisy version.

Finding encryption keys after procuring memory content is another challenge that the
attacker has to address. Such problem has been extensively discussed in [10] for Advanced
Encryption Standard (AES) and RSA (Rivest–Shamir–Adleman) keys in memory images.
Even though the algorithms presented are scheme-specific, their algorithmic rationale may
be easily adapted to devise key-finding algorithms for other schemes. These algorithms
simply search for special secret-key-identifying characteristics in the secret key in-memory
formats as identifying labels for sequences of bytes. More precisely, these algorithms search
for byte sequences with low Hamming distance to these identifying labels and verify that
the remaining bytes in a possible sequence satisfy some conditions.

Once the previous problems have been dealt with, the attacker now has access to a
version with errors of the original secret key obtained from the memory image. Therefore
the attacker’s aim is to reconstruct the original secret key from its noisy version, which
is a mathematical problem. Moreover, we remark that the attacker may have access to
cryptographic data associated with the key to be reconstructed (e.g., ciphertexts for a
symmetric key encryption scheme) or the attacker may have access to public parameters
of the cryptosystem (e.g., public key for a asymmetric key encryption scheme). The main
center of interest of cold boot attacks has been so far to devise, develop and implement
key-recovery algorithms to efficiently and effectively reconstruct secret keys from its noisy
versions for different cryptographic schemes and testing these algorithms to learn how
much noise they can tolerate.

2.2. Cold Boot Attack Model

Based on our previous discussion on cold boot attacks, we assume an adversary has
knowledge of the defined structures for the storage of the target private key in memory and
has possession of the corresponding public parameters without any noise. Moreover, we
assume the attacker procures a noisy version of the target private key via a cold boot attack.
However, we do not tackle the issue of locating the memory region where the bits of the
private key are stored. Such issue would be of great importance to deal with when carrying
out this attack in practice and may be tackled via applying several key finding algorithms
[10]. As a result of this assumption, the adversary’s main objective is to reconstruct the
original private key.

We denote α = P(0→ 1) as the probability of a 0 to 1 bit-flipping, i.e., that a 0 bit in
the private key changes to a 1 bit in its noisy version. Moreover, we denote β = P(1→ 0)
as the probability of a 1 to 0 bit-flipping, i.e., that a 1 bit in the private key changes to a 0
bit in its noisy version. According to our previous discussion on cold boot attacks, one of
these values normally may be very small (approximately 0.001) and not liable to variation
over time, while the other values do increase over time. Moreover, the adversary may
estimate both α and β and they remain unchanged across the memory region where the
bits of the private key are stored. As stated by our previous discussion on cold boot attacks,
these suppositions are plausible, since an adversary may estimate the error probabilities
by comparing original content with its corresponding noisy version (e.g., using the public
key), and the memory regions are normally large.

2.3. Previous Work

Throughout this section, we present our literature review, describing works on cold
boot attacks against multiples cryptographic schemes. These studies can be divided into
several categories, namely the RSA setting, the discrete logarithm setting, the symmetric
key setting and finally the post-quantum setting.
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2.3.1. RSA Setting

The research paper by Heninger and Shacham [28] was the first work dealing with
this attack on RSA keys. They presented a key-recovery algorithm, which relies on Hansel
lifting, and exploited the redundancy found in the common RSA secret key in-memory
format. The research papers by Henecka et al. [29] and Paterson et al. [30] followed the
inaugural paper and both research papers further exploited the mathematical structure
on which RSA is based. Additionally, the research paper by Paterson et al. [30] further
centered on the error channel’s asymmetric nature, which is intrinsically connected to
the cold boot setting, and also considered the key-recovery problem from an information
theoretic perspective.

2.3.2. Discrete Logarithm Setting

The first paper that explored this attack in the discrete logarithm setting was that of
Lee et al. [31]. Their key-recovery algorithm is limited due to the cold boot attack model
they assumed. In particular, their work focused on recovering the secret key x, given the
public key gx, with g being a field element and x being an integer. Their model, in addition
to assuming the attacker has knowledge of the public key gx and of the noisy version of
the private key x, supposes the adversary knows an upper bound on the number of errors
found in the noisy version of the secret key. Since knowing such an upper bound may
not be practical and small redundancy in the secret key was exploited, their key-recovery
algorithm is not expected to recover keys if these are subjected to a high level of noise, or if
a bit-flipping model is assumed. A follow-up work by Poettering and Sibborn [32] also
studied this attack in the discrete logarithm setting, more concretely in the elliptic curve
cryptography setting. Their work was more practical, since they had a deep review of two
implementations for elliptic curve cryptography. With such review, they found redundant
in-memory formats and focused on two common secret key in-memory formats from two
popular ECC implementations from TLS libraries. The first one is the windowed non-
adjacent form (wNAF) representation, and the second is the comb-based representation.
For each format, they developed dedicated key-recovery algorithms and tested them both
in the bit-flipping model.

2.3.3. Symmetric Key Setting

Regarding this attack against symmetric key primitives, there are also a few papers
that explored this attack against a few block ciphers. The paper by Albrecht and Cid [33]
centered on the recovery of symmetric encryption keys by employing polynomial system
solvers. Particularly, they used integer programming techniques to apply them for key-
recovery of the Serpent block cipher’s secret key. Furthermore, they also introduced a
dedicated key-recovery algorithm to Twofish’s secret keys. Moreover, the paper by Kamal
and Youssef [34] introduced key-recovery algorithms based on SAT-solving techniques to
the same problem. We refer the interested reader to [33–35] for more details.

2.3.4. Post-Quantum Setting

Regarding the viability of carrying out this attack against post-quantum cryptographic
schemes, there are already several works showing the feasibility of this attack against some
post-quantum cryptographic schemes implementations. The first paper that evaluated
a post-quantum cryptographic scheme in this setting was that of Paterson et al. [36].
They looked into this attack against NTRU and their work reviewed two existing NTRU
implementations, the ntru-crypto implementation and the tbuktu Java implementation
based on Bouncy Castle. For each in-memory format found in these implementations,
they introduced dedicated key-recovery algorithms and tested them in the bit-flipping
model. According to the results reported in [36], their key-recovery algortihm was able
to find the private key, when α is fixed and small and β ranges from 1% up to 9%, for one
of the private key in-memory representations. This paper was followed upon by that of
Villanueva [11], which extended previous results and introduced a general key-recovery
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strategy via key enumeration. Additionally, they applied their general strategy to BLISS
and their results are comparable to the results reported for the NTRU case. Another
recent paper by Villanueva [37] adapted and applied this general key-recovery strategy
to the signature scheme LUOV, exploiting the fact that LUOV’s private key is a 256 bit
string, and showed the versatility of this general key-recovery strategy and promising
results. Moreover, Albrecht et al. [38] investigated cold boot attacks on post-quantum
cryptographic schemes based on the ring—and module—variants of the Learning with
Errors (LWE) problem. Their work centered on Kyber key encapsulation mechanism
(KEM) and New Hope KEM, where two encodings were considered to store LWE keys
(polynomials): coefficient-based in-memory format and number-theoretic-transform (NTT)-
based in-memory format. Finally, they presented dedicated key recovery algorithms to
tackle both cases in the bit-flipping model.

2.3.5. General Strategy to Key Recovery

According to the work by Villanueva [11,27], we can deal with the key-recovery
problem in the cold boot attack setting via key enumeration algorithms.

Let ch = b0b1b2 . . . bW denote a W bit string with the noisy bits of the secret key en-
coding. Note that ch may be written as a sequence of N = W/w chunks, with each chunk
being a w bit-string, i.e., ch = ch0||ch1||. . .||chN−1 with chi = bi·wbi·w+1 . . . bi·w+(w−1). On
the condition that we have access to a suitable key-recovery algorithm, we can generate full
key candidates c for the original secret key encoding. Based on Bayes’s theorem, the proba-
bility of c being the right full key candidate given the noisy version ch is given by P(c|ch) =
P(ch|c)P(c)

P(ch) . Therefore, c should be chosen so as to maximize this probability, according to
the maximum likelihood estimation method. Note that both P(ch) and P(c) are constants,
with the former independent of c, and that P(ch|c) = (1− α)n00 αn01 βn10(1− β)n11 , where
n00 counts the positions in which both c and ch contain a 0 bit, n01 counts the positions
in which c contains a 0 bit and ch contains a 1 bit, etc. Hence our optimization prob-
lem reduces to find the candidate c to maximize this probability P(ch|c). Note that this
problem can be stated equivalently as choosing c that maximizes the log of these probabili-
ties log(P(ch|c)) = n00 log(1− α) + n01 log α + n10 log β + n11 log(1− β). Therefore, each
candidate can be assigned a score, namely S(c, ch) := log(P(ch|c)).

If we now assume that the full key candidates c may be written as a sequence of
chunks as for ch, i.e., c = c0||c1||. . .||cN−1, with ci being a sequence of w bits, then we
may also assign a score to each of the at most 2w values for a chunk candidate ci.

S
(
ci, chi

)
= ni

00 log(1− α) + ni
01 log α + ni

10 log β + ni
11 log(1− β) (1)

where the ni
ab values count occurrences of bits across the ith chunks, ci, chi. Because of

S(c, ch) = ∑N−1
i=0 S

(
ci, chi), N lists of chunk candidates, containing up to 2w entries, may

be created. More concretely, each list contains at most 2w 2-tuples of the form (score, value),
where the first component score is a real number (candidate score) and the second com-
ponent value is a w-bit string (candidate value). Now note that the original key-recovery
problem reduces to an enumeration problem that consists in traversing the lists of chunk
candidates to produce full key candidates c of which total scores are obtained by sum-
mation. Fortunately for us, the enumeration problem has been previously studied in the
side-channel analysis literature [12–27], and there are many algorithms that may be useful
for our key-recovery setting, in particular those producing full key candidates sorted in
descending order based on the score component.

More formally, let Li =
[
ci

0, ci
2, . . . , ci

mi−1
]

be a list of chunk candidates for chunk chi,

with 0 < mi ≤ 2w and ci
j =

(
scorei

j, valuei
j
)
. Given the chunk candidates ci0

j0
, . . . , cin

jn , with

0 ≤ i0 < · · · < in < N , 0 ≤ ji < mi, we define combine
(
c

i0
j0

, . . . , cin
jn

)
as a function that out-
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puts a new chunk candidate c computed by setting c =
(
c

i0
j0

.score + . . . + cin
jn .score, ci0

j0
.value

‖ . . . ‖cin
jn .value

)
. When i0 = 0, i1 = 1, . . . , iN−1 = N − 1, c is known as a full key candidate.

The key enumeration problem entails choosing a chunk candidate ci
ji

from each list Li,

0 ≤ i < N , to form full key candidates c = combine
(
c0

j0
, . . . , cN−1

jN−1

)
conditioned to a rule

on their scores [27]. An algorithm that enumerates full key candidates c is known as a key
enumeration algorithm (KEA).

For our key-recovery problem, we use an algorithm that combines two key enumera-
tion algorithms and is based on one introduced in [11,37]. Moreover, we also exploit the
in-memory representation of the secret key of SIKE mechanism to improve our results.
This key-recovery algorithm will be described in Section 4.2.

3. Supersingular Isogeny Key Encapsulation Mechanism

This section gives a brief account of the Supersingular Isogeny Key Encapsulation
mechanism. This mechanism relies on Supersingular Isogeny Diffie–Hellman (SIDH), a
key-exchange protocol introduced by Jao and De Feo in 2011 [2]. In particular, we follow
the description provided by SIKE’s specification submitted to the NIST post-quantum
cryptography standardization process.

3.1. Mathematical Foundations
3.1.1. The Finite Field Fp

Let Fp be a finite field, with p being a prime number. The elements of this field are
represented by the integers in the set {0, 1, 2, . . . , p− 1}. These elements are operated with
the two common operations, addition and multiplication modulo p.

3.1.2. The Finite Field Fp2

The quadratic field extension Fp2 can be constructed easily from Fp. In particular,
the elements of Fp2 are represented by e = e0 + e1·i, where e0, e1 ∈ Fp, i ∈ Fp2 , with
i2 = −1. Note that e can also be represented as a 2-tuple (e0, e1) ∈ F2

p. The addition and
multiplication operations are defined as follows:

• If a, b ∈ Fp2 , then (a0 + a1·i) + (b0 + b1·i) = (a0 + b0) + (a1 + b1)·i ∈ Fp2 , where the
additions (ai + bi) carries out in Fp. Equivalently,

(a0, a1) + (b0, b1) = ((a0 + b0) mod p, (a1 + b1) mod p).

• If a, b ∈ Fp2 , then (a0 + a1·i)·(b0 + b1·i) = (a0b0 − a1b1) + (a0b1 + a1b0)·i ∈ Fp2 ,
where the element operations take place in Fp. Equivalently,

(a0, a1)·(b0, b1) = ((a0b0 − a1b1) mod p, (a0b1 + a1b0) mod p).

Since Fp2 is a field, we can compute the additive inverse of a, denoted by −a, and
also the multiplicative inverse of a, denoted by a−1. To see more details on how all field
operations are calculated, we refer the reader to [1].

3.1.3. Montgomery Curves

A Montgomery curve is a special form of an elliptic curve. Let Fq be a finite field,
where q = pn, p a prime number with p ≥ 3, and let A, B ∈ Fq be field elements satisfying
B
(

A2 − 4
)
6= 0 in Fq. A Montgomery curve EA,B defined over Fq, denoted by EA,B/Fq, is

defined to be the set of points P = (xP, yP) of solutions in Fq to the equation

By2 = x3 + Ax2 + x.

The set of points of EA,B/Fq together with the point at infinity, denoted by O, form a
finite abelian group under a point addition operation, denoted by EA,B

(
Fq
)
. That is, given
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the points P and Q in EA,B
(
Fq
)
, we can compute R = P + Q = Q + P, where R = (xR, yR)

is a point in EA,B
(
Fq
)
. Consequently, we also can compute [2]P = P + P, [3]P = P + P + P

or in general [k]P = P + P + P + · · ·+ P (k times, with k ≥ 0). These operations are called
point doubling, point tripling or point multiplication, respectively. To see more details on
how to do these computations, we refer the reader to [1].

The order of an elliptic curve E over a finite field Fq, denoted by #E
(
Fq
)
, is the number

of points in E including O. Additionally, the order ord(P) of a point P is the smallest
positive integer n such that [n]P = O.

Given an abelian group G, we say a set of elements {P1, P2, · · · , Pt} ⊆ H forms a basis
of the subgroup H ≤ G if every element P of H can be represented by a unique expression
of the form P = [k1]P1 + [k2]P2 + . . . + [kt]Pt, where 0 ≤ ki ≤ ord(Pi) for 1 ≤ i ≤ t.

Consider an elliptic curve E
(
Fq
)

and a positive integer m, we define the group of

the m-torsion elements of E
(
Fq
)

as E[m] =
{

P ∈ E
(
Fq

)
: [m]P = O

}
, where Fq is the

algebraic closure of Fq. An elliptic curve E
(
Fq
)

over a field of characteristic p is called
supersingular if p |

(
q + 1− #E

(
Fq
))

, and ordinary otherwise. Additionally, the j-invariant

of the elliptic curve EA,B can be calculated as j(EA,B) =
256(A2−3)

3

A2−4 . The j-invariant of an
elliptic curve over a field Fq is unique up to the isomorphism of the elliptic curve. The
SIKE protocol defines a shared secret as a j-invariant of an elliptic curve.

3.1.4. Isogenies

Let E1 and E2 be elliptic curves over a finite field Fq. An isogeny Φ : E1 → E2 is a
non-constant rational map defined over Fq, with Φ being a group homomorphism from
E1
(
Fq
)

to E2
(
Fq
)
. Additionally, Φ can be written as Φ(x, y) = ( f (x), y·g(x)), where f and g

are rational maps over Fq. Note that we can write f (x) = p(x)/q(x) with polynomials p(x)
and q(x) over Fq, where p(x) and q(x) do not have a common factor, and similarly for g(x).
We define the degree deg(Φ) of the isogeny to be max{deg(p(x)), deg(q(x))}, where p(x)
and q(x) are as above. Given an isogeny Φ : E1 → E2 , ker(Φ) = {P ∈ E1 : Φ(P) = O}
denotes the kernel of Φ. Additionally, given a finite subgroup H ≤ E1

(
Fq
)
, there is a

unique isogeny (up to isomorphism) Φ : E1 → E2 such that ker(Φ) = H and deg(Φ)=|H|,
where the curve E2 ∼= E1/H. We can compute the isogeny Φ and the curve E1/H for a
given a subgroup H ≤ E1

(
Fq
)
, using Vélu’s formula [39]. However, it is computationally

impractical for arbitrary subgroups. SIKE uses isogenies over subgroups that are powers
of 2, 3 and 4 [1].

3.2. Key Encapsulation Mechanism

This section describes the components of the supersingular isogeny key encapsulation
mechanism as in [1].

3.2.1. Public Parameters

We start off by describing the public parameters that SIKE makes use of:

• A prime number of the form p = 2e2 3e3 − 1, where e2 and e3 are two positive integers.
• A starting supersingular elliptic curve defined as E0/Fp2 : y2 = x3 + 6x2 + x, such

that #E0

(
Fp2

)
= (2e23e3)2 and j(E0) = 287,496.

• Two points P2 and Q2 in E0[2e2 ], such that both points have exact order 2e2 and

{P2, Q2} forms a basis for E0

(
Fp2

)
[2e2 ].

• Two points P3 and Q3 in E0[3e3 ], such that both points have exact order 3e3 and

{P3, Q3} forms a basis for E0

(
Fp2

)
[3e3 ].
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These points are normally encoded for efficiency. Particularly, the points P2 and Q2 are
encoded as a byte array from the three x-coordinates xP2 , xQ2 and xR2 , where R2 = P2 −Q2.
Similarly, the points P3 and Q3 are encoded as a byte array from the three x-coordinates
xP3 , xQ3 and xR3 , where R3 = P3 −Q3 [1].

3.2.2. Secret Keys

Two secret keys, sk2 and sk3, are used to compute 2e2-isogenies and 3e3-isogenies,
respectively. On the one hand, the secret key sk2 is an integer in the set {0, 1, . . . , 2e2 − 1}
and is stored as a byte array of length Nsk2 =

⌈ e2
8
⌉
. The corresponding keyspace is denoted

K2. On the other hand, the secret key sk3 is an integer in the set
{

0, 1, . . . , 2blog2 3e3 c − 1
}

and is stored as a byte array of length Nsk3 =
⌈ blog2 3e3 c

8

⌉
. The corresponding keyspace is

denoted K3.

3.2.3. Isogeny Algorithms

Let l, m ∈ {2, 3}with l 6= m. The two core isogeny algorithms used in SIKE are isogenl
and isoexl . On the one hand, the algorithm isogenl takes in the public parameters and a
private key skl as inputs and returns the corresponding public key pkl . Specifically, it com-
putes S = (xS, yS) = Pl + [skl ]Ql and then computes the lel -degree isogeny Φ : E0 → Ea′ ,b′

via the composition of el individual l-degree isogenies, where Ea′ ,b′
∼= E0/〈S〉, and returns

the points Φ(Pm) and Φ(Qm) encoded as a byte array from three x-coordinates as the public
key, i.e., pkl =

(
xΦ(Pm), xΦ(Qm), xRm

)
, where Rm = Φ(Pm)−Φ(Qm).

On the other hand, the algorithm isoexl receives a secret key skl and a public key
pkm as inputs, and then outputs the corresponding shared key. Specifically, on receiving a
private key skl and an encoded public key pkm =

(
x′Pl

, x′Ql
, x′Rl

)
, it then decodes pkm to get

the corresponding curve Ea′ ,b′ and the points P′l and Q′l , then computes S = (xS, yS) = P′l +
[skl ]Q′l and the lel -degree isogeny Φ : Ea′ ,b′ → Ea,b via the composition of el individual
l-degree isogenies, where Ea,b

∼= Ea′ ,b′/〈S〉, and finally returns j(Ea,b).

3.2.4. The Reference Implementation

In this section, we review the SIKE’s main algorithms as in the reference implementa-
tion (see the file sike.c). Reviewing this implementation is of great importance to learn the
in-memory representation used to store private keys.

Let n denote the length in bits of the messages to be encapsulated, i.e., n ∈ {128, 192, 256},
and let k denote the number of bits of the output shared key, i.e., k ∈ {128, 192, 256}. Also,
SHAKE256(m, d) denotes hashing the message m and obtaining only d bits from the output,
i.e., the output may be regarded as an infinite bit string, of which computation is stopped
after the desired number of output bits is produced [40].

The first algorithm to describe is the key generation algorithm. It is the most relevant
algorithm for our work, so we describe it in more detail. Algorithm 1 shows a pseudo-code
of the key generation algorithm’s implementation. It takes in Params, that contains n,
Nsk3 , and MASK, and first generates a random dn/8e byte array, then generates a secret key
sk3 chosen uniformly at random in the keyspace K3 and finally calls isogen3 to get the
corresponding encoded public key. The in-memory representation of the private key is a
byte array of length dn/8e+ Nsk3 + lpk, where lpk is the length in bytes of the encoded
public key. The first dn/8e bytes correspond to s, the next Nsk3 bytes correspond to the
secret key sk3 and finally the last bytes correspond to the encoded public key pk3. Note
that pk3 is the only publicly known part stored in the private array.
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Algorithm 1 Key generation algorithm for SIKE.

function KeyGen(Params)
// generate a random dn/8e byte array.
s← randombytes(dParams.n/8e) ;

// generate a random Nsk3 byte array.
sk3 ← randombytes(Params.Nsk3 ) ;
// masking last byte of sk3 to guarantee sk3 is in K3. MASK depends on the chosen parameters.
sk3[Params.Nsk3 − 1]← sk3[Params.Nsk3 − 1] & Params.MASK ;
// generate the corresponding public key pk3.
pk3 ← isogen3(sk3, Params) ;
return (s, sk3, pk3);

end function

Regarding the encapsulation mechanism for SIKE, as described by Algorithm 2, it
basically generates a message in the message space and hashes it along with the given
public key to get r, which is passed as key in K2 to isogen2 to compute the corresponding
public key c0 and the shared string j. The value j is hashed to get h, which is xored with m

to get c1, and then the shared key K is computed and returned, along with the ciphertext
(c0, c1).

Algorithm 2 Encapsulation algorithm for SIKE.

function Encaps(pk3, Params)
m← randombytes(dParams.n/8e) ;
r← SHAKE256(m || pk3, Params.e2) ;
c0 ← isogen2(r, Params) ;
j← isoex2(pk3, r, Params.e2) ;
h← SHAKE256(j, Params.n) ;
c1 ← h⊕ m ;
K← SHAKE256(m || (c0, c1), Params.k) ;
return ((c0, c1), K);

end function

Regarding the decapsulation mechanism for SIKE, as described by Algorithm 3, it
basically computes the shared string j from c0 and the secret key sk3. It then recomputes
h, then m and then r′, which is used to compute c′0. At this point, it compares c′0 with the
given c0. If they are equal, then the real shared key K is computed and returned, otherwise
a fake shared key is computed and returned.

Algorithm 3 Decapsulation algorithm for SIKE.

function Decaps((s, sk3, pk3), (c0, c1), Params )
j← isoex3(c0, sk3, Params.e3) ;
h← SHAKE256(j, Params.n) ;
m′ ← h⊕ c1 ;
r′ ← SHAKE256(m

′ || pk3, Params.e2) ;
c′0 ← isogen2(r

′, Params) ;
if c′0 = c0 then

K← SHAKE256(m
′ || (c0, c1), Params.k) ;

else
K← SHAKE256(s || (c0, c1), Params.k) ;

end if
return K;

end function
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SIKE Parameters

Table 1 shows relevant entries from each SIKE parameter for our key-recovery attack.
For a comprehensive list of all entries defined for each SIKE parameter, such as P2, Q2,R2,
P3, Q3 and R3, we refer the reader to [1,9].

Table 1. Relevant constants from Supersingular Isogeny Key Encapsulation (SIKE) parameters.

Name blog2 3e3c MASK Nsk3 e2 e3

SIKEp434 218 0x01 28 216 137

SIKEp503 253 0x0F 32 250 159

SIKEp610 305 0xFF 38 305 192

SIKEp751 379 0x03 48 372 239

4. Key Recovery

Throughout this section, we give a detailed account of our key-recovery algorithm,
which relies on the general key-recovery strategy described in [11,27].

4.1. Assumptions

Based on the model we described in Section 2.2, we suppose that an adversary pro-
cures a noisy version of a SIKE’s private key encoding as it is stored by the reference
implementation. In particular, the adversary procures an array containing (s, sk3, pk3).
Additionally, such adversary accesses the corresponding original public parameters (i.e.,
without noise), so such adversary may use them to properly locate the offset from which the
secret key bits (sk3) are stored via running key-finding algorithms exploiting identifying
features found in the memory formats for storing the SIKE’s private key. These algorithms
would be similar to those developed for the RSA setting [10].

Additionally, by α = P(0→ 1) we denote the probability for a 0 bit of the original
secret key to change for a 1 bit, and by β = P(1→ 0) we denote the probability for a 1
bit of the original private key to change for a 0 bit. According to our model, the attacker
knows both α and β, since these values are fixed across the memory region in which the
secret key is located and can be easily estimated by comparing any noisy content with its
corresponding original one (e.g., the public key). Moreover, memory regions are normally
large and the size in bytes of sk3 is at most 48 bytes according to Table 1.

4.2. Our Key-Recovery Algorithm

Throughout this section we give a detailed account of our key-recovery strategy,
taking into consideration the notation introduced in Section 2.3.5 and the review of SIKE’s
reference implementation.

Let ch = b0b1b2 . . . bW be W bit string that represents the noisy version of the secret
key encoding sk3. Note that the value for W depends on the SIKE parameters on which
SIKE is configured. In particular, W = 8·Nsk3 (see the fourth column of Table 1). We denote
w as the size in bits of a chunk (it is set to 8), and so ch can be written as a sequence of
N = W/w chunks

ch = ch0||ch1||. . .||chN−1

with chi = bi·wbi·w+1 . . . bi·w+(w−1). We define a block Bk
m = chk||chk+1||· · ·||chk+m−1 as a

sequence of consecutive chunks, where 0 ≤ k ≤ k + m− 1 < N and m is the number of
chunks in the block. We can now rewrite ch as a concatenation of nb blocks, namely

ch = B0
m0
||Bm0

m1 ||. . .||Bm0+m1+m2+...+mnb−2
mnb−1

with ∑nb−1
i=0 mi = N . Now we are ready to present our key-recovery algorithm.
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1. Set the array P =
[
m0, m1, m2, . . . , mnb−1

]
with ∑nb−1

j=0 mj = N . Each mj is the number

of chunks in the block B
m0+m1+...+mj−1
mj .

2. Set the array M =
[
M0, M1, M2, . . . , Mnb−1

]
. Each Mj is the number of high-scoring

candidates to generate for the block B
m0+m1+...+mj−1
mj .

3. By making use of Equation (1), our algorithm computes the log-likelihood scores for
all possible candidate values for each chunk chi, with 0 ≤ i < N . Note that, in the
SIKE setting, all candidate values are in the set {0, 1, 2, . . . 255}, except for the last
chunk, where all candidate values are in the set {0, 1, 2, . . . , 2ns − 1} with ns being the
number of ones of the binary string Params.MASK. Each tuple (score, value) generated
for a particular chunk chi is inserted into the list Lchi , and this is finally inserted in
the corresponding index i of the main list L.

4. For each block B
m0+m1+...+mj−1
mj , with 0 ≤ j < nb and m−1 = 0, then the lists stored in

L at indexes m0 + m1 + . . . + mj−1 + k for 0 ≤ k < mj are given as parameters to an
optimal key enumeration algorithm, which we denote as OKEA, to produce the list LBj

that contains the Mj candidates with the highest scores for the block B
m0+m1+...+mj−1
mj .

5. All lists LBj are given as parameters to an instance of a key enumeration algorithm
(KEA). This instance regards each LBj as a list of suitable candidates for the corre-

sponding block B
m0+m1+...+mj−1
mj and outputs high-scoring full key candidates for the

target secret key encoding. Upon generating a full key candidate c, our algorithm
passes it as input to a testing function (Test in our case) to verify whether the full key
candidate c is a valid secret key or not.

Algorithm 4 shows a pseudo-code of our key-recovery algorithm. Note that OKEA
points to the optimal key enumeration algorithm that our key-recovery algorithm runs at
step 4, and KEA points to the key enumeration algorithm that our key-recovery algorithm
runs at step 5. Additionally, args refers to the arguments that the algorithm pointed by
KEA may take in and Test is a pointer to the testing function Test, i.e., Algorithm 5. We
next expand on our choice of key enumeration algorithms for our key-recovery algorithm.

On Our Choice of an Optimal Key Enumeration Algorithm

Our key-recovery algorithm requires an optimal key enumeration algorithm run at
step 4 to enumerate full key candidate c sorted by their scores in descending order. There
are several algorithms suitable for this task [12,27,41], and we use the algorithm (OKEA)
from [12], since it is flexible and easy to implement. Additionally, note that OKEA is an
inherently sequential algorithm, and so its optimality property is fulfilled only if it is not
run in parallel. In addition, its memory consumption may be high if used to enumerate
many candidates [27]. In our setting, we select Mj to be a value in the set {256, 512, 1024}
for all 0 ≤ j < nb.

On Our Choice of Non-Optimal Key Enumeration Algorithms

Regarding the key enumeration algorithm (KEA) that our key-recovery algorithm runs
at step 5, this algorithm is required to be parallelizable and memory-efficient, since this step
of our approach requires a considerably high amount of computational resources. Here
we explore the use of two different key enumeration algorithms. On the one hand, we use
an algorithm called NOKEA, which combines several good characteristics from multiples
algorithms (KEAs) [11,37]. This particular algorithm may be configured to search over a
well-defined range [a, b], where a ≤ b ≤ max and max is the maximum total score that a
full key candidate may be given to. In this configuration, this algorithm enumerates each
possible full key candidate of which total score lies in the chosen interval [a, b] [11]. We
expand on the use of this algorithm in Section 5.1, in which we also present the success
rates of our key-recovery algorithm. On the other hand, we also explore how to combine
our key-recovery algorithm with a quantum key enumeration algorithm [42], which we
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denote by QKEA, that combines a non-optimal key enumeration algorithm and the Grover
algorithm [43]. We expand on this in Section 5.2.

Algorithm 4 Key-recovery algorithm.

function KeyRecovery(ch, Params, P, M, α, β, OKEA, KEA, args, Test)
for (i← 0, i < Params.Nsk3 − 1, i← i + 1) do

for (c← 0, c < 256, c← c+ 1) do
//with Equation (1), getScore computes a score for each candidate c.
score← getScore(ch[i], c, α, β) ;
Lchi .add((score, c));// adds the tuple (score, c) to the list.

end for
Lchi .sort()// this sorts the list Lchi by score in descending order.
L.add(Lchi )// this appends the list Lchi to the index i of L.

end for
i← Params.Nsk3 − 1 ;

for
(
c← 0, c < 2HammingWeight(Params.MASK), c← c+ 1

)
do

score← getScore(ch[i], c, α, β) ;// with Equation (1), getScore computes a score for each
candidate c.

Lchi .add((score, c));// adds the tuple (score, c) to the list.
end for
Lchi .sort()// this sorts the list Lchi by score in descending order.
L.add(Lchi )// this appends the list Lchi to the index i of L.
nB ← len(P);
s← 0;
for (j← 0, j < nB, j← j + 1) do

// The next instruction inits OKEA passing it the lists Lchs , . . . , Lchs+P[j]−1 obtained from L.
OKEA.init(L, s, P[j]);
for (i← 1, i ≤ M[j], i← i + 1) do

// The next instruction returns the best block candidate for block j and appends it to LBj .
LBj .add(OKEA.getNextCandidate());

end for
LB.add(LBj ); // LB is an accessory list to store lists LBj .
s← s + P[j]; // this updates s, the starting index for the next block.

end for
// The next instruction inits KEA passing it the lists in LB and args.
KEA.init(LB, args);
// The next instruction runs KEA passing it Params and a pointer to the function Test, i.e.,

Algorithm 5.
KEA.run(Test, Params);

end function

Algorithm 5 Test Function.

function Test(c, pk3,Params )
// generate a public key pk′3 from the candidate c.
pk′3 ← isogen3(c, Params) ;
if Arrays.equal

(
pk3, pk′3

)
then// verify whether pk3 and pk′3 are equal.

return 1;
end if
return 0;

end function

5. Evaluation of Our Key-Recovery Algorithm

Throughout this section we assess our key-recovery algorithm. We first give a detailed
account of how we compute the success rates for our key-recovery algorithm considering
several scenarios, each with a different set of SIKE parameters, and finally show how to
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integrate a quantum key search algorithm (QKEA) to our key-recovery algorithm to improve
its overall performance.

5.1. Performance and Success Rates of Our Key-Recovery Algorithm

This section reports success rates of our key-recovery algorithm. We first note that in
this setting the attacker procures a noisy version ch of sk3 via a cold boot attack, as stated
in Section 4.1, and so our key-recovery algorithm tries to find a full key candidate for sk3
from the noisy version. In order to compute estimates for success rates of our key-recovery
algorithm, we analyze the following scenarios. For a given set of instance parameters,
we calculate the success rate for our key-recovery algorithm with NOKEA if it is set to (1)
enumerate all the possible full key candidates; (2) enumerate an interval with roughly 230

full key candidates; (3) enumerate an interval with roughly 240 full key candidates; (4)
enumerate an interval with roughly 250 full key candidates. In this context, by instance
parameters we mean setting the array P, the array M, w (normally 8), α, β, together with the
selected SIKE parameters.

Note that given the noisy version ch and the instance parameters, our key-recovery
algorithm creates the lists LBj at the end of step 4, then these are passed to NOKEA at the
beginning of the step 5. Here is where we exploit several features of this algorithm in order
to compute estimates for the success rates without actually running an enumeration with
NOKEA. In particular, we exploit the fact that NOKEA can enumerate full key candidates of
which total scores belong to a given interval in order from the highest to the lowest total
score and that many scores of block candidates for a given block are repeated [11,36,44].
In particular, once the lists LBj are created, our tweaked NOKEA creates factorized lists, one
per list LBj , that contain entries of the form (score, count) where score represents a score
and count is the number of block candidates having score as score in the corresponding
list LBj . These factorized lists are passed to an alternative version of OKEA, where count is
seen as a candidate value, and it generates another factorized list L with entries of the same
form (score, count), which is sorted by score in descending order, i.e., from the highest to
the lowest score. An entry (score, count) may be interpreted as there are count full key
candidates of which total score is equal to score.

To calculate estimates for success rates, we run our tweaked key-recovery algorithm
with all required parameters a fixed number of times (100 times) and then compute the
corresponding success rate. Specifically, at each trial the SIKE key generation algorithm is
run to obtain (s, sk3, pk3) according to the selected set of SIKE parameters, and then sk3 is
perturbed as per α and β and then our tweaked key-recovery algorithm is called by passing
the noisy version ch, the instance parameters and the original key as parameters. It then
runs until generating the lists LBj and, at such point, checks that each block of the original
key is found in the corresponding list LBj . If so, it means that a complete enumeration,
carried out by NOKEA, would not fail in finding the secret key (it would fail otherwise).
On the condition that the complete enumeration will not fail, the tweaked NOKEA is run to
create the factorized list L, which is used to determine if the original key may be found
by the instance of NOKEA if it enumerates a range having roughly 230 or 240 or 250 full key
candidates. In particular, say, we want to determine if the original key can be found via
enumerating a range with approximately 2a full key candidates, a ∈ {30, 40, 50}, then
the algorithm finds an entry at index e in L such that e is the smallest integer satisfying
2a < ∑e

k=0 L[k].count. If the score calculated for the original key (from the noisy version) lies
in the interval [L[e].score, L[0].score], then it signifies that an enumeration in such interval
(which contains at least 2a candidates) will find the original key. We next describe the
instance parameters we used to run our trials.

SIKEp434

For this set of SIKE parameters, sk3 has a length of 28 bytes, Params.MASK = 0x01,
which means that only the first bit of the last byte of sk3 is used. Also, we set w to 8, P
to [4, 4, 4, 4, 4, 4, 4] and Mj to r, for 0 ≤ j < 7, where r ∈ {256, 512, 1024}. Note that the
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number of chunks is 28 and the number of blocks is 7. Figures 1 and 2 show the obtained
results for this set of parameters.
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(c) Mj = 1024 f or 0 ≤ j < 7

Figure 1. Success rates for the SIKE parameters SIKEp434 for α = 0.001. The y-axis denotes the success
rate, while the x-axis denotes β ∈ {0.001, 0.01, 0.02, . . . , 0.2}.
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Figure 2. Success rates for the SIKE parameters SIKEp434 for α = 0.001. The y-axis denotes the
success rate, while the x-axis denotes β ∈ {0.001, 0.01, 0.02, . . . , 0.2}. (a) Comparing success rates for
Mj ∈ {256, 512, 1024} in a full enumeration. (b) Comparing success rates for Mj ∈ {256, 512, 1024} in a
240 enumeration.

SIKEp503

For this set of SIKE parameters, sk3 has a length of 32 bytes, Params.MASK = 0x0F, which means
that only the four first bits of the last byte of sk3 are used. Also, we set w to 8, P to [4, 4, 4, 4, 4, 4, 4, 4]
and Mj to r, for 0 ≤ j < 8, where r ∈ {256, 512, 1024}. Note that the number of chunks is 32 and the
number of blocks is 8. Figures 3 and 4 show the obtained results for this set of parameters.

Additionally, the function Test for this set of parameters takes about 7,069,164 cycles to run in
a virtual machine type e2-highcpu-16 with 16 vCPUs and 16 GB of memory deployed in the Google
Cloud Platform.

We remark that the success rates for this set of parameters and those obtained for LUOV [37] are
essentially similar. This is expected since both LUOV’s secret key and SIKE’s secret key for this case
are of length 32 bytes.

Figure 1. Success rates for the SIKE parameters SIKEp434 for α = 0.001. The y-axis denotes the
success rate, while the x-axis denotes β ∈ {0.001, 0.01, 0.02, . . . , 0.2}.
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Figure 2. Success rates for the SIKE parameters SIKEp434 for α = 0.001. The y-axis denotes the
success rate, while the x-axis denotes β ∈ {0.001, 0.01, 0.02, . . . , 0.2}. (a) Comparing success rates for
Mj ∈ {256, 512, 1024} in a full enumeration. (b) Comparing success rates for Mj ∈ {256, 512, 1024} in a
240 enumeration.

SIKEp503

For this set of SIKE parameters, sk3 has a length of 32 bytes, Params.MASK = 0x0F, which means
that only the four first bits of the last byte of sk3 are used. Also, we set w to 8, P to [4, 4, 4, 4, 4, 4, 4, 4]
and Mj to r, for 0 ≤ j < 8, where r ∈ {256, 512, 1024}. Note that the number of chunks is 32 and the
number of blocks is 8. Figures 3 and 4 show the obtained results for this set of parameters.

Additionally, the function Test for this set of parameters takes about 7,069,164 cycles to run in
a virtual machine type e2-highcpu-16 with 16 vCPUs and 16 GB of memory deployed in the Google
Cloud Platform.

We remark that the success rates for this set of parameters and those obtained for LUOV [37] are
essentially similar. This is expected since both LUOV’s secret key and SIKE’s secret key for this case
are of length 32 bytes.

Figure 2. Success rates for the SIKE parameters SIKEp434 for α = 0.001. The y-axis denotes the
success rate, while the x-axis denotes β ∈ {0.001, 0.01, 0.02, . . . , 0.2}. (a) Comparing success rates for
Mj ∈ {256, 512, 1024} in a full enumeration. (b) Comparing success rates for Mj ∈ {256, 512, 1024}
in a 240 enumeration.

Additionally, the function Test for this set of parameters takes about 5,141,167 cycles
to run in a virtual machine type e2-highcpu-16 with 16 vCPUs and 16 GB of memory
deployed in the Google Cloud Platform.

SIKEp503

For this set of SIKE parameters, sk3 has a length of 32 bytes, Params.MASK = 0x0F,
which means that only the four first bits of the last byte of sk3 are used. Also, we set w to 8,
P to [4, 4, 4, 4, 4, 4, 4, 4] and Mj to r, for 0 ≤ j < 8, where r ∈ {256, 512, 1024}. Note that the
number of chunks is 32 and the number of blocks is 8. Figures 3 and 4 show the obtained
results for this set of parameters.
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For this set of SIKE parameters, sk3 has a length of 38 bytes, Params.MASK = 0xFF, which means
that all the bits of the last byte of sk3 are used. We also set w to 8, P to [5, 5, 5, 5, 5, 5, 5, 3] and Mj to r,
for 0 ≤ j < 8, where r ∈ {256, 512, 1024}. Note that the number of chunks is 38 and the number of
blocks is 8. Figures 5 and 6 show the obtained results for this set of parameters.

Additionally, the function Test for this set of parameters takes about 12, 724, 569 cycles to run in
a virtual machine type e2-highcpu-16 with 16 vCPUs and 16 GB of memory deployed in the Google
Cloud Platform.
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For this set of SIKE parameters, sk3 has a length of 38 bytes, Params.MASK = 0xFF, which means
that all the bits of the last byte of sk3 are used. We also set w to 8, P to [5, 5, 5, 5, 5, 5, 5, 3] and Mj to r,
for 0 ≤ j < 8, where r ∈ {256, 512, 1024}. Note that the number of chunks is 38 and the number of
blocks is 8. Figures 5 and 6 show the obtained results for this set of parameters.
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a virtual machine type e2-highcpu-16 with 16 vCPUs and 16 GB of memory deployed in the Google
Cloud Platform.

Figure 4. Success rates for the SIKE parameters SIKEp503 for α = 0.001. The y-axis denotes the
success rate, while the x-axis denotes β ∈ {0.001, 0.01, 0.02, . . . , 0.2}. (a) Comparing success rates for
Mj ∈ {256, 512, 1024} in a full enumeration. (b) Comparing success rates for Mj ∈ {256, 512, 1024}
in a 240 enumeration.

Additionally, the function Test for this set of parameters takes about 7,069,164 cycles
to run in a virtual machine type e2-highcpu-16 with 16 vCPUs and 16 GB of memory
deployed in the Google Cloud Platform.

We remark that the success rates for this set of parameters and those obtained for
LUOV [37] are essentially similar. This is expected since both LUOV’s secret key and SIKE’s
secret key for this case are of length 32 bytes.

SIKEp610

For this set of SIKE parameters, sk3 has a length of 38 bytes, Params.MASK = 0xFF,
which means that all the bits of the last byte of sk3 are used. We also set w to 8, P to
[5, 5, 5, 5, 5, 5, 5, 3] and Mj to r, for 0 ≤ j < 8, where r ∈ {256, 512, 1024}. Note that the
number of chunks is 38 and the number of blocks is 8. Figures 5 and 6 show the obtained
results for this set of parameters.



Appl. Sci. 2021, 11, 193 17 of 24
Appl. Sci. 2020, 1, 5 17 of 25

(a) Mj = 256 f or 0 ≤ j < 8 (b) Mj = 512 f or 0 ≤ j < 8

(c) Mj = 1024 f or 0 ≤ j < 8

Figure 5. Success rates for the SIKE parameters SIKEp610 for α = 0.001. The y-axis denotes the success
rate, while the x-axis denotes β ∈ {0.001, 0.01, 0.02, . . . , 0.2}.

(a) (b)

Figure 6. Success rates for the SIKE parameters SIKEp610 for α = 0.001. The y-axis denotes the
success rate, while the x-axis denotes β ∈ {0.001, 0.01, 0.02, . . . , 0.2}. (a) Comparing success rates for
Mj ∈ {256, 512, 1024} in a full enumeration. (b) Comparing success rates for Mj ∈ {256, 512, 1024} in a
240 enumeration.

SIKEp751

For this set of SIKE parameters, sk3 has a length of 48 bytes, Params.MASK = 0x03, which means
that only the two first bits of the last byte of sk3 are used. Also, we set w to 8, P to [6, 6, 6, 6, 6, 6, 6, 6]
and Mj to r, for 0 ≤ j < 8, where r ∈ {256, 512, 1024}. Note that the number of chunks is 48 and the
number of blocks is 8. Figures 7 and 8 show the obtained results for this set of parameters.

Additionally, the function Test for this set of parameters takes about 21,266,903 cycles to run in
a virtual machine type e2-highcpu-16 with 16 vCPUs and 16 GB of memory deployed in the Google
Cloud Platform.
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For this set of SIKE parameters, sk3 has a length of 48 bytes, Params.MASK = 0x03, which means
that only the two first bits of the last byte of sk3 are used. Also, we set w to 8, P to [6, 6, 6, 6, 6, 6, 6, 6]
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Additionally, the function Test for this set of parameters takes about 12, 724, 569
cycles to run in a virtual machine type e2-highcpu-16 with 16 vCPUs and 16 GB of memory
deployed in the Google Cloud Platform.

SIKEp751

For this set of SIKE parameters, sk3 has a length of 48 bytes, Params.MASK = 0x03,
which means that only the two first bits of the last byte of sk3 are used. Also, we set w to 8,
P to [6, 6, 6, 6, 6, 6, 6, 6] and Mj to r, for 0 ≤ j < 8, where r ∈ {256, 512, 1024}. Note that the
number of chunks is 48 and the number of blocks is 8. Figures 7 and 8 show the obtained
results for this set of parameters.
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Figure 8. Success rates for the SIKE parameters SIKEp751 for α = 0.001. The y-axis denotes the
success rate, while the x-axis denotes β ∈ {0.001, 0.01, 0.02, . . . , 0.2}. (a) Comparing success rates for
Mj ∈ {256, 512, 1024} in a full enumeration. (b) Comparing success rates for Mj ∈ {256, 512, 1024} in a
240 enumeration.

Results Discussion

Note that all plots depicted by Figures 1a–c, 3a–c, 5a–c and 7a–c, show a similar trend, namely,
for all set of instance parameters and Mj ∈ {256, 512, 1024}, the success rate for a complete enumeration
dominates the success rate for a 250 enumeration, which in turn dominates the success rate for a 240

enumeration, and which in turn dominates the success rate for a 230 enumeration. This is in alignment
with what we expected. Moreover, we remark that the success rate decreases as long as β increases,
although there are a few cases where, given β1 and β2 with β1 > β2, the success rate for β1 is a bit
larger than the success rate for β2. This is due to the manner in which an interval is constructed by
the NOKEA algorithm (and hence its tweaked version). However, the general trend is that the success
rate decreases while β increases, which is also in line with what is expected. Additionally, Figures 2a,
4a, 6a and 8a show similar trends when comparing success rates for Mj ∈ {256, 512, 1024} in a full
enumeration. Analogously, Figures 2b, 4b, 6b and 8b also show similar trends when comparing success
rates for Mj ∈ {256, 512, 1024} in a 240 enumeration.
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Figure 8. Success rates for the SIKE parameters SIKEp751 for α = 0.001. The y-axis denotes the
success rate, while the x-axis denotes β ∈ {0.001, 0.01, 0.02, . . . , 0.2}. (a) Comparing success rates for
Mj ∈ {256, 512, 1024} in a full enumeration. (b) Comparing success rates for Mj ∈ {256, 512, 1024}
in a 240 enumeration.

Additionally, the function Test for this set of parameters takes about 21,266,903 cycles
to run in a virtual machine type e2-highcpu-16 with 16 vCPUs and 16 GB of memory
deployed in the Google Cloud Platform.

Results Discussion

Note that all plots depicted by Figure 1a–c, Figure 3a–c, Figures 5a–c and 7a–c, show
a similar trend, namely, for all set of instance parameters and Mj ∈ {256, 512, 1024}, the
success rate for a complete enumeration dominates the success rate for a 250 enumeration,
which in turn dominates the success rate for a 240 enumeration, and which in turn domi-
nates the success rate for a 230 enumeration. This is in alignment with what we expected.
Moreover, we remark that the success rate decreases as long as β increases, although there
are a few cases where, given β1 and β2 with β1 > β2, the success rate for β1 is a bit larger
than the success rate for β2. This is due to the manner in which an interval is constructed
by the NOKEA algorithm (and hence its tweaked version). However, the general trend is that
the success rate decreases while β increases, which is also in line with what is expected.
Additionally, Figures 2a, 4a, 6a and 8a show similar trends when comparing success rates
for Mj ∈ {256, 512, 1024} in a full enumeration. Analogously, Figures 2b, 4b, 6b and 8b
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also show similar trends when comparing success rates for Mj ∈ {256, 512, 1024} in a 240

enumeration.

5.2. Integrating a Quantum Key Search Algorithm with Our Key-Recovery Approach

Throughout this subsection we give a detailed account of a quantum key enumeration
algorithm, denoted as QKEA [42], and show how to combine it with our key-recovery
algorithm to improve its overall performance. We additionally derive the running time
of step 5 of our key recovery algorithm (worst case) if QKEA is run. Recall that at step 5,
the lists LBj , for 0 ≤ j < nb, will be given as parameters to an instance of the quantum key
enumeration algorithm (QKEA).

QKEA relies on a non-optimal key enumeration algorithm developed from a rank
algorithm (also known as a counting algorithm) by Martin et al. [17]. The core idea is to
leverage the rank algorithm to return a single candidate key with a particular rank within
a specific range. Additionally, we remark that this algorithm uses a map that associates
each score with a weight (a positive integer), where the smallest weight is regarded as the
likeliest one [17].

We assume the scores from each block candidate in the list LBj , for 0 ≤ j < nb, are
mapped to weights, as shown in [27,42]. Given the range [B1, B2), the rank algorithm
constructs a two dimensional array B with nb × B2 entries, and then uses it to compute the
number of full key candidates in the range. Algorithm 6 constructs the two dimensional
array B and its running time is given by

T1(nb, M, B2)= c1 +
B2−1

∑
b=0

M−1

∑
j=0

c2 +
nb−2

∑
i=0

B2−1

∑
b=0

M−1

∑
j=0

c3

= c1 + c2·M·B2 + c3·M·(nb − 1)·B2

where Mj = M ∈ {256, 512, 1024} for 0 ≤ j ≤ nb − 1, nb ∈ {7, 8} and c1, c2, c3 are
constants, i.e., upper bounds on the running time consumed by primitive operations, such
as return operations, addition operations, comparison operations.

Algorithm 6 constructs the two dimensional array B.

1: function create(B1, B2)
2: i← nb − 1 ;

3: B←
[
[0]B2

]nb

4: for b = 0 to B2 − 1 do
5: for j = 0 to M− 1 do
6: if B1 − b ≤ ci

j.score < B2 − b then

7: Bi,b ← Bi,b + 1
8: end if
9: end for
10: end for
11: for i = nb − 2 to 0 do
12: for b = 0 to B2 − 1 do
13: for j = 0 to M− 1 do
14: if b + ci

j.score < B2 then

15: Bi,b ← Bi,b + Bi+1,b+ci
j .score ;

16: end if
17: end for
18: end for
19: end for
20: return B;
21: end function
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Note that, by construction, B0,0 is the number of full key candidates of which to-
tal scores are in the interval [B1, B2). So the rank algorithm simply returns B0,0 and is
described by Algorithm 7. Concerning its running time, it is given by T2(nb, M, B2) =
c4 + T1(nb, M, B2), where c4 is a constant, i.e., an upper bound on the running time of
primitive operations.

Algorithm 7 computes the number of full key candidates in [B1, B2).

1: function rank(B1, B2)
2: B← create(B1, B2) ;
3: return B0,0
4: end function

By using Algorithms 7 and 8 returns the full key candidate with rank r in the given
range [B1, B2) [42]. We remark that Algorithm 8 is deterministic and that the full key
candidate returned by it is not necessarily the rth highest-scoring full key candidate in the
given range. Regarding Algorithm 8’s running time, it is given by

T3(nb, M)= c5 +
nb−2

∑
i=0

M−1

∑
j=0

c6 +
M−1

∑
j=0

c7

= c5 + c6·M·(nb − 1) + c7·M

where c5, c6, c7 are constants, i.e., upper bounds on the running time consumed by primitive
operations.

Algorithm 8 returns the rth full key candidate with weight in the interval [B1, B2).

1: function getKey(B, B1, B2, r)
2: if r > B0,0 then
3: return ⊥
4: end if
5: k← [0]nb ;
6: b← 0 ;
7: for i = 0 to nb − 2 do
8: for j = 0 to M− 1 do
9: if r ≤ Bi+1,b+ci

j .score then

10: ki ← j ;
11: b← b + ci

j.score ;

12: break j;
13: end if
14: r ← r− Bi+1,b+ci

j .score ;

15: end for
16: end for
17: i← nb − 1 ;
18: for j = 0 to M− 1 do

19: x ←
(

B1 − b ≤ ci
j.score < B2 − b

)
?1 : 0 ;

20: if r ≤ x then
21: ki ← j ;
22: break j;
23: end if
24: r ← r− x ;
25: end for
26: return k

27: end function
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By calling the getKey function, Algorithm 9 tries to enumerate and test all full key
candidates in the given interval [42]. Note that Test is pointer to the testing function
(Algorithm 5). Concerning Algorithm 9’s running time, it is given by T4(nb, M, B2, e) =
c8 + T1(nb, M, B2) + e·(T3(nb, M) + c9 + T(Params)), where e is the number of full key
candidates in the range [B1, B2), c8 and c9 are constants and upper bounds on the running
time consumed by primitive operations, and T(Params) is the running time of the testing
function (Algorithm 5).

Algorithm 9 enumerates and tests all full key candidates with weight in the interval [B1, B2).

1: function keySearch(B1, B2, Test)
2: B← create(B1, B2) ;
3: r ← 1 ;
4: while True do
5: k← getKey(B, B1, B2, r) ;
6: if k = ⊥ then
7: break;
8: end if
9: if Test(k) = 1 then
10: break;
11: end if
12: r ← r + 1 ;
13: end while
14: return k;
15: end function

Algorithm 10 calls the function keySearch to search over partitions selected indepen-
dently with approximately as full key candidates for s = 0, 1, . . . [42]. Regarding Algorithm
10’s running time, this is given by

T5(nb, m, Be, B2, e, a) = c10 + log2(e)·T2(nb, M, Be)+
p−1

∑
s=0

(T4(nb, M, B2, as) + log2(as)·T2(nb, M, B2) + c11)

(6)
where p = loga(e·(a− 1) + 1) and e ∈

{
230, 240, 250}, c10, c11 are upper bounds on the

running time consumed by primitive operations, such as return operations, addition opera-
tions, comparison operations. The terms log2(e)·T2(nb, M, Be) and log2(as)·T2(nb, M, B2)
are the running times of steps 5 and 13 of Algorithm 10. Note that this algorithm is similar
to NOKEA in the sense that it also enumerates full key candidates of which total scores
belongs to the given range. Furthermore, the technique of partitioning the entire interval
helps in improving the overall performance of Algorithm 10 when it is searching over an
initial range with a large number of full key candidates.

Given the computational burden of Algorithm 10 lies on the execution of the function
keySearch (at step 7), then any improvement on this search algorithm implies a speed-up
on Algorithm 10’s overall performance. The authors of [42] show how this part may
be modified by replacing it for a Grover’s oracle [43], and so improving Algorithm 10’s
overall performance. Algorithm 11 results from adjusting Algorithm 10 and relies on a
Grover’s oracle, giving a quadratic speed-up on searches over partitions. The function
f(r) = Test(getKey(B, B1, B2, r)) returns 1, on the condition that r is the rank of the real
secret key; otherwise, it returns 0. Grover’s algorithm [43] shows that r can be found on
a quantum computer in only O

(∣∣∣as/2
∣∣∣·Tf

)
steps, where Tf is the time to evaluate f(r),

i.e., T(Params) + T3(nb, M). Therefore Algorithm 11’s overall running time is given by
replacing T4(nb, M, B2, as) in Equation (6) for T1(nb, M, B2) (step 7 of Algorithm 11) plus
the running time for Grover’s algorithm with f(r) (steps from 8 to 9 of Algorithm 11).
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Algorithm 10 performs a non-optimal enumeration over an interval with roughly e full key
candidates.

1: function KS(e, Test)
2: B1 ← Bmin ;
3: B2 ← Bmin + 1 ;
4: s← 0 ;
5: Find Be such that rank(B1, Be) is roughly equals to e;
6: while B1 ≤ Be do
7: k← keySearch(B1, B2, Test) ;
8: if k 6= ⊥ then
9: return k;
10: end if
11: s← s + 1 ;
12: B1 ← B2 ;
13: Find B2 such that rank(B1, B2) is roughly equals to as;
14: end while
15: return ⊥;
16: end function

Algorithm 11 performs a quantum key enumeration over an interval with roughly e full key
candidates.

1: function QKS(e, Test)
2: B1 ← Bmin ;
3: B2 ← Bmin + 1 ;
4: s← 0 ;
5: Find Be such that rank(B1, Be) is roughly equals to e;
6: while B1 ≤ Be do
7: B← create(B1, B2) ;
8: f(·)← Test(getKey(B, B1, B2, ·)) ;
9: Call Grover’s algorithm with testing function f

10: if a marked element r is found then
11: return getKey(B, B1, B2, r);
12: end if
13: s← s + 1 ;
14: B1 ← B2 ;
15: Find B2 such that rank(B1, B2) is roughly equals to as;
16: end while
17: return ⊥;
18: end function

6. Conclusions

This research paper addressed the question of the viability of cold boot attacks on
SIKE. To this end, we reviewed SIKE’s reference implementation as it was submitted
to the NIST Post-Quantum Cryptography Standardization Process. Furthermore, we
presented a dedicated key-recovery algorithm for SIKE in this setting and showed, through
simulations, that our algorithm can reconstruct the secret key for SIKE, configured with
any SIKE parameters, for varying values β ∈ {0.001, 0.01, . . . , 0.1} and α = 0.001, by only
performing a 230 enumeration. We stress these success rates from our algorithm can be
improved as long as there are more available resources to run it. Additionally, we showed
that our algorithm could be sped-up by integrating a quantum key search algorithm with it,
which brings the computation power of quantum computing into the post-processing phase
of a side channel attack. Moreover, as a future work, we may extend our work to include a
resource estimation of quantum gates resulting from running our quantum key-recovery
algorithm against SIKE or other cryptographic primitives in the post-processing phase.
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