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Abstract: Efforts were made to predict and evaluate blast-induced ground vibrations and frequencies
using an adaptive network-based fuzzy inference system (ANFIS), which has a fast-learning capability
and the ability to capture the non-linear response during the blasting process. For this purpose, the
ground vibrations generated by the blast in a tunnel tube were monitored at a residential building
located directly above the tunnel tube. To investigate the usefulness of this approach, the prediction
by the ANFIS was also compared to those by three of the most commonly used vibration predictors.
The efficiency criteria chosen for the comparison between the predicted and actual data were the sum
of squares due to error (SSE), the root mean squared error (RMSE), and the goodness of fit (R-squared
and adjusted R-squared). The results show that the ANFIS prediction model performs better than the
commonly used predictors.

Keywords: peak particle velocity; frequency; predictor equation; adaptive network-based fuzzy
inference system

1. Introduction

An increasing number of tunnel construction sites are located under or near inhabited
buildings. Since houses, hospitals, and other buildings often contain sensitive equipment,
special efforts must be made to reduce vibrations during blasting operations. The relation-
ship between the peak level of the vibration, the distance from the source to the monitor
and the total charge weight in the blast hole is defined by the charge weight scaling law [1].
Therefore, buildings and installations within a certain radius should be inspected and given
a value for the peak particle velocity (PPV) level based on the type of ground underlying
the building, its foundation, material content, and type of construction. The maximum
vibration level for a building built on rock is much higher than for that built on clay, because
the vibration frequency in rock is much higher than in clay, which increases the probability
that the vibration will cause damage to the buildings. The vibration level during a blast
depends mainly on the transfer conditions of the ground, the amount of charge, and the
distance between the explosive charge and the measuring points.

The monitoring of vibrations generated by blasting is an important component in
the control of environmental stability and blast effectiveness. Various mathematical and
empirical formulas have been developed to predict blast-induced ground vibrations. These
empirical equations usually show high deviations between the measured and calculated
peak particle velocity (PPV) values.

Many engineers and researchers have discovered that artificial neural networks
(ANNs) and the neuro-fuzzy approach have better predictive capabilities than conventional
vibration predictors. Khandelwal and Singh [2] used ANN to predict the blast-induced
ground vibration level at a magnesite mine based on 75 blast events. Later, Khandelwal
and Singh [3] developed an ANN model for predicting ground vibrations and frequen-
cies that considers not only the distance from the blast site and the charge per delay, but
also rock properties, blast design, and explosive parameters. The sensitivity analysis of
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different types of ANN models showed that the distance from the blast site, the number of
boreholes per delay, and the maximum charge per delay are the most effective parameters
in generating ground vibrations during blasting [4,5]. Kostič et al. developed a neural
network model with four main blast parameters as input, namely total charge, maximum
charge per delay, distance from the blast source to the measuring point and hole depth [6].
To evaluate the ground vibrations caused by the blast, the techniques of dimensional
analysis and ANN were applied, taking into account the blast design parameters and rock
strength [7]. The control of the blast induced vibrations during the construction of the
Masjed Soleiman dam was the crucial task, therefore the general regression neural network
(GRNN) and the support vector machine (SVM) were used to predict the vibrations [8].
A hybrid model of the ANN and a particle swarm optimization (PSO) algorithm was
implemented to predict ground vibrations based on 88 blast events [9]. Two novel hybrid
artificial intelligent models for predicting the blast-induced peak particle velocity were
presented by Li et al. [10]. Rao and Rao [11] applied the neuro-fuzzy technique for ground
vibration and frequency prediction in opencast mine while Khendelwal [12] applied the
ANN. Suchatvee et al. [13] investigated the advantages and limitations of ANNs for the
prediction of surface settlements generated by earth pressure balance shield tunneling.
The importance of site-specific factors in the prediction model for blast-induced ground
vibrations was presented by Kuzu [14]. ANNs have also been used to analyze the surface
settlements caused by shotcrete-supported tunnels [15] and to predict the Tunnel Boring
Machine Penetration Rate [16]. The summary of the previous studies on the PPV, which
include several soft computing and machine learning methods, was presented by Zhang
et al. [17].

In this study, an attempt was made to predict and evaluate blast-induced ground
vibrations and frequencies by integrating the maximum charge per delay (maximum
quantity of explosive charge detonated on one interval within a blast) and the distance
between the blast surface and the vibration monitoring point using an adaptive network-
based fuzzy inference system (ANFIS). The modeled ground vibrations were generated
by blasting in a tunnel tube. Iphar et al. [18] also applied the ANFIS model for the
PPV prediction, but for the vibrations generated by the blast in an open-pit mining. To
investigate the usefulness of this approach, the prediction by the ANFIS was compared
to commonly used vibration predictors. To ensure that the comparison between the
conventional predictors and the ANFIS model was realistic, the ANFIS model was designed
with only two inputs, as per conventional predictors.

2. Mechanism of Ground Vibration and the Vibration of Buildings

Stress waves generated by blasting cause a displacement of the ground, which is
expressed in the form of periodic and non-stationary fluctuations. When stress waves hit a
building, some of the energy in the ground is transferred to the building’s foundation. The
concentration of vibrations can lead to permanent foundation settlement and partial failure
of the building’s construction elements. Vibrations are seismic waves that travel through a
material, and seismic waves caused by blasting are usually referred to as vibrations, shocks,
or blast-induced vibrations. There are three types of seismic waves generated by blasting:

• Pressure waves that produce oscillating compressive stress and shear stress—these
stresses are propagated in the wave direction. In rock masses, pressure waves prop-
agate both through the mineral structure and through the pores, which is why the
pressure wave velocity is increased in a saturated hard rock.

• Shear waves oscillating perpendicular to the wave direction propagate only through
the mineral structure, therefore, water saturation only has a small influence on the
velocity of the shear waves. The energy of shear waves is less easily transmitted
through rock mass in comparison to the energy of primary waves.

• Surface waves.

The result of blasting depends more on the properties of the rock than on the explosives
used to break the rock. These properties are tensile and compressive strength, density,
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and seismic velocity. High-density rock is generally more difficult to blast than lower-
density rock. Cracks, fissures, and other weak zones also influence seismic waves. The
properties of various types of rock are shown in Table 1 [19]. However, these properties
apply to intact rock, which must be reduced due to the properties of joints in a rock mass.
Therefore, several empirical equations have been developed to estimate the value of an
isotropic rock mass deformation modulus. The most important classification systems
for the characterization of rock mass are the Geological Strength Index (GSI) [20], the
Rock Mass Rating (RMR) [21], and the Tunneling Quality Index (Q) [22]. Several studies
have related pressure wave velocity (Vp) with mechanical and physical properties such as
stiffness, strength and density of rock mass [23]. The Vp for elastic and isotropic media is
calculated with Equation (1) [24]:

Vp =

√
Kb +

4
3 ·G

ρ
(1)

where Kb is the bulk modulus, G is the shear modulus, and ρ is the bulk density. The
summary of relationship between pressure wave velocity with density and uniaxial com-
pressive strength was presented by Yagiz [25].

Table 1. Rock characteristics influencing blasting.

Type of Rock Density (kg/m3)
Seismic

Velocity (m/s)
Compressive

Strength (MPa)
Tensile

Strength (MPa)

Granite 2700–2800 4500–6000 200–360 10–30
Diabase 2800–3100 4000–5000 290–400 19–30

Limestone 2400–2700 3000–4500 130–200 17–30
Marble 2800–3000 6000–7000 150–190 15–25

Blasting is a demanding and exact form of engineering, which is why proper planning
is required. This includes the following:

• Choosing the depth, spacing, and geometry of blast holes;
• Choosing the type and optimal amount of explosives;
• Choosing the maximum quantity of charge per initiation interval.

In the vicinity of listed and historic buildings, any necessary blasting should be carried
out by a series of small chain explosions. In this way, the effects of vibrations on buildings
can be kept to a minimum. If the blasting procedure is correctly designed, most of the
energy will be absorbed in the blast field.

Since there are several ways in which a building can vibrate due to the effect of surface
waves, it is desirable that the vibration components in the three principal directions are
measured simultaneously in order to make the accurate assessment possible. The concept
of maximum resultant motion is widely used.

The information on the vibration levels required for damage is contained in several
standards, such as the standard DIN 4150 Vibrations in Buildings [26], the SN 640 312a
standard on the vibration effects on buildings [27], and the USBM RI 8507 code/guideline/
recommendations. Among these standards, DIN 4150 is the most conservative and re-
strictive, and aims to reduce vibration effects and complaints [28]. Standard DIN 4150
also specifies safe vibration levels according to the type and condition of a building; thus,
allowance is made for the type of building. The Norwegian Standard [29] limits the PPV to
80 mm/s for a structure made of reinforced concrete founded directly on hard rock. The
limit values of vibrations, which take into account the magnitude, frequency, duration
of the vibration, and the type of building are also provided in the British Standard BS
7385-2 [30]. The guideline values of the vibrations of various standards were summarized
by Norén-Cosgriff et al. [31].
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Vibration standards are typically plotted graphically using logarithmic scales in both
vertical and horizontal directions. The peak particle velocity (m/s) is presented on the
vertical scale and the vibration frequency (Hz) is on the horizontal scale, as shown in
Figure 1 [28].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 16 
 

on hard rock. The limit values of vibrations, which take into account the magnitude, 
frequency, duration of the vibration, and the type of building are also provided in the 
British Standard BS 7385-2 [30]. The guideline values of the vibrations of various 
standards were summarized by Norén-Cosgriff et al. [31].  

Vibration standards are typically plotted graphically using logarithmic scales in both 
vertical and horizontal directions. The peak particle velocity (m/s) is presented on the 
vertical scale and the vibration frequency (Hz) is on the horizontal scale, as shown in 
Figure 1 [28]. 

 
Figure 1. Safe levels of blasting vibrations for houses. 

Ground vibrations caused by blasting in tunnel construction can cause structural 
failures. Therefore, the effects of blast vibrations on buildings must be reduced or 
suppressed. The intensity of ground vibrations depends on controllable and non-
controllable parameters. The main controllable parameters are the type and quantity of 
the explosive, sequence of initiation, powder factor, drilling, steaming, and hole depth 
while the main uncontrollable parameters are rock mass properties, geology, and joint 
formation. The vibration level at a certain point away from the charge is proportional to 
the weight of the explosive, while it is inversely proportional to the distance. Equations 
that are currently used for calculating and estimating the vibration level and the amount 
of charge per delay generally show high deviations between the measured and calculated 
peak particle velocity (PPV) values.  

The following conventional empirical equation provides the intensity of vibration in 
the form of PPV [19]: 𝑃𝑃𝑉 = 𝐾 ∙ ൬𝑄ఈ𝑑ఉ ൰ (2)

where PPV (mm/s) is the peak particle velocity, K (-) is the rock constant, Q (kg) is the 
charge per detonator delay number, d (m) is the distance between the blasting and 
measurement points, and α (-) and β (-) are the damping coefficients. As the damping 
coefficients are difficult to determine, the equation does not provide sufficient results [19]. 
To determine the damping coefficient, the measured attenuation data should be well-
matched with the predicted data [32]. For practical reasons, several authors have 
proposed simplified equations, which are listed in Table 2. The on-site constants (K, B) can 
be obtained by using multiple regression analysis. The conventional blast vibration 
estimators are not able to estimate the PPV up to an acceptable limit because of the data 
scattering of blast vibrations. Agrawal and Mishra [33] reported that the errors between 

1

10

100

1 10 100

Pe
ak

 p
ar

tic
le

 v
elo

ci
ty

 (m
m

/s)

Frequency (Hz)

"non-allowable" vibrations

"allowable" vibrations

Figure 1. Safe levels of blasting vibrations for houses.

Ground vibrations caused by blasting in tunnel construction can cause structural
failures. Therefore, the effects of blast vibrations on buildings must be reduced or sup-
pressed. The intensity of ground vibrations depends on controllable and non-controllable
parameters. The main controllable parameters are the type and quantity of the explosive,
sequence of initiation, powder factor, drilling, steaming, and hole depth while the main
uncontrollable parameters are rock mass properties, geology, and joint formation. The
vibration level at a certain point away from the charge is proportional to the weight of the
explosive, while it is inversely proportional to the distance. Equations that are currently
used for calculating and estimating the vibration level and the amount of charge per delay
generally show high deviations between the measured and calculated peak particle velocity
(PPV) values.

The following conventional empirical equation provides the intensity of vibration in
the form of PPV [19]:

PPV = K·
(

Qα

dβ

)
(2)

where PPV (mm/s) is the peak particle velocity, K (-) is the rock constant, Q (kg) is the charge
per detonator delay number, d (m) is the distance between the blasting and measurement
points, and α (-) and β (-) are the damping coefficients. As the damping coefficients are
difficult to determine, the equation does not provide sufficient results [19]. To determine
the damping coefficient, the measured attenuation data should be well-matched with
the predicted data [32]. For practical reasons, several authors have proposed simplified
equations, which are listed in Table 2. The on-site constants (K, B) can be obtained by using
multiple regression analysis. The conventional blast vibration estimators are not able to
estimate the PPV up to an acceptable limit because of the data scattering of blast vibrations.
Agrawal and Mishra [33] reported that the errors between predicted and actual PPV are
due to the fact that cap scattering in the pyrotechnic based delay initiation system varies
between ± 10% and ± 20%.
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Table 2. Different vibration predictor equations.

Equations Named After Authors Equations

USBM [34] PPV = K
(

d√
QMAX

)−B

Ambraseys–Hendron [35] PPV = K
(

d
QMAX

1/3

)−B

Langefors–Kihlstorm [36] PPV = K
(√

QMAX
d2/3

)B

3. Tunnel Site and Measurements

During the construction of the 7.6 km long motorway section Pluska–Ponikve (Slove-
nia) two tunnels had to be built. Above the tunnel tube was a house, which was exposed to
vibrations due to the blasting (Figure 2). Therefore, the vibration levels were monitored.
The house had a basement and two upper floors. The load-bearing walls of the house were
built using stone and lime mortar with an estimated compressive strength of 0.5 MPa. The
floors were built from reinforced concrete slabs. The facility where the monitoring was
performed is shown in Figure 3.
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The measurements of vibrations induced by blasting in the tunnel tubes were obtained
using Minimate Plus (Instantel) measuring equipment with a triaxial geophone, which was
placed on the load-bearing wall of the building at the height of 0.6 m above the ground. A
continuous record mode was used to record multiple events automatically with no dead
time between blast events. The geophone records a blast event and then continues to
monitor, ready to record the following events. The geophone records all blast events with
a PPV exceeding the 0.2 mm/s. The blasting in two tunnel tubes was carried out from
March to the end of July 2008. During this period, there were 48 measurements of blasting
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events. On the wall of the building, the PPV was measured in the longitudinal, vertical,
and transverse directions. For each blasting event, the vibration frequency, amplitude,
and peak particle velocity were recorded, as can be seen in Figure 4. The deviations of
the fundamental natural frequencies can influence the structural strength of the building.
However, for failure mechanisms such as bending and shear, where the building is forced to
follow the oscillatory movements of the ground surface, the deviation of the fundamental
natural frequencies of the building is of minor importance [31]. Table 3 presents the
measurements of 40 of the blasting events that were used to define the site constants K and
B (training data), while Table 4 contains the remaining eight measurements that were used
to evaluate the prediction capability of the conventional vibration predictors (testing data).
Before the blasting of the tunnel tubes, the 7 cracks were found on the outer walls of the
building (see, Figure 5). We mapped the cracks and measured their width. The movements
or displacements of these cracks were observed with installed plaster seals. During the
blasting, it was revealed that the cracks did not enlarge, and no new cracks formed.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 16 
 

 
Figure 4. Records of vibrations caused by blasting event. (a) transverse vibrations, (b) vertical 
vibrations and (c) longitudinal vibrations. 

 
Figure 5. Measurements of the crack width on the building. 

Figure 4. Records of vibrations caused by blasting event. (a) transverse vibrations, (b) vertical
vibrations and (c) longitudinal vibrations.



Appl. Sci. 2021, 11, 203 7 of 15

Table 3. Training data.

Measurement No. Explosive (kg) Distance (m) PPV (mm/s) Frequency (Hz)

1 32 74 4.1 74
2 33 80 5.5 80
3 35 95 2.9 95
4 35 90 2.7 90
5 37 82 3.6 82
6 38 98 2.6 98
7 39 59 6.0 59
8 41 33 4.7 33
9 41 70 6.4 70

10 42 62 6.5 62
11 43 89 2.7 89
12 44 35 7.4 35
13 44 94 2.1 94
14 44 83 2.7 83
15 45 68 5.8 68
16 45 86 3.4 86
17 47 108 1.9 108
18 47 92 2.6 92
19 47 103 2.5 103
20 47 70 4.1 70
21 49 44 7.5 57
22 49 72 5.5 72
23 49 62 4.4 62
24 49 66 7.2 66
25 49 61 1.7 61
26 49 102 3.1 102
27 50 56 7.8 56
28 50 32 17.5 32
29 50 87 2.4 39
30 50 91 3.6 91
31 51 96 2.4 37
32 53 65 8.8 65
33 53 101 3.0 101
34 53 32 8.1 32
35 54 76 4.9 76
36 55 79 5.7 79
37 56 64 6.0 64
38 56 39 10.9 39
39 62 65 10.0 65
40 63 32 12.7 32

Table 4. Testing data.

Measurement No. Explosive (kg) Distance (m) PPV (mm/s) Frequency (Hz)

1 33 104 2.2 43
2 36 63 7.3 57
3 40 106 2.8 47
4 42 71 4.9 73
5 44 58 5.5 73
6 46 32 7.9 85
7 47 84 3.7 51
8 54 63 7.7 85
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4. Conventional Vibration Predictors

To estimate the site coefficients K and B of each conventional vibration predictor,
the least squares method was used, which minimizes the summed square of the residual
value. The least squares method is often used to generate estimators and other statistics
in regression analysis. The residual value for the ith data point ri is designated as the
difference between the fitted response value x’i and the observed response value xi, and is
described as the fitting data error, see Equation (3).

ri = xi − x′ i (3)

The summed square of the residual value is calculated by

Sum =
n

∑
i=1

r2
i =

n

∑
i=1

(xi − x′i)2 (4)

where n is the number of data points contained in the fitting process and the sum of squares
due to error is denoted as Sum.

The site coefficients were determined based on the training data for three different
conventional predictors proposed by USBM [34], Ambraseys and Hendron [35], and Lange-
fors and Kihlstorm [36]. The USBM [34] predictor is used while it provides the safe level
blasting criteria, although it is used to predict blast induced ground vibrations from surface
mining rather than tunnel blasting. In order to evaluate the quality of the fit, four statistical
parameters were evaluated: R-squared, sum of squares due to error (SSE), root mean
squared error (RMSE), and adjusted R-squared. SSE calculates the total difference of the
response values from the fit to the response values. A value near zero indicates that the
model has a lower random error, and that the fit will be more appropriate for prediction.
R-squared is the square of the correlation between the predicted response values and the
actual response values. R-squared can take the value of any number between zero and one,
with a value near one demonstrating that a larger proportion of variance is considered.
RMSE estimates the standard deviation of the random component in the data. An RMSE
value near zero indicates a fit that is more appropriate for prediction. The estimated site
coefficients of each prediction model along with the goodness of fit are presented in Table 5.
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Table 5. Estimated site coefficients based on the training data and goodness of fit of each prediction equation.

Name of predictor Equation Site Coefficient Goodness of Fit

B K SSE
(mm/s) R-Squared Adjusted

R-Squared
RMSE
(mm/s)

USBM [34] PPV = K
(

d√
QMAX

)−B
1.033 53.18 159.12 0.62 0.61 2.05

Ambraseys–Hendron [35] PPV = K
(

d
QMAX

1/3

)−B 1.047 107.7 165.1 0.61 0.60 2.08

Langefors–Kihlstorm [36] PPV = K
(√

QMAX
d2/3

)B
2.652 1.255 151.49 0.64 0.63 2.00

Note: SSE, sum of squares due to error; RMSE, root mean square error.

5. ANFIS Model for Vibration Prediction Called ANFISBLAST

The main structure of the fuzzy inference system (FIS) was developed by Zadeh [37].
In this FIS basic structure, it is necessary to choose the type and number of membership
functions. Membership functions, which are determined by humans, are usually subjective
and depend on individual preferences. Precisely defined methods to translate human
experience and human knowledge into membership functions and fuzzy rules do not exist.
Often, there is a set of input/output data on which to build an FIS model. The adaptive
network-based FIS (ANFIS) is a powerful technique for adjusting membership functions to
minimize the output error. The ANFIS [38] takes into account selected input/output data
to build a FIS model, where the membership functions are adjusted (tuned) either by using
a backpropagation algorithm alone or in combination with a least squares-type method.
This tuning allows fuzzy systems to gain knowledge from the data they are modeling.
The ANFIS considers only Sugeno–Takagi–Kang [39] models that should contain a single
output variable. The ANFIS is integrated into the structure of adaptive networks [40] and
uses the advantages of fuzzy logic and neural networks.

5.1. ANFIS Structure

Our ANFIS, called ANFISBLAST, comprises different mathematical models f for f ε F,
where F = {PPV, FREQUENCY}—i.e., two prediction models—as follows:

1. PPV: The ANFIS model for peak particle velocity;
2. FREQUENCY: The ANFIS model for frequency calculation.

The structure of the f model, for each f ε F, is presented in Figure 6. The nodes on the
left side represent the input variables and the node on the right represents the output. Each
model contains two input variables, namely the charge Q (kg) and the distance d (m) from
the point of measurement to the center of gravity of the blast, as well as a single output.
In this way, two ANFIS models predict two different outputs, such as the peak particle
velocity (mm/s) and the frequency (Hz).
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The structure of both models is the same, but they were constructed on the basis of
different input data. For a Sugeno-type fuzzy model [39], a set of rules with i, i ε I, I = {1,
2}, and fuzzy “if–then” rules, is specified by Equations (5) and (6):

1. I f Q is A1 and d is B1 then f1 = a1, f
0 + a1, f

1 ·Q + a1, f
2 ·d (5)

2. I f Q is A2 and d is B2 then f2 = a2, f
0 + a2, f

1 ·Q + a2, f
2 ·d (6)

where ai, f
0 , ai, f

1 , and ai, f
2 are the consequent parameters, and Q and d are the input vari-

ables. For each f ε F, for the f model, different parameters were calculated. The general
computation procedure of the ANFIS models is presented below [41]:

1. The degree of membership of a fuzzy set (Ai, Bi) is computed;
2. The product of membership function for every rule is computed;
3. The proportion between the ith rule’s strength and the sum of all of the rules’ strengths

is computed;
4. The output of every rule is computed;
5. The weighted average of every rule’s output is computed.

In the first step, the degree of membership of the fuzzy set (Ai, Bi) was computed
using Equations (7) and (8):

µ
f
Ai
(Q) = exp

−
Q− c f

Ai√
2·σ f

Ai

2
 (7)

µ
f
Bi
(d) = exp

−
 d− c f

Bi√
2·σ f

Bi

2
 (8)

where Q and d are the inputs to membership functions (Gaussian), and parameters c f
Ai

, c f
Bi

,

σ
f
Ai

, and σ
f
Bi

are the premise parameters. The products of the membership functions for
each rule were also computed:

w f
1 = µ

f
A1
(Q)·µ f

B1
(d) (9)

w f
2 = µ

f
A2
(Q)·µ f

B2
(d) (10)

where wi represents the strength of the ith rule. The weighted average of every rule’s

output w f
i was determined as a quantitative relation between the ith rule’s strength and

the sum of all the rules’ strengths (see Equation (11)):

w f
i =

w f
i

w f
1 + w f

2

(11)

The output of every rule was then defined as a sum of the products among the
weighted average of every rule’s output and a linear function between the consequent
parameters and the input variables:

2

∑
i=1

w f
i ·
(

ai, f
0 + ai, f

1 ·Q + ai, f
2 ·d

)
(12)

In this way, the same procedure was repeated for both f models, f ε F, in order to
predict the PPV and FREQUENCY (see Equations (13) and (14)). For each f, for the f model,
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the different values of the consequent parameters, premise parameters, weighted averages,
and strengths of the rule outputs were evaluated.

PPV : PPV =
n

∑
i=1

wPPV
i ·

(
ai,PPV

0 + ai,PPV
1 ·Q + ai,PPV

2 ·d
)

(13)

FREQUENCY : FREQ =
n

∑
i=1

wFREQ
i ·

(
ai,FREQ

0 + ai,FREQ
1 ·Q + ai,FREQ

2 ·d
)

(14)

5.2. Dataset and the Modeling of the ANFISBLAST Prediction System

The ANFISBLAST prediction system was constructed to be applied to wide ranges
of the charge Q (kg) and distance d (m) from the point of measurement to the center of
gravity of the blast (see Table 6). In order to predict the PPV and FREQUENCY, the 40
events measured with a triaxial geophone were used to set the dataset for developing the
ANFISBLAST prediction system. The same training data were defined for all f, where f ε F,
prediction models: PPV and FREQUENCY.

Table 6. Limit values of each input variable.

Input Variable Q (kg) d (m)

Min. value 32 32
Max. value 63 108

In a basic FIS, the integer number of rules is determined by an engineer/researcher
who is acquainted with the engineering problem to be modeled. There are no straightfor-
ward procedures to determine the lowest possible number of membership functions in
order to obtain a required level of performance. In this paper, the number of membership
functions determined for each input variable was chosen systematically by analyzing
the input–output data and by using the trial-and-error method. For each f ε F, for the
f prediction model, we chose two membership functions in each input. Figure 7 shows
the membership functions for Q and d for the prediction model PPV. All the integrated
membership functions were Gaussian, expressed by Equations (7) and (8). Several re-
searchers reported that Gaussian membership functions performed best among all given
membership functions [42,43].
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Once the numbers of the membership functions related to every input were established,
the initial values of the premise parameters were determined in such a way that the
membership functions were uniformly distributed along the range of each input variable.
For each f ε F, the f prediction model contained two rules with two membership functions
being determined for each input variable. The total quantity of fitting parameters was 10
(four premise and six consequent parameters). The abovementioned parameters were fitted
by applying a hybrid algorithm. As an interface for computational modeling, MATLAB [44]
was used. The premise parameters are presented in Table 7 and the consequent parameters
in Table 8. The same statistical parameters as for the conventional predictors were used
to determine the goodness of fit of the ANFISBLAST model for the training data. The
statistical parameter values were SSE = 83.05 mm/s, R-squared = 0.73, adjusted R-squared
= 0.73, and RMSE = 1.49 mm/s.

Table 7. Premise parameters of the PPV and FREQUENCY models.

n PPV FREQUENCY

σn cn σn cn

A1 5.899 41.594 7.534 46.710
A2 0.998 57.471 0.459 50.039
B1 3.284 91.519 7.357 63.844
B2 20.371 41.201 12.166 94.635

Table 8. Consequent parameters of the PPV and FREQUENCY models.

i
PPV FREQUENCY

ai
0 aj

0 ai
2 ai

0 aj
0 ai

2

1 11.6401 0.0179 −0.1016 2.5956 −0.0083 0.9740
2 −3.0130 0.3535 −0.1469 1351.6580 −28.3040 1.3909

6. Testing the Conventional Vibration Predictor and ANFISBLAST Models

While training datasets were used to discover potentially predictive relationships
between input variables and an output, a testing dataset was employed to check whether
the prediction models had sufficient prediction compatibility. In order to test and check the
conventional and ANFIS prediction models, eight testing datasets obtained from additional
measurements with geophones were chosen and employed. The SSE, R-squared, adjusted
R-squared, and RMSE between the predicted and measured values were taken as the
measure of performance.

Table 9 shows the R-squared, SSE, RMSE, and adjusted R-squared values for all the
conventional prediction models and the ANFISBLAST prediction model. From Table 9,
several conclusions can be made. It was found that the performance of the developed
ANFIS predictor model is superior as its SSE and RMSE are the lowest and its R-squared
is the highest compared to the other conventional predictors. The average RMSE for
the ANFIS model was 0.88 mm/s, whereas for the Langeforts–Kihlstorm, USBM, and
Ambraseys–Hendron predictors, it was 1.49, 1.54, and 1.55 mm/s, respectively. The
same conclusion can be drawn for SSE. The R-squared value was found to be highest
for the developed ANFIS model. The R-squared averages for the ANFIS, Langeforts–
Kihlstorm, USBM, and Ambraseys–Hendron prediction models were 0.87, 0.62, 0.59, and
0.59, respectively. The performance calculations also confirm the fact that the Langeforts–
Kihlstorm model produced better results than the other two conventional predictors (i.e.,
USBM and Ambraseys–Hendron). Therefore, it can be concluded that the prediction
capability of the ANFISBLAST system outperforms that of the conventional predictors for
presented blasting site.
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Table 9. Measure of performance for the adaptive network-based fuzzy inference system (ANFIS) and conventional
predictors.

Measurement No. Measured (mm/s) USBM Ambraseys–Hendron Langeforts–Kihlstorm ANFISBLAST-PPV

1 2.2 2.67 2.82 2.13 1.66
2 7.3 4.69 4.91 3.73 5.88
3 2.8 2.89 2.96 2.71 1.58
4 4.9 4.49 4.58 4.12 5.18
5 5.5 5.66 5.75 5.24 6.53
6 7.9 10.71 10.88 9.40 8.55
7 3.7 4.00 3.99 4.12 3.94
8 7.7 5.78 5.66 6.39 6.82

Statistical parameter
SSE 14.27 14.50 13.32 4.67

R-squared 0.59 0.59 0.62 0.87
Adjusted R-squared 0.53 0.52 0.56 0.84

RMSE 1.54 1.55 1.49 0.88

7. Numerical Example

In order to explain the developed ANFIS technique, we have presented a calculation
method for predicting the PPV and FREQUENCY caused by tunnel blasting in Pluska–
Ponikve [45]. The proposed system ANFISBLAST was applied. In the numerical example,
the PPV and FREQUENCY were predicted for a charge of 36 kg and a distance of 63 m.
Because the proposed ANFISBLAST system comprises two different ANFIS models, two
different model calculations were executed in order to predict the PPV and FREQUENCY.
The predicted peak particle velocity, calculated by the ANFIS model PPV, yielded 5.882
mm/s. The predicted frequency, calculated by the ANFIS model FREQUENCY, yielded
63.661 Hz. The premise parameters for this solution are shown in Table 10 and the conse-
quent parameters, the weighted averages of every rule’s output, and the definitive output
are given in Table 11.

Table 10. Premise parameters of the Gaussian membership function for the ANFIS models PPV and
FREQUENCY.

ANFISBLAST-PPV
Membership Function Premise Parameters µ (Q) µ (d)

i σPPV
i cPPV

i µ (36) µ (63)
A1 7.064 37.168 0.638 -
A2 14.451 68.800 0.000 -
B1 0.870 2.031 - 0.000
B2 0.815 4.039 - 0.564

ANFISBLAST-FREQUENCY
Membership function Premise parameters µ (Q) µ (d)

i σ
FREQ
i cFREQ

i µ (36) µ (63)
A1 65.821 25.857 0.364
A2 64.280 76.438 0.000
B1 1.690 1.623 0.993
B2 1.349 4.631 0.034

Table 11. Consequent parameters and final outputs for the ANFIS models PPV and FREQUENCY.

i ai,PPV
0 ai,PPV

1 ai,PPV
2 wPPV

i wPPV
i PPVi=ai,PPV

0 +ai,PPV
1 ·Q+ai,PPV

2 ·d wPPV
i ·PPVi

1 11.6401 0.0179 –0.1016 0.000 1.000 5.882 5.882
2 –3.0130 0.3535 –0.1469 0.000 0.000 0.459 0.000

PPV (mm/s) Σ 5.882
i ai,FREQ

0 ai,FREQ
1 ai,FREQ

2 wPPV
i wFREQ

i FREQi=ai,FREQ
0 +ai,FREQ

1 ·Q+ai,FREQ
2 ·d wFREQ

i ·FREQi
1 2.5956 –0.0083 0.9740 0.362 1.000 63.661 63.661
2 1351.65 –28.304 1.3909 0.000 0.000 420.342 0.000

FREQUENCY (Hz) Σ 63.661
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8. Conclusions

This paper addressed the application of an ANFIS as a blast-induced vibration pre-
dictor. Based on the research papers reviewed, this technique has not yet been employed
for blast-induced ground vibration and frequency prediction. In order to confirm the
superiority of the ANFIS, the ANFISBLAST prediction model was tested and compared
with the three most widely used conventional predictors. The predictors were evaluated
in terms of their SSE, RMSE, R-squared, and adjusted R-squared values. Since the ANFIS
can detect patterns in training datasets and can be updated when new training datasets
are presented, a better degree of accuracy can be achieved compared to other conventional
techniques. Considering the complex relationship between the inputs and outputs, the
achieved results were satisfactory. However, it should be noted that the ANFISBLAST
model is not directly applicable to the vibration analysis on other tunnel construction
sites. Further prediction methods could be investigated in future studies based on the data
provided in this article, and the most robust and accurate model should be used to predict
ground vibration levels.
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