Development and Evaluation of Ginkgo biloba L. Extract Loaded into Carboxymethyl Cellulose Sublingual Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents and Standards
2.3. Preparation of Ginkgo biloba Leaves Ethanolic-Aqua Extract
2.4. Preparation of Ginkgo biloba Leaves Freeze–Dried Extract
2.5. Preparation of Sublingual Films
2.6. Sample Preparation for High-Performance Liquid Chromatography (HPLC) Flavonoid Analysis
2.7. HPLC Conditions for Determination of Flavonoids
2.8. FT-IR (Fourier Transform-Infrared) Imaging
2.9. Thickness Measurement
2.10. Mechanical Properties
2.11. Disintegration Time
2.12. SEM Analysis
2.13. In Vitro Release Studies
2.14. Evaluation of Stability
2.15. Statistical Analysis
3. Results and Discussion
3.1. Mechanical Properties of the Prepared Sublingual Films
3.2. Physical Properties
3.3. Dissolution Studies
3.4. FTIR Analysis
3.5. Stability Studies of the FRG—15 Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isah, T. Rethinking Ginkgo biloba L.: Medicinal uses and conservation. Pharmacogn. Rev. 2015, 9, 140–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhang, J.; Ren, T.; Dong, Z. Targeted metabolomic profiling of cardioprotective effect of Ginkgo biloba L. extract on myocardial ischemia in rats. Phytomedicine 2016, 23, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.P.; Qi, J.; Chang, Y.X.; Mu, L.L.; Zhu, D.N.; Yu, B.Y. Quality control of flavonoids in Ginkgo biloba leaves by high-performance liquid chromatography with diode array detection and on-line radical scavenging activity detection. J. Chromatogr. A 2009, 1216, 2204–2210. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, M.; Chen, L.; Liu, Z.; Zhang, Y.; Liu, C.M.; Liu, S. Rapid screening, separation, and detection of hydroxyl radical scavengers from total flavonoids of Ginkgo biloba leaves by chromatography combined with molecular devices. J. Sep. Sci. 2016, 21, 4158–4165. [Google Scholar] [CrossRef] [PubMed]
- Panda, V.S.; Naik, S.R. Cardioprotective activity of Ginkgo biloba Phytosomes in isoproterenol-induced myocardial necrosis in rats: A biochemical and histoarchitectural evaluation. Exp. Toxicol. Pathol. 2008, 60, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Kisli, E.; Ozdemir, H.; Kösem, M.; Sürer, H.; Ciftçi, A.; Kanter, M. Effect of Ginkgo biloba extract (EGb 761) on the healing of left colonic anastomoses in rat. World J. Surg. 2007, 31, 1652–1657. [Google Scholar] [CrossRef]
- Luo, J.L.; Lu, F.L.; Liu, Y.C.; Shih, Y.C.; Lo, C.F. Fingerprint Analysis of Ginkgo biloba extract and Ginkgo semen in preparations by LC-Q-TOF/MS. J. Food Drug Anal. 2013, 21, 27–39. [Google Scholar]
- Tan, M.S.; Yu, J.T.; Tan, C.C.; Wang, H.F.; Meng, X.F.; Wang, C.; Tan, L. Efficacy and adverse effects of Ginkgo biloba for cognitive impairment and dementia: A systematic review and meta-analysis. J. Alzheimer’s Dis. 2015, 43, 589–603. [Google Scholar] [CrossRef] [Green Version]
- Mohanta, T.K.; Tamboli, Y.; Zubaidha, P.K. Phytochemical and medicinal importance of Ginkgo biloba L. Nat. Prod. Res. 2014, 28, 746–752. [Google Scholar] [CrossRef]
- Ahlemeyer, B.; Krieglstein, J. Neuroprotective effects of Ginkgo biloba extract. Cell. Mol. Life Sci. 2003, 60, 1779–1792. [Google Scholar] [CrossRef]
- Sokolova, L.; Hoerr, R.; Mishchenko, T. Treatment of vertigo: A randomized, double-blind trial comparing efficacy and safety of Ginkgo biloba extract EGb 761 and betahistine. Int. J. Otolaryngol. 2014, 2014, 682439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boetticher, A. Ginkgo biloba extract in the treatment of tinnitus: A systematic review. Neuropsychiatr. Dis. Treat. 2011, 7, 441–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, K.M.; Shah, Z.A. Current Perspectives on the Beneficial Role of Ginkgo biloba in Neurological and Cerebrovascular Disorders. Integr. Med. Insights 2015, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Beek, T.A. Ginkgo Biloba; Harwood Academic Publishers: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Esim, O.; Ozkan, C.K.; Kurbanoglu, S.; Arslan, A.; Tas, C.; Savaser, A.; Ozkan, Y. Development and in vitro/in vivo evaluation of dihydroergotamine mesylate loaded maltodextrin-pullulan sublingual films. Drug Dev. Ind. Pharm. 2019, 45, 914–921. [Google Scholar] [CrossRef]
- Preis, M.; Woertz, C.; Kleinebudde, P.; Breitkreutz, J. Oromucosal film preparations: Classification and characterization methods. Exp. Opin. Drug Deliv. 2013, 10, 1303–1317. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Srivastava, P.; Yadav, S.; Bansal, M.; Garg, G.; Kumar Sharma, P. Fast dissolving films: A review. Curr. Drug Deliv. 2011, 8, 373–380. [Google Scholar] [CrossRef]
- Bala, R.; Pawar, P.; Khanna, S.; Arora, S. Orally dissolving strips: A new approach to oral drug delivery system. Int. J. Pharm. Investig. 2013, 3, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Bala, R.; Sharma, S. Formulation optimization and evaluation of fast dissolving film of aprepitant by using design of experiment. Bull. Fac. Pharm. Cairo Univ. 2018, 56, 159–168. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Vijaya, C. Formulation development of mouth dissolving film of etoricoxib for pain management. Adv. Pharm. 2015, 2015, 702963. [Google Scholar] [CrossRef]
- Arya, A.; Chandra, A.; Sharma, V.; Pathak, K. Fast dissolving oral films: An innovative drug delivery system and dosage form. Int. J. ChemTech Res. 2010, 2, 576–583. [Google Scholar]
- Mandeep, K.; Rana, A.C.; Nimrata, S. Fast Dissolving Films: An Innovative Drug Delivery System. Int. J. Pharm. Res. Allied Sci. 2013, 2, 14–24. [Google Scholar]
- Dixit, R.P.; Puthli, S.P. Oral strip technology: Overview and future potential. J. Control. Release 2009, 139, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, K.; Kim, M.; Choi, D.H.; Jeong, S.H. Orally disintegrating films focusing on formulation, manufacturing process, and characterization. J. Pharm. Investig. 2017, 47, 183–201. [Google Scholar] [CrossRef]
- European Pharmacopoeia. European Directorate for the Quality of Medicines and Health Care; European Pharmacopoeia: Strasbourg, France, 2011; Volume 7, pp. 1828–1829. [Google Scholar]
- Vinklárková, L.; Masteiková, R.; Vetchý, D.; Doležel, P.; Bernatonienė, J. Formulation of novel layered sodium carboxymethylcellulose film wound dressings with ibuprofen for alleviating wound pain. BioMed Res. Int. 2015, 2015, 892671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilurzo, F.; Cupone, I.E.; Minghetti, P.; Buratti, S.; Selmin, F.; Gennari, C.G.; Montanari, L. Nicotine fast dissolving films made of maltodextrins: A feasibility study. AAPS PharmSciTech 2010, 11, 1511–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICH: Guideline Q1A(R2). Stability Testing of New Drug Substances and Products, Step 5 Version. 2003. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-1-r2-stability-testing-new-drug-substances-products-step-5_en.pdf (accessed on 21 December 2020).
- Bahri-Najafi, R.; Tavakoli, N.; Senemar, M.; Peikanpour, M. Preparation and pharmaceutical evaluation of glibenclamide slow release mucoadhesive buccal film. Res. Pharm. Sci. 2014, 9, 213–223. [Google Scholar]
- Chaudhary, H.; Gauri, S.; Rathee, P.; Kumar, V. Development and optimization of fast dissolving oro-dispersible films of granisetron HCl using Box–Behnken statistical design. Bull. Fac. Pharm. Cairo Univ. 2013, 51, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Boateng, J.S.; Stevens, H.N.; Eccleston, G.M.; Auffret, A.D.; Humphrey, M.J.; Matthews, K.H. Development and mechanical characterization of solvent-cast polymeric films as potential drug delivery systems to mucosal surfaces. Drug Dev. Ind. Pharm. 2009, 35, 986–996. [Google Scholar] [CrossRef]
- Shirazi, R.N.; Aldabbagh, F.; Ronan, W.; Erxleben, A.; Rochev, Y.; McHugh, P. Effects of material thickness and processing method on poly (lactic-co-glycolic acid) degradation and mechanical performance. J. Mater. Sci. Mater. Med. 2016, 27, 154. [Google Scholar] [CrossRef] [Green Version]
- Dashipour, A.; Razavilar, V.; Hosseini, H.; Shojaee-Aliabadi, S.; German, J.B.; Ghanati, K.; Khaksar, R. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int. J. Biol. Macromol. 2015, 72, 606–613. [Google Scholar] [CrossRef]
- Mirzaei-Mohkam, A.; Garavand, F.; Dehnad, D.; Keramat, J.; Nasirpour, A. Physical, mechanical, thermal and structural characteristics of nanoencapsulated vitamin E loaded carboxymethyl cellulose films. Prog. Org. Coat. 2020, 138, 105383. [Google Scholar] [CrossRef]
- Martelli, S.M.; Motta, C.; Caon, T.; Alberton, J.; Bellettini, I.C.; do Prado, A.C.P.; Soldi, V. Edible carboxymethyl cellulose films containing natural antioxidant and surfactants: α-tocopherol stability, in vitro release and film properties. LWT 2017, 77, 21–29. [Google Scholar] [CrossRef]
- Speer, I.; Steiner, D.; Thabet, Y.; Breitkreutz, J.; Kwade, A. Comparative study on disintegration methods for oral film preparations. Eur. J. Pharm. Biopharm. 2018, 132, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Saha, S.; Tomaro-Duchesneau, C.; Daoud, J.T.; Tabrizian, M.; Prakash, S. Novel probiotic dissolvable carboxymethyl cellulose films as oral health biotherapeutics: In vitro preparation and characterization. Expert Opin. Drug Deliv. 2013, 10, 1471–1482. [Google Scholar] [CrossRef]
- Irfan, M.; Rabel, S.; Bukhtar, Q.; Qadir, M.I.; Jabeen, F.; Khan, A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi Pharm. J. 2016, 24, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Wen, J.; Garg, S.; Liu, D.; Zhou, Y.; Teng, L.; Zhang, W. Development of a novel niosomal system for oral delivery of Ginkgo biloba extract. Int. J. Nanomed. 2013, 8, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.P.; Monaco-Lourenço, C.A.; Carvalho, R.A. Characterization of oral disintegrating film of peanut skin extract—Potential route for buccal delivery of phenolic compounds. Int. J. Biol. Macromol. 2017, 97, 418–425. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, Y.; Chen, L.; Yang, T.; Huang, H.; Shi, R.; Zhong, C. Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf. PLoS ONE 2018, 13, e0193659. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, S.; Tan, B.; Chen, S. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corros. Sci. 2018, 133, 6–16. [Google Scholar] [CrossRef]
- Vitamin, P. Formulation and physical characterization of microemulsions based carboxymethyl cellulose as vitamin C carrier. Malays. J. Anal. Sci. 2015, 19, 275–283. [Google Scholar]
- Hebeish, A.; Sharaf, S. Novel nanocomposite hydrogel for wound dressing and other medical applications. RSC Adv. 2015, 5, 103036–103046. [Google Scholar] [CrossRef]
- Patil, P.; Shrivastava, S.K. Fast dissolving oral films: An innovative drug delivery system. Int. J. Res. Rev. Pharm. Appl. Sci. 2014, 3, 2088–2093. [Google Scholar]
Sample Name | CMC * (g) | GFD ** (g) | Glycerol (g) |
---|---|---|---|
CMC—0 | 2 | 0 | 0.3 |
FRG—12 | 2 | 0.3 | 0.3 |
FRG—15 | 2 | 0.4 | 0.3 |
FRG—18 | 2 | 0.5 | 0.3 |
FRG—21 | 2 | 0.6 | 0.3 |
Sample Name | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) |
---|---|---|---|
CMC—0 | 51 ± 3 | 3.6 ± 0.2 | 3200 ± 11 |
FRG—12 | 46 ± 5 a | 4.2 ± 0.3 d | 2800 ± 14 g |
FRG—15 | 40 ± 2 a,b | 5.0 ± 0.4 d,e | 2200 ± 13 g,h,k |
FRG—18 | 36 ± 4 a,b,c | 5.3 ± 0.5 d,e | 1800 ± 15 g,h,k,j |
FRG—21 | 30 ± 2 a,b,c | 5.9 ± 0.2 d,e,f | 1300 ± 16 g,h,k,j |
Sample Name | Thickness, (mm) | Disintegration Time, (s) |
---|---|---|
CMC—0 | 0.056 ± 0.002 | 100 ± 1 |
FRG—12 | 0.065 ± 0.005 a | 134 ± 3 b,d, |
FRG—15 | 0.078 ± 0.001 a | 150 ± 4 b,c |
FRG—18 | 0.086 ± 0.004 a | 189 ± 6 b,c,d |
FRG—21 | 0.095 ± 0.003 a | 197 ± 7 b,c,d |
Results | |||
---|---|---|---|
Samples | The Percentage Content of Flavonoid Glycosides, (%) | ||
Initial | 3 Months | 6 Months | |
Accelerated Conditions1 | |||
FRG—15 | 0.52 ± 0.05 | 0.51 ± 0.07 | 0.49 ± 0.08 |
Long-Term Conditions2 | |||
FRG—15 | 0.52 ± 0.04 | 0.50 ± 0.03 | 0.49 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimkiene, L.; Baranauskaite, J.; Marksa, M.; Jarukas, L.; Ivanauskas, L. Development and Evaluation of Ginkgo biloba L. Extract Loaded into Carboxymethyl Cellulose Sublingual Films. Appl. Sci. 2021, 11, 270. https://doi.org/10.3390/app11010270
Rimkiene L, Baranauskaite J, Marksa M, Jarukas L, Ivanauskas L. Development and Evaluation of Ginkgo biloba L. Extract Loaded into Carboxymethyl Cellulose Sublingual Films. Applied Sciences. 2021; 11(1):270. https://doi.org/10.3390/app11010270
Chicago/Turabian StyleRimkiene, Laura, Juste Baranauskaite, Mindaugas Marksa, Laurynas Jarukas, and Liudas Ivanauskas. 2021. "Development and Evaluation of Ginkgo biloba L. Extract Loaded into Carboxymethyl Cellulose Sublingual Films" Applied Sciences 11, no. 1: 270. https://doi.org/10.3390/app11010270
APA StyleRimkiene, L., Baranauskaite, J., Marksa, M., Jarukas, L., & Ivanauskas, L. (2021). Development and Evaluation of Ginkgo biloba L. Extract Loaded into Carboxymethyl Cellulose Sublingual Films. Applied Sciences, 11(1), 270. https://doi.org/10.3390/app11010270