Portable Raman Spectrometer for In Situ Analysis of Asbestos and Fibrous Minerals
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Investigated Area
2.2. Samples
2.3. Mineralogical Investigation
2.4. Raman Investigation
3. Results and Discussion
3.1. Mineralogical Description
3.2. In Situ Identification of Asbestos and Fibrous Minerals
3.3. Evaluation of the Performance of pRS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ross, M.; Nolan, R.P. History of asbestos discovery and use and asbestos-related disease in context with the occurrence of asbestos within ophiolite complexes. Geol. Soc. Am. 2003, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Carbone, M.; Baris, Y.I.; Bertino, P.; Brass, B.; Comertpay, S.; Dogan, A.U.; Gaudino, G.; Jube, S.; Kanodia, S.; Partridge, C.R.; et al. Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc. Natl. Acad. Sci. USA 2011, 108, 13618–13623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.; Dell, L.; Adams, R.; Rose, T.; Van Orden, D.R. State-of-the-science assessment of non-asbestos amphibole exposure: Is there a cancer risk? Environ. Geochem. Health 2013, 35, 357–377. [Google Scholar] [CrossRef] [PubMed]
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. Arsenic, Metals, Fibres, and Dusts. A Review of Human Carcinogens; International Agency for Research on Cancer: Lyon, France, 2012; Volume 100C, ISBN 9789283213208. [Google Scholar]
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. Fluoro-Edenite, Silicon Carbide Fibres and Whhiskers, and Single-Walled and Multi-Walled Carbon Nanotubes; International Agency for Research on Cancer: Lyon, France, 2017; Volume 111, ISBN 9789283201779. [Google Scholar]
- Harper, M. 10th Anniversary Critical Review: Naturally occurring asbestos. J. Environ. Monit. 2008, 10, 1394–1408. [Google Scholar] [CrossRef] [PubMed]
- NIOSH. Asbestos Fibers and Other Elongate Mineral Particles: State of the Science and Roadmap for Research; National Institute for Occupational Safety and Health: Washington, DC, USA, 2011; Volume 159. [Google Scholar]
- NIOSH. The National Institute for Occupational Safety and Health (NIOSH). Available online: https://www.cdc.gov/niosh/pubs/default.html (accessed on 28 November 2020).
- IAEG. Commission NOA EMP Commission—AEG NOA Technical Working Group & IAEG NOA Commission. Available online: http://noa-emp.info/ (accessed on 28 November 2020).
- INAIL Istituto Nazionale per L’assicurazione Contro gli Infortuni sul Lavoro. Available online: https://www.inail.it/cs/internet/comunicazione/pubblicazioni.html (accessed on 28 November 2020).
- ANSES. Agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail. Avis et Rapports de L’ANSES. Available online: https://www.anses.fr/fr/content/avis-et-rapports-de-lanses-sur-saisine (accessed on 28 November 2020).
- ANSES. Évaluation de la Toxicité de L’antigorite; Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail: Maisons-Alfort, France, 2014. [Google Scholar]
- Turci, F.; Tomatis, M.; Gazzano, E.; Riganti, C.; Martra, G.; Bosia, A.; Ghigo, D.; Fubini, B. Potential Toxicity of Nonregulated Asbestiform Minerals: Balangeroite From the Western Alps. Part 2: Oxidant Activity of the Fibres. J. Toxicol. Environ. Health Part A 2005, 68, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Gazzano, E.; Riganti, C.; Tomatis, M.; Turci, F.; Bosia, A.; Fubini, B.; Ghigo, D.; Groppo, C.; Tomatis, M.; Turci, F.; et al. Potential Toxicity of Nonregulated Asbestiform Minerals: Balangeroite From the Western Alps. Part 3: Depletion of Antioxidant Defenses. J. Toxicol. Environ. Health Part A 2005, 68, 41–49. [Google Scholar] [CrossRef]
- Erskine, B.G.; Bailey, M. Characterization of asbestiform glaucophane-winchite in the Franciscan Complex blueschist, northern Diablo Range, California. Toxicol. Appl. Pharmacol. 2018, 361, 3–13. [Google Scholar] [CrossRef]
- Di Giuseppe, D.; Harper, M.; Bailey, M.; Erskine, B.; Della Ventura, G.; Ardit, M.; Pasquali, L.; Tomaino, G.; Ray, R.; Mason, H.; et al. Characterization and assessment of the potential toxicity/pathogenicity of fibrous glaucophane. Environ. Res. 2019, 178, 108723. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Gandolfi, N.B.; Passaglia, E.; Pollastri, S.; Mattioli, M.; Giordani, M.; Ottaviani, M.F.; Cangiotti, M.; Bloise, A.; Barca, D.; et al. Is fibrous ferrierite a potential health hazard? Characterization and comparison with fibrous erionite. Am. Mineral. 2018, 103, 1044–1055. [Google Scholar] [CrossRef]
- Di Giuseppe, D. Characterization of fibrous mordenite: A first step for the evaluation of its potential toxicity. Crystals 2020, 10, 769. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Pollastri, S.; Gandolfi, N.B.; Ronchetti, F.; Albonico, C.; Cavallo, A.; Zanetti, G.; Marini, P.; Sala, O. Determination of the concentration of asbestos minerals in highly contaminated mine tailings: An example from abandoned mine waste of Crètaz and Èmarese (Valle d’Aosta, Italy). Am. Mineral. 2014, 99, 1233–1247. [Google Scholar] [CrossRef]
- Vignaroli, G.; Belardi, G.; Serracino, M. Multi-scale geological evaluation for quarrying activities in ophiolitic rocks: Implications for asbestos-related legislation. Bull. Eng. Geol. Environ. 2013, 72, 285–302. [Google Scholar] [CrossRef]
- Cavallo, A. Environmental asbestos contamination in an abandoned chrysotile mining site: The example of Val malenco (central Alps, northern Italy). Episodes 2020, 43, 851–858. [Google Scholar] [CrossRef]
- Dogan, M.; Emri, S. Environmental health problems related to mineral dusts in Ankara and Eskisehir, Turkey. Yerbilimleri 2000, 22, 149–161. [Google Scholar]
- Cossio, R.; Albonico, C.; Zanella, A.; Fraterrigo-Garofalo, S.; Avataneo, C.; Compagnoni, R.; Turci, F. Innovative unattended SEM-EDS analysis for asbestos fiber quantification. Talanta 2018, 190, 158–166. [Google Scholar] [CrossRef]
- Baietto, O.; Marini, P. Naturally occurring asbestos: Validation of PCOM quantitative determination. Resour. Policy 2018, 44–49. [Google Scholar] [CrossRef]
- Turci, F.; Avataneo, C.; Botta, S.; Marcelli, I.; Barale, L.; Tomatis, M.; Cossio, R.; Tallone, S.; Piana, F.; Compagnoni, R. New tools for the evaluation of asbestos-related risk during excavation in an NOA-rich geological setting. Environ. Eng. Geosci. 2020, 26, 113–120. [Google Scholar] [CrossRef]
- Petriglieri, J.R.; Salvioli-Mariani, E.; Mantovani, L.; Tribaudino, M.; Lottici, P.P.; Laporte-Magoni, C.; Bersani, D. Micro-Raman mapping of the polymorphs of serpentine. J. Raman Spectrosc. 2015, 46, 953–958. [Google Scholar] [CrossRef]
- Groppo, C.; Rinaudo, C.; Cairo, S.; Gastaldi, D.; Compagnoni, R. Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur. J. Mineral. 2006, 18, 319–329. [Google Scholar] [CrossRef]
- Rooney, J.S.; Tarling, M.S.; Smith, S.A.F.; Gordon, K.C. Submicron Raman spectroscopy mapping of serpentinite fault rocks. J. Raman Spectrosc. 2018, 49, 279–286. [Google Scholar] [CrossRef]
- Rinaudo, C.; Gastaldi, D.; Belluso, E.; Capella, S. Application of Raman spectroscopy on asbestos fibre identification. Neues Jahrb. Mineral. 2005, 182, 31–36. [Google Scholar] [CrossRef]
- Zholobenko, V.; Rutten, F.; Zholobenko, A.; Holmes, A. In situ spectroscopic identification of the six types of asbestos. J. Hazard. Mater. 2021, 403, 123951. [Google Scholar] [CrossRef] [PubMed]
- Rinaudo, C.; Gastaldi, D.; Belluso, E. Characterization of Chrysotile, Antigorite, and Lizardite by FT-Raman Spectroscopy. Can. Mineral. 2003, 41, 883–890. [Google Scholar] [CrossRef]
- Rinaudo, C.; Belluso, E.; Gastaldi, D. Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral. Mag. 2004, 68, 455–465. [Google Scholar] [CrossRef]
- Auzende, A.L.; Daniel, I.; Reynard, B.; Lemaire, C.; Guyot, F. High-pressure behaviour of serpentine minerals: A Raman spectroscopic study. Phys. Chem. Miner. 2004, 31, 269–277. [Google Scholar] [CrossRef]
- Tarling, M.S.; Rooney, J.S.; Viti, C.; Smith, S.A.F.; Gordon, K.C. Distinguishing the Raman spectrum of polygonal serpentine. J. Raman Spectrosc. 2018, 49, 1978–71984. [Google Scholar] [CrossRef]
- Bard, D.; Tylee, B.; Williams, K.; Yarwood, J. Use of a fibre-optic probe for the identification of asbestos fibres in bulk materials by Raman spectroscopy. J. Raman Spectrosc. 2004, 35, 541–548. [Google Scholar] [CrossRef]
- Petriglieri, J.R.; Laporte-Magoni, C.; Gunkel-Grillon, P.; Tribaudino, M.; Bersani, D.; Sala, O.; Le Mestre, M.; Vigliaturo, R.; Gandolfi, N.B.; Salvioli-Mariani, E. Mineral fibres and environmental monitoring: A comparison of different analytical strategies in New Caledonia. Geosci. Front. 2020, 11, 189–202. [Google Scholar] [CrossRef]
- Rinaudo, C.; Allegrina, M.; Fornero, E.; Musa, M.; Croce, A.; Bellis, D. Micro-raman spectroscopy and VP-SEM/EDS applied to the identification of mineral particles and fibres in histological sections. J. Raman Spectrosc. 2010, 41, 27–32. [Google Scholar] [CrossRef]
- Croce, A.; Musa, M.; Allegrina, M.; Rinaudo, C.; Baris, Y.I.; Dogan, A.U.; Powers, A.; Rivera, Z.S.; Bertino, P.; Yang, H.; et al. Micro-Raman spectroscopy identifies crocidolite and erionite fibers in tissue sections. J. Raman Spectrosc. 2013, 44, 1440–1445. [Google Scholar] [CrossRef]
- Bloise, A.; Miriello, D. Multi-Analytical Approach for Identifying Asbestos Minerals In Situ. Geosciences 2018, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Müntener, O.; Hermann, J.; Trommsdorff, V. Cooling history and exhumation of lower-crutstal granulite and upper mantle (Malenco, Eastern Central Alps). J. Petrol. 2000, 41, 175–200. [Google Scholar] [CrossRef]
- Trommsdorff, V.; Montrasio, A.; Hermann, J.; Müntener, O.; Spillmann, P.; Gieré, R. The geological map of Valmalenco. Schweizerische Mineral. Petrogr. Mitteilungen 2005, 85, 1–13. [Google Scholar]
- Cavallo, A.; Rimoldi, B. Chrysotile asbestos in serpentinite quarries: A case study in Valmalenco, Central Alps, Northern Italy. Environ. Sci. Process. Impacts 2013, 15, 1341–1350. [Google Scholar] [CrossRef]
- Adamo, I.; Bocchio, R.; Diella, V.; Pavese, A.; Vignola, P.; Prosperi, L.; Palanza, V. Demantoid from Val Malenco, Italy: Review and update. Gems Gemol. 2009, 45, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, P.; Zucchetti, S. Early-alpine ore parageneses in the serpentinites from the Balangero asbestos mine and Lanzo Massif (Internal Western Alps). Rend. Soc. Ital. Mineral. Petrol. 1988, 43, 139–149. [Google Scholar]
- Astolfì, A.; Fubini, B.; Giamello, E.; Volante, M.; Belluso, E.; Ferraris, G. Asbestiform minerals associated with chrysotile from the Western Alps (Piedmont-Italy): Chemical characteristics and possible related toxicity. In Mechanisms in Fibre Carcinogenisis; Springer: Boston, MA, USA, 1991; pp. 269–283. [Google Scholar]
- Groppo, C.; Tomatis, M.; Turci, F.; Gazzano, E.; Ghigo, D.; Compagnoni, R.; Fubini, B. Potential toxicity of nonregulated asbestiform minerals: Balangeroite from the western Alps. Part 1: Identification and characterization. J. Toxicol. Environ. Health Part A 2005, 68, 1–19. [Google Scholar] [CrossRef]
- Troly, G.; Esterle, M.; Pelletier, B.; Reibell, W. Nickel deposits in New Caledonia, some factors influencing their formation. In Proceedings of the International Laterite Symposium; American Institute of Mining Metallurgy and Petroleum Engineering Society: New Orleans, LA, USA, 1979; pp. 85–119. [Google Scholar]
- Chevillotte, V.; Chardon, D.; Beauvais, A.; Maurizot, P.; Colin, F. Long-term tropical morphogenesis of New Caledonia (Southwest Pacific): Importance of positive epeirogeny and climate change. Geomorphology 2006, 81, 361–375. [Google Scholar] [CrossRef]
- Myagkiy, A.; Truche, L.; Cathelineau, M.; Golfier, F. Revealing the conditions of Ni mineralization in the laterite profiles of New Caledonia: Insights from reactive geochemical transport modelling. Chem. Geol. 2017, 466, 274–284. [Google Scholar] [CrossRef]
- Maurizot, P.; Sevin, B.; Iseppi, M.; Giband, T. Nickel-bearing laterite deposits in accretionary context and the case of New Caledonia: From the large-scale structure of earth to our everyday appliances. GSA Today 2019, 29, 4–10. [Google Scholar] [CrossRef]
- Lahondère, D. Serpentinisation et Fibrogenèse dans les Massifs de Péridotite de Nouvelle-Calédonie. Atlas des Occurrences et des Types de Fibres D’amiante sur Mine; Bureau de Recherches Géologiques et Minières: Nouméa, Nouvelle Calédonie, 2012.
- Jehlička, J.; Culka, A.; Bersani, D.; Vandenabeele, P. Comparison of seven portable Raman spectrometers: Beryl as a case study. J. Raman Spectrosc. 2017, 48, 1289–1299. [Google Scholar] [CrossRef] [Green Version]
- Compagnoni, R.; Ferraris, G.; Fiona, L. Balangeroite, a new fibrous silicate related to gageite from Balangero, Italy. Am. Mineral. 1983, 68, 214–219. [Google Scholar]
- Bersani, D.; Andò, S.; Scrocco, L.; Gentile, P.; Salvioli-Mariani, E.; Fornasini, L.; Lottici, P.P. Composition of amphiboles in the tremolite–ferro–actinolite series by Raman spectroscopy. Minerals 2019, 9, 491. [Google Scholar] [CrossRef] [Green Version]
- Groppo, C.; Compagnoni, R. Metamorphic veins from the serpentinites of the Piemonte Zone, western Alps, Italy: A review. Period. Mineral. 2007, 76, 127–153. [Google Scholar] [CrossRef]
Mining Site | Spectral Quality * | Detected Mineral Phases | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tr | Ctl | Atg (Fibrous) | Lz | Blg | Di (Fibrous) | Chl | Sap | Ol | Grt | Mixed Phases | ||
Valmalenco | 90% | 6 | 2 | 1 | ||||||||
Balangero | 84% | 6 | 8 | 3 | 3 | 5 | 3 | 1 | 3 | |||
Tontouta | 70% | 3 | 5 | 11 | 2 | 1 |
Portable Equipment | Micro-Raman |
---|---|
on bundles of fibers | on thin section |
on an irregular surface | on a polished surface |
pre-set measuring conditions | optimal measuring conditions |
laser source 532 nm (green) | laser source 473.1 nm (blue) |
spatial resolution 1 mm | spatial resolution 1–2 μm |
spectral resolution 8 cm−1 | spectral resolution 4 cm−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petriglieri, J.R.; Bersani, D.; Laporte-Magoni, C.; Tribaudino, M.; Cavallo, A.; Salvioli-Mariani, E.; Turci, F. Portable Raman Spectrometer for In Situ Analysis of Asbestos and Fibrous Minerals. Appl. Sci. 2021, 11, 287. https://doi.org/10.3390/app11010287
Petriglieri JR, Bersani D, Laporte-Magoni C, Tribaudino M, Cavallo A, Salvioli-Mariani E, Turci F. Portable Raman Spectrometer for In Situ Analysis of Asbestos and Fibrous Minerals. Applied Sciences. 2021; 11(1):287. https://doi.org/10.3390/app11010287
Chicago/Turabian StylePetriglieri, Jasmine Rita, Danilo Bersani, Christine Laporte-Magoni, Mario Tribaudino, Alessandro Cavallo, Emma Salvioli-Mariani, and Francesco Turci. 2021. "Portable Raman Spectrometer for In Situ Analysis of Asbestos and Fibrous Minerals" Applied Sciences 11, no. 1: 287. https://doi.org/10.3390/app11010287
APA StylePetriglieri, J. R., Bersani, D., Laporte-Magoni, C., Tribaudino, M., Cavallo, A., Salvioli-Mariani, E., & Turci, F. (2021). Portable Raman Spectrometer for In Situ Analysis of Asbestos and Fibrous Minerals. Applied Sciences, 11(1), 287. https://doi.org/10.3390/app11010287