Retro-Reflective-Marker-Aided Target Pose Estimation in a Safety-Critical Environment
Abstract
:Featured Application
Abstract
1. Introduction
- A marker design that complies with the extremely strict requirements set by the operating environment.
- A methodology for marker detection and correspondence and optimization of the estimated pose.
- An approach for remote calibration of radiation-activated cameras.
- A study of the performance of monocular versus stereoscopic pose estimation on synthetically generated data with varying baselines.
- A comprehensive prototype implementation of the system and thorough evaluation of its overall performance.
2. Methods
2.1. Retro-Reflective Marker Design
2.2. Automatic Offline Calibration Routine
2.3. Marker Detection and Identification
Pose Estimation
3. Results
3.1. Synthetic Data
3.1.1. Evaluating the Performance of Marker Detection
3.1.2. Evaluating the Performance of Pose Estimation
3.2. Real Data
3.2.1. Experimental Setup
3.2.2. Reference Values
3.2.3. Evaluation of Overall System Performance
3.2.4. Evaluation of Position Estimation
3.2.5. Study of the Effect of Camera Slant in the Original Position on the Overall System Performance
3.2.6. Comparison to the Earlier Solution
3.2.7. Analyses of Overall System Performance Using an Image-Based Metric
3.2.8. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pérez, L.; Rodríguez, Í.; Rodríguez, N.; Usamentiaga, R.; García, D.F. Robot guidance using machine vision techniques in industrial environments: A comparative review. Sensors 2016, 16, 335. [Google Scholar] [CrossRef] [PubMed]
- Malamas, E.N.; Petrakis, E.G.; Zervakis, M.; Petit, L.; Legat, J.D. A survey on industrial vision systems, applications and tools. Image Vis. Comput. 2003, 21, 171–188. [Google Scholar] [CrossRef]
- Lichiardopol, S. A Survey on Teleoperation; DCT Rapporten; Vol. 2007.155; Technical Report; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2007. [Google Scholar]
- Hoff, W.A.; Gatrell, L.B.; Spofford, J.R. Machine vision based teleoperation aid. Telemat. Inform. 1991, 4, 403–423. [Google Scholar] [CrossRef] [Green Version]
- Miyanishi, Y.; Sahin, E.; Makinen, J.; Akpinar, U.; Suominen, O.; Gotchev, A. Subjective comparison of monocular and stereoscopic vision in teleoperation of a robot arm manipulator. Electron. Imaging 2019, 2019, 659-1–659-6. [Google Scholar] [CrossRef]
- Tesini, A.; Palmer, J. The ITER remote maintenance system. Fusion Eng. Des. 2008, 83, 810–816. [Google Scholar] [CrossRef]
- Sanders, S.; Rolfe, A. The use of virtual reality for preparation and implementation of JET remote handling operations. Fusion Eng. Des. 2003, 69, 157–161. [Google Scholar] [CrossRef]
- Heemskerk, C.; De Baar, M.; Boessenkool, H.; Graafland, B.; Haye, M.; Koning, J.; Vahedi, M.; Visser, M. Extending Virtual Reality simulation of ITER maintenance operations with dynamic effects. Fusion Eng. Des. 2011, 86, 2082–2086. [Google Scholar] [CrossRef]
- Niu, L.; Aha, L.; Mattila, J.; Gotchev, A.; Ruiz, E. A stereoscopic eye-in-hand vision system for remote handling in ITER. Fusion Eng. Des. 2019. [Google Scholar] [CrossRef]
- Niu, L.; Smirnov, S.; Mattila, J.; Gotchev, A.; Ruiz, E. Robust pose estimation with the stereoscopic camera in harsh environment. Electron. Imaging 2018, 1–6. [Google Scholar] [CrossRef]
- Burgess, G.; Shortis, M.; Scott, P. Photographic assessment of retroreflective film properties. ISPRS J. Photogramm. Remote Sens. 2011, 66, 743–750. [Google Scholar] [CrossRef]
- Schauer, D.; Krueger, T.; Lueth, T. Development of autoclavable reflective optical markers for navigation based surgery. In Perspective in Image-Guided Surgery; World Scientific: Singapore, 2004; pp. 109–117. [Google Scholar] [CrossRef]
- Bhatnagar, D.K. Position Trackers for Head Mounted Display Systems: A Survey; University of North Carolina: Chapel Hill, NC, USA, 1993; Volume 10. [Google Scholar]
- Vogt, S.; Khamene, A.; Sauer, F.; Niemann, H. Single camera tracking of marker clusters: Multiparameter cluster optimization and experimental verification. In Proceedings of the International Symposium on Mixed and Augmented Reality, Darmstadt, Germany, 1 October 2002; pp. 127–136. [Google Scholar] [CrossRef]
- Bergamasco, F.; Albarelli, A.; Torsello, A. Pi-tag: A fast image-space marker design based on projective invariants. Mach. Vis. Appl. 2013, 24, 1295–1310. [Google Scholar] [CrossRef] [Green Version]
- Nakazato, Y.; Kanbara, M.; Yokoya, N. Localization of wearable users using invisible retro-reflective markers and an IR camera. In Proceedings of the Stereoscopic Displays and Virtual Reality Systems XII, International Society for Optics and Photonics, San Jose, CA, USA, 22 March 2005; Volume 5664, pp. 563–570. [Google Scholar]
- Sereewattana, M.; Ruchanurucks, M.; Siddhichai, S. Depth estimation of markers for UAV automatic landing control using stereo vision with a single camera. In Proceedings of the International Conference Information and Communication Technology for Embedded System, Ayutthaya, Thailand, 23–25 January 2014. [Google Scholar]
- Faessler, M.; Mueggler, E.; Schwabe, K.; Scaramuzza, D. A monocular pose estimation system based on infrared leds. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–5 June 2014; pp. 907–913. [Google Scholar] [CrossRef] [Green Version]
- Hattori, S.; Akimoto, K.; Fraser, C.; Imoto, H. Automated procedures with coded targets in industrial vision metrology. Photogramm. Eng. Remote Sens. 2002, 68, 441–446. [Google Scholar]
- Tushev, S.; Sukhovilov, B.; Sartasov, E. Architecture of industrial close-range photogrammetric system with multi-functional coded targets. In Proceedings of the 2017 2nd International Ural Conference on Measurements (UralCon), Chelyabinsk, Russia, 16–19 October 2017; pp. 435–442. [Google Scholar] [CrossRef]
- San Biagio, M.; Beltran-Gonzalez, C.; Giunta, S.; Del Bue, A.; Murino, V. Automatic inspection of aeronautic components. Mach. Vis. Appl. 2017, 28, 591–605. [Google Scholar] [CrossRef]
- Liu, T.; Burner, A.W.; Jones, T.W.; Barrows, D.A. Photogrammetric techniques for aerospace applications. Prog. Aerosp. Sci. 2012, 54, 1–58. [Google Scholar] [CrossRef]
- Clarke, T.A. Analysis of the properties of targets used in digital close-range photogrammetric measurement. In Proceedings of the Videometrics III, International Society for Optics and Photonics, Boston, MA, USA, 6 October 1994; Volume 2350, pp. 251–262. [Google Scholar] [CrossRef]
- Dong, M.; Xu, L.; Wang, J.; Sun, P.; Zhu, L. Variable-weighted grayscale centroiding and accuracy evaluating. Adv. Mech. Eng. 2013, 5, 428608. [Google Scholar] [CrossRef]
- Bender, P.; Wilkinson, D.; Alley, C.; Currie, D.; Faller, J.; Mulholland, J.; Siverberg, E.; Plotkin, H.; Kaula, W.; MacDonald, G. The Lunar laser ranging experiment. Science 1973, 182, 229–238. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, B.; Kuang, C. A straightness measurement system using a single-mode fiber-coupled laser module. Opt. Laser Technol. 2004, 36, 279–283. [Google Scholar] [CrossRef]
- Nakamura, O.; Goto, M.; Toyoda, K.; Takai, N.; Kurosawa, T.; Nakamata, T. A laser tracking robot-performance calibration system using ball-seated bearing mechanisms and a spherically shaped cat’s-eye retroreflector. Rev. Sci. Instrum. 1994, 65, 1006–1011. [Google Scholar] [CrossRef]
- Shortis, M.R.; Seager, J.W. A practical target recognition system for close range photogrammetry. Photogramm. Rec. 2014, 29, 337–355. [Google Scholar] [CrossRef]
- Ribeiro, L.G.; Suominen, O.; Peltonen, S.; Morales, E.R.; Gotchev, A. Robust Vision Using Retro Reflective Markers for Remote Handling in ITER. Fusion Eng. Des. 2020, 161, 112080. [Google Scholar] [CrossRef]
- Lundvall, A.; Nikolajeff, F.; Lindström, T. High performing micromachined retroreflector. Opt. Express 2003, 11, 2459–2473. [Google Scholar] [CrossRef] [PubMed]
- Stoudt, M.; Vedam, K. Retroreflection from spherical glass beads in highway pavement markings. 1: Specular reflection. Appl. Opt. 1978, 17, 1855–1858. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chang, S.; Li, S.; Zhang, Y. Design and fabrication of micro-cube-corner array retro-reflectors. Opt. Commun. 2002, 209, 75–83. [Google Scholar] [CrossRef]
- Shin, S.Y.; Lee, J.I.; Chung, W.J.; Cho, S.H.; Choi, Y.G. Assessing the refractive index of glass beads for use in road-marking applications via retroreflectance measurement. Curr. Opt. Photonics 2019, 3, 415–422. [Google Scholar] [CrossRef]
- Yongbing, L.; Guoxiong, Z.; Zhen, L. An improved cat’s-eye retroreflector used in a laser tracking interferometer system. Meas. Sci. Technol. 2003, 14, N36. [Google Scholar] [CrossRef]
- MATLAB. Version 9.6.0 (R2019a); The MathWorks Inc.: Natick, MA, USA, 2019. [Google Scholar]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Heikkila, J.; Silven, O. A four-step camera calibration procedure with implicit image correction. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 17–19 June 1997; pp. 1106–1112. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Wang, Y.; Yu, H.; Zhu, J. Automatic camera calibration using active displays of a virtual pattern. Sensors 2017, 17, 685. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Suominen, O.; Gotchev, A.; Morales, E.R. Methods for Simultaneous Robot-World-Hand–Eye Calibration: A Comparative Study. Sensors 2019, 19, 2837. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D.; Roth, G. Adaptive thresholding using the integral image. J. Graph. Tools 2007, 12, 13–21. [Google Scholar] [CrossRef]
- Soille, P. Morphological Image Analysis: Principles and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shapiro, L.G. Computer and Robot Vision; Addison-Wesley: Boston, MA, USA, 1992; Volume 1, pp. 28–48. [Google Scholar]
- Ahn, S.J.; Rauh, W.; Kim, S.I. Circular coded target for automation of optical 3D-measurement and camera calibration. Int. J. Pattern Recognit. Artif. Intell. 2001, 15, 905–919. [Google Scholar] [CrossRef]
- Mallon, J.; Whelan, P.F. Which pattern? Biasing aspects of planar calibration patterns and detection methods. Pattern Recognit. Lett. 2007, 28, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Collins, T.; Bartoli, A. Infinitesimal plane-based pose estimation. Int. J. Comput. Vis. 2014, 109, 252–286. [Google Scholar] [CrossRef]
- Schweighofer, G.; Pinz, A. Robust pose estimation from a planar target. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2024–2030. [Google Scholar] [CrossRef] [PubMed]
- Sturm, P. Algorithms for plane-based pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000 (Cat. No. PR00662), Hilton Head Island, SC, USA, 13–15 June 2000; Volume 1, pp. 706–711. [Google Scholar] [CrossRef] [Green Version]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, MA, USA, 2003. [Google Scholar] [CrossRef]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Rodriguez, O. Des lois geometriques qui regissent les desplacements d’un systeme solide dans l’espace et de la variation des coordonnees provenant de deplacements consideres independamment des causes qui peuvent les produire. J. Math. Pures Appl. 1840, 5, 380–440. [Google Scholar]
- Geiger, A.; Moosmann, F.; Car, Ö.; Schuster, B. Automatic camera and range sensor calibration using a single shot. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3936–3943. [Google Scholar] [CrossRef]
- Kivelä, T.; Saarinen, H.; Mattila, J.; Hämäläinen, V.; Siuko, M.; Semeraro, L. Calibration and compensation of deflections and compliances in remote handling equipment configurations. Fusion Eng. Des. 2011, 86, 2043–2046. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, L.G.; Suominen, O.J.; Durmush, A.; Peltonen, S.; Ruiz Morales, E.; Gotchev, A. Retro-Reflective-Marker-Aided Target Pose Estimation in a Safety-Critical Environment. Appl. Sci. 2021, 11, 3. https://doi.org/10.3390/app11010003
Ribeiro LG, Suominen OJ, Durmush A, Peltonen S, Ruiz Morales E, Gotchev A. Retro-Reflective-Marker-Aided Target Pose Estimation in a Safety-Critical Environment. Applied Sciences. 2021; 11(1):3. https://doi.org/10.3390/app11010003
Chicago/Turabian StyleRibeiro, Laura Gonçalves, Olli J. Suominen, Ahmed Durmush, Sari Peltonen, Emilio Ruiz Morales, and Atanas Gotchev. 2021. "Retro-Reflective-Marker-Aided Target Pose Estimation in a Safety-Critical Environment" Applied Sciences 11, no. 1: 3. https://doi.org/10.3390/app11010003
APA StyleRibeiro, L. G., Suominen, O. J., Durmush, A., Peltonen, S., Ruiz Morales, E., & Gotchev, A. (2021). Retro-Reflective-Marker-Aided Target Pose Estimation in a Safety-Critical Environment. Applied Sciences, 11(1), 3. https://doi.org/10.3390/app11010003