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Featured Application: Remote handling of ITER’s divertor cassette locking system.

Abstract: Visual technologies have an indispensable role in safety-critical applications, where tasks
must often be performed through teleoperation. Due to the lack of stereoscopic and motion parallax
depth cues in conventional images, alignment tasks pose a significant challenge to remote operation.
In this context, machine vision can provide mission-critical information to augment the operator’s
perception. In this paper, we propose a retro-reflector marker-based teleoperation aid to be used in
hostile remote handling environments. The system computes the remote manipulator’s position with
respect to the target using a set of one or two low-resolution cameras attached to its wrist. We develop
an end-to-end pipeline of calibration, marker detection, and pose estimation, and extensively study
the performance of the overall system. The results demonstrate that we have successfully engineered
a retro-reflective marker from materials that can withstand the extreme temperature and radiation
levels of the environment. Furthermore, we demonstrate that the proposed maker-based approach
provides robust and reliable estimates and significantly outperforms a previous stereo-matching-
based approach, even with a single camera.

Keywords: safety critical; teleoperation; eye-in-hand; optical tracking; retro-reflective markers;
marker detection; stereoscopic; pose estimation

1. Introduction

Visual technologies have been increasingly integrated into industrial contexts with the
intent of increasing work turnover, repeatability, or operator safety [1,2]. In safety-critical
contexts, where operator access is restricted and tasks need to be performed through
teleoperation, such as space, underwater exploration, mining, and nuclear reactors [3],
these technologies have a particularly indispensable role. This is true especially in large-
scale applications with many dynamic elements, where the current status of the system
cannot be modeled accurately.

For safe and effective task performance, operators should have full situational aware-
ness of the current status of the remote environment, especially during fine alignment tasks,
where the operator has to position the manipulator in a certain position and orientation
in relation to a target object with a high degree of accuracy. These tasks can represent a
particular challenge for teleoperation due to the lack of some of the natural depth cues in
standard image or video feedback [4,5].

In this context, machine vision approaches can be used to extract and refine mission-
critical information from the images, such as the relative position between the tool and
the target, which can be used as a teleoperation aid. This type of teleoperation aid has
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been successfully used for maintenance and assembly tasks in extra-vehicular space ap-
plications [4]. In the aforementioned work, the computed six degrees of freedom (DOF)
transformation between the current and desired end-effector positions is overlaid on the
camera feed showed to the operator as either graphics or text.

The application that motivated our work is remote handling of ITER’s (https://
www.iter.org/) divertor cassette locking system. ITER constitutes one of the world’s
most hostile remote handling environments and is characterized by the unpredictable
nature of its maintenance situations and tasks [6]. In ITER, all tasks are to be performed
using a human-in-the-loop telemanipulation approach where the operator is always in
control, although remotely located to minimize the risk of ionizing radiation exposure [6].
Operation in this environment differs from a common industrial environment, since high
radiation levels and temperatures and strong magnetic fields strictly limit the materials
that can be used in the activated areas, including the hardware that can be used for sensing
the environment. This deems necessary the use of radiation-tolerant cameras, which
are often characterized by a low resolution, gray-scale output, and high level of noise,
which degrades with exposure to radiation over the lifetime of the camera. The operation
of the divertor cassette locking system requires the alignment of several tools to their
respective slots. Both the tools and the manipulator are carried in by a transporter that
moves on rails throughout the facility. The tolerances for error in tool-slot alignment are
small, with -3 mm of maximum allowed error in translation. Taking into account the
difficulty in making a visual alignment in this range, there is a need to develop an accurate
machine-vision-based aid that can comply with the strict requirements of the application.

Our aim here is to develop a system that calculates, using a set of one or two cameras
attached to the wrist of the robotic manipulator, the transformation between the robot
end-effector and the target (cassette). This information is intended to be used to update the
models behind the virtual-reality-based remote handling platform [7,8].

Most man-made structures in the ITER environment, like the divertor cassettes, have
large, flat, textureless surfaces, which are often specularly reflective and look different from
different perspectives. Such surfaces pose a challenge to conventional 3D reconstruction
algorithms that require the establishment of robust feature correspondences across multiple
images. In a previous work [9,10], some of these challenges have been circumvented by
extracting edge information from images provided by an array of two cameras as a prior
step to stereo matching. The system obtains a relatively sparse 3D representation of
the scene that is, at a later stage, matched with the known 3D model of the cassette to
calculate the six-DOF transformation between the camera and the target. We consider the
aforementioned approach to be sub-optimal for the application, since it does not explicitly
exploit the prior knowledge of the structure of the environment at the feature detection
and geometry reconstruction stages. As a result, this earlier solution is not as robust
or accurate as required for the application at hand. We hypothesize that more reliable
results can be achieved by detecting the known features of the cassette, or, even better,
through the introduction of marker objects in the cassette surface that can be tracked
by cameras unambiguously and accurately. Furthermore, there is a need, due to space
constraints, to reduce the number of cameras to just one while still maintaining the targeted
high-accuracy target pose estimation.

Marker-based tracking has been used in human motion analysis [11], medicine [12],
and augmented reality [13-15] applications, localization of wearables [16], and in un-
manned aerial vehicle and robot navigation systems [17-20]. It has also been used in
industrial contexts [11], such as component inspection and validation [21,22]. It can obtain
significantly superior results compared to tracking natural features, particularly when
objects in the scene have limited contrast features, have few identifiable features, or change
appearance with viewpoint [22,23]. Marker objects used for tracking can be LEDs, white
diffuse markers, light projected targets, or retro-reflective markers [22].

A retro-reflector is an optical element that returns light to its source for a wide range of
incident directions. They are best known for their use in traffic safety, where they improve
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visibility under poor light conditions by returning incoming headlamp light in a small
cone that covers the viewpoint of the driver. The intensity of retro-reflected light in the
direction of the source can be up to hundreds to even thousands of times higher than that
of a diffuse target [24]. They have also been used together with a laser for making distance
measurements in space [25], industrial [26], and robotics applications [27].

In photogrammetry, retro-reflective markers allow the production of an almost binary
image by controlling image exposure in such a way that the background is under-exposed
and largely eliminated [28]. This process has advantages in target recognition and extrac-
tion, high-precision locating, and noise suppression [24].

As the above-mentioned characteristics deem retro-reflective markers optimal for the
ITER application, in this paper, we aim to design a retro-reflective marker setting that
complies with the strict requirements of such environment and can be attached to the
surface of the cassettes for their effective tracking. We develop and test a system that uses
said markers to reliably estimate the alignment between a pin-tool and the respective slots
in the cassette surface.

The concept has previously been presented on a system level to the fusion engineering
community [29]. Here, we detail it from a machine vision perspective with the following
contributions:

* A marker design that complies with the extremely strict requirements set by the
operating environment.

¢ A methodology for marker detection and correspondence and optimization of the
estimated pose.

*  An approach for remote calibration of radiation-activated cameras.

¢ A study of the performance of monocular versus stereoscopic pose estimation on
synthetically generated data with varying baselines.

¢ A comprehensive prototype implementation of the system and thorough evaluation
of its overall performance.

The paper is organized as follows: In Section 2, we detail our proposed methods.
In Section 3, we present the results of an extensive study of the performance of the system
and a comparison to the earlier solution. In Section 4, we present our concluding remarks
and outline future development prospects.

2. Methods

In the terminology of this paper, T represents a homogeneous rigid body transfor-
mation between two coordinate frames, which can be written as follows: T = {IO{ ﬂ ,
where R represents the 3 x 3 rotation matrix and ¢ represents the 3 x 1 translation vector.
The main coordinate frames and transformations that will be referenced throughout the
work are represented in Figure 1.

Here, T‘T\,CP” represents the transformation from the robot-base coordinate frame to
the robot’s tool center point (TCP) that is given at each position i by the robot’s control
system (CS). T&.,, represents the transformation between the robot’s TCP and the attached
reference camera that is independent of the position of the manipulator and is obtained
through a hand—eye calibration procedure. Tgli represents the transformation between the
reference camera and a reference point in the world (e.g., origin of a target) at each position
i TVT\,CP0 represents the transformation between the robot base and the TCP when the TCP
and target coordinate systems coincide, i.e., the aligned position.
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Figure 1. Relevant coordinate frames and rigid body transformations.

2.1. Retro-Reflective Marker Design

Retro-reflectors can be characterized by four main properties: retro-reflectance (ratio
of retro-reflected to incident light), brilliancy (reflectance for a specific observation an-
gle), divergence (maximum angular distribution of retro-reflected light), and angularity
(brilliancy as a function of the incident angle) [30]. In many applications, the desired
marker behavior resembles the ideal retro-reflector, which allows large entrance angles
(high angularity) and returns as much light as possible in as small a cone of light as possible
(high reflectance, high brilliancy, and low divergence). However, in applications where
there is a displacement between the light source and the detector, higher divergence might
be acceptable or even required. As an example, in traffic applications, where there is a
displacement between the car’s headlamps and the driver’s eyes of about 60 cm, the useful
retro-reflecting angle has been quantified to be from nearly 0 to approximately 3 degrees for
distances of 12 to 122 m [31]. In this case, the aim is to optimize brilliancy at the observation
angle rather than at the incident angle. This is often achieved by using a retro-reflector
with higher divergence, though at the cost of some intensity loss.

The same principle applies to photogrammetry and dictates the first functional re-
quirement of an effective retro-reflector for our application. The useful retro-reflecting
angle can be easily quantified for a specific setup as a function of the imaging distance (H)
and the displacement between the camera and the light source (D) as follows:

H
§=tan 1= 1
an D 1

For the setup used in this work, we calculate a maximum useful retro-reflecting angle
of £18° for the shortest working distance and the maximum possible displacement between
the camera and the source.

The second functional requirement of a successful retro-reflector is the acceptance
angle. We consider that an acceptance angle of £10° is sufficient for our application, since
an operator can, with very little effort, make a preliminary target alignment within this
range. Furthermore, there is no minimum specification for the retro-reflectance, but the
aim is to maximize its value.
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There is a relatively long list of environment requirements dictated by the ITER
application when it comes to materials that stay in the divertor for a considerable amount
of time. These include an operating temperature of up to 200 °C and adequate radiation
tolerance. In practice, these restrictions deem unfeasible the use of most common materials,
except for stainless steel (which makes up most of the other structures in the divertor)
and fused silica glass (which is planned to be used in diagnostic windows and fiber
optics). To the best of our knowledge, there is no adhesive material that can be used in
this environment. Furthermore, the size of the developed marker should be rather small,
such that the mounting of several specimens in a 200 x 200 mm area is feasible and the
embedment depth should be rather small so as not to compromise the structural integrity
of the cassette.

Retro-reflection is often achieved using one of two designs: a corner cube or a lens
and a mirror. Corner-cube retro-reflectors (CCR) rely on the reflection of light on three
mutually orthogonal surfaces. Generally, CCRs are manufactured either as a truncated cube
corner of a transparent material (i.e., prism) or as flat reflective surfaces surrounding empty
space. Cat’s eye retro-reflectors consist of a primary lens with a secondary mirror located
at its focus [30]. These can be easily implemented using a sphere of a transparent material.
Spherical retro-reflectors generally have higher divergence due to spherical aberration and
lower retro-reflectivity. On the other hand, corner-cube retro-reflectors usually have higher
retro-reflectivity, while their fabrication is more difficult [30,32].

A retro-reflective marker can consist of a single shape or an array of retro-reflective
shapes of smaller dimensions. The advantage of an array-based pattern is that the depth of
the marker can be smaller and the shape of the overall retro-reflective region can be tailored.
Furthermore, whilst the shape of the retro-reflective area changes with viewing angle for
single-shape retro-reflectors, for those composed of arrays of small elements, the shape is
independent of the orientation of the marker. On the other hand, such a construction might
be more difficult to implement, as it requires a more precise manufacturing process with
tighter tolerances.

In a preliminary study conducted to determine the viability of off-the-shelf retro-
reflectors for use in ITER, we found that the only viable solution belonged to the single-
element prism category (Edmund Optics BK-7 glass prism). No ready-made markers were
found in the corner-cube array or bead array categories that could be used in our applica-
tion.

Therefore, we propose a custom-made solution consisting of an array of glass beads.
Such beads are often used within paint or attached via adhesive to other materials (e.g.,
paper or plastic). Due to the restriction of using adhesives and paints in ITER environment,
the main challenge of using a bead array in our application is their attachment to the
surface of the cassette. For this purpose, we propose a custom sieve-like metal holding
structure that can hold the beads in place and can be easily mounted into the cassette
surface, as illustrated in Figure 2.

Another potential challenge to this approach is that the retro-reflectance of glass beads
is quite sensitive to their refractive index (n) [33], and the refractive index of fused silica
(§i0y) is relatively low when compared to other glass compositions (15,0, = 1.4585). In fact,
if we consider the simplest case of a single specular internal reflection from the back of the
silica sphere, we can calculate a divergence value of £25 degrees as follows [34]:

0 =2sin"! (h) 4sin_1< U ), 2)
7 nxr

where /i represents the incident height, as shown in the left side of Figure 3, and r represents
the radius of the glass bead. In the right side of Figure 3, we show the calculated divergence
as a function of the h value.
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Figure 3. Incident height (1) and divergence () of light in a retro-reflective bead.

This divergence is higher than required, leading to some loss of intensity. Therefore,
this design serves the purposes of the application, even if it does not fully optimize
brilliancy at the observation angle. In Figure 4, we illustrate our proposed bead array
marker design side by side with the out-of-the-box glass prism, a white diffuse element,
and the commonly used bead-based retro-reflective tape that cannot be used for the
application, but serves as a reference for a behavior that would be desirable.

The alternative of manufacturing a stainless steel hollow corner-cube array could
technically be implemented and would have the advantage of being made from a single
piece and a potentially larger reflective area.

However, while many methods are described in the literature for manufacturing
corner-cube arrays [32] on both the micro and macro scale, the commercial availability
of such methods is still limited and a suitable manufacturer could not be found. Some
customized manufacturing methods were considered, mainly consisting of producing a
strong enough inverse tool that could emboss the desired pattern onto a stainless steel
piece using a hydraulic press. The advantage of this approach would be the flexibility
of producing multiple marker specimens at a fixed cost and the fact that the markers
could be a single piece made from a single material. However, a suitable method for
manufacturing the pressing tool proved hard to find. We considered manufacturing
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by electrical discharge machining (EDM). However, the surface finish of the tool was
quite rough, and the manufacturing tolerances reduced the sharpness of the corners to a
curvature with a diameter of approximately 2.0 mm. Furthermore, when pressing the tool
onto the metal to create the retro-reflective pattern, the excess material tends to accumulate
between the borders of the corner-cube indentation, leading to relatively large non-retro-
reflective flat regions. An alternative option would be to create a single-shape corner-cube
inverse tool, which would have to be stamped into the piece multiple times to create an
array-like structure. Such a tool can be manufactured with a different technique that allows
sharper corners. However, this brings additional practical issues related to the alignment
of the tool that diminish the usability of this approach.

We concluded that the most viable and cost-effective solution for the application is
the use of the bead-array retro-reflective marker array. The experiments presented further
on in this paper were conducted using this design. We create a marker constellation design
for the cassette piece, where we aim to maximize the number of markers while keeping the
drilling into the piece at an acceptable level. We partially utilize holes that were already
in the design of the cassette surface for other purposes. There is no possibility to mount
markers at different depths, so all markers are at the same depth plane. Furthermore, we
opt not to use coded markers in order to optimize the available bright marker area and due
to the fact that the low resolution makes it hard to detect features of smaller dimensions.

250

200

150

Intensity

-
o
o

50

Incident Angle (°)

‘+ RR Proposed —#— RR Prismatic RR Tape —©— Diffuse ‘

Figure 4. Illustration of our proposed marker, the off-the-shelf glass prism, retro-reflective tape, and a white diffuse element.

Data on the left side of the figure are obtained by averaging the pixel values within the marker area in images taken at

several incident angles.

2.2. Automatic Offline Calibration Routine

During operation inside the reactor, it is expected that cameras’ calibration param-
eters will be affected by shocks, vibration, temperature changes, or other unforeseeable
environment factors. Even though there are not yet experimental data on how volatile
these parameters will be (since the reactor is under construction), there is a definite need to
develop reliable methods for calibration of activated cameras (cameras that have been ex-
posed to radiation and, therefore, cannot be in the same environment as the operators at the
same time). The developed calibration procedure should happen offline in the hot-cell facil-
ity (dedicated area outside of the operating environment to process activated components)
and without manual intervention. The method of choice for camera calibration throughout
our work is Matlab’s implementation [35] of Zhang’s widely known algorithm for pho-
togrammetric camera calibration [36] using the distortion model of [37]. This method relies
on a manual calibration image capture step, which means that the operator would have to
move the manipulator and the attached cameras in the vicinity of a calibration pattern and
capture a minimum of three calibration images at different camera orientations. This is an
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undesirable, time-consuming, and repetitive procedure with a low level of repeatability,
since different manipulator positions provide slightly different calibration results. Some
methods have been proposed in the literature for automatizing the image capturing step
through the display of virtual targets on a screen [38]. These methods are, however, not
applicable to our application due to the difficulty of introducing additional electronics
in the hot-cell facility. Therefore, we developed a calibration routine to be performed
autonomously by the robotic arm that produces fairly repeatable results. As a target, we
used a checkerboard pattern that was placed in the hot-cell facility prior to the start of
the calibration routine. Even though the same procedure could be used to re-calibrate the
cameras in the reactor, based on the known relative position of the retro-reflective markers,
we did not explore this option, mostly due to the tight space constraints in the environment.

As a preliminary step, we summarize what is established as a good set of calibration
images: Even though it is possible to obtain a calibration estimate from a smaller number
of images [36], it is often recommended to acquire at least 10 images of the calibration
pattern at different orientations relative to the camera. The images should be captured at a
distance that corresponds roughly to the operating distance so that the pattern is in focus.
The positions of the pattern shall be such that:

(1) The checkerboard is at an angle lower than 45 degrees relative to the camera
plane. According to the original work [36], when tested on synthetic data, the calibration
method obtains most accurate estimates when the angle between the calibration target and
image plane is higher. However, in real imaging conditions, where blur and distortion
must be taken into account, angles close to 45 degrees might compromise the accuracy of
corner detection, depending on the size of the checkerboard and the depth of field of the
camera-lens system.

(2) Feature points should be detectable on as much of the image frame as possible for
adequate estimation of the lens distortion parameters.

In our scenario, additional practical considerations need to be taken into account, such
as the work-space limitations of the robotic arm and singularity regions of its joints.

To fulfill the above-mentioned requirements, the developed automatic capture routine
moves the camera in discrete positions within a spherical surface centered in the calibration
pattern center, as shown in Figure 5. The radius of the spherical surface corresponds,
approximately, to the average operating distance.

() (b)

Figure 5. Camera movement in a dome around the centre of the checkerboard pattern seen from a pattern-centric perspective

(a) and from a camera centric perspective (b).

The camera rotations are such that the center of the pattern is kept in the center of
the image plane. The described movement is equivalent to the rotation of the calibration
pattern around its center in each of the three rotation dimensions (yaw, pitch, and roll) in a
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camera-centric interpretation of the problem. For the sake of simplicity, we calculate the
desired camera-to-target transformations (T%, ) using the camera-centric interpretation:

K K Ko —K;
TCl,— =T = ch TKO' ®)

The base-to-end-effector transformations that bring the camera to the desired calibra-
tion positions are calculated in the following manner:

TCP; _ 7TCF o1 K 7K —1 rCl
Tw'=Tw Trce Tcy, Tey,  Trce, )

. . . TCP;
where T}, represents a rough estimate of the hand-eye calibration. T, ' represents
the initial position reported by the robot’s CS and T(I:<1]- represents the initial transforming

between the camera and the target and is estimated from a single image based on nominal
values of the camera calibration parameters. The calibration procedure runs automatically.
All the operator needs to do is to move the manipulator so that the checkerboard is
within the field of view of the camera for the initial pose. At the end of the procedure,
the operator will receive a visual representation of the re-projection error indicating whether
the procedure was successful. The procedure can be used to capture any desired number
of images, and the steps within the range of movement are adapted accordingly.

The captured images are used to calibrate the intrinsic parameters of the cameras and
the extrinsic parameters in the case where a stereo pair is used and serve as data for a
hand-eye calibration routine. A hand-eye calibration is required for this application in
order to align the coordinate systems of the robotic manipulator and the vision system.
The details of such a calibration are outside the scope of this paper, and are presented in
detail in [39]. The calibration procedure shall be repeated as needed based on the volatility
of the estimated parameters in the real operating conditions.

2.3. Marker Detection and Identification

The preliminary step to position estimation is the determination of correspondences
between 2D image features and known 3D world points. The developed marker detection
and identification approach is shown in Figure 6.

It relies on the prior knowledge of the characteristics of the markers and their layout
with respect to each other. We perform marker detection and identification independently
for each camera image to keep the approach flexible and suitable for the monocular case.

The workflow of marker detection starts with image capture, linearization, and undis-
tortion. Images are segmented into foreground (markers) and background through adap-
tive thresholding as follows:

©)

[BW _ {1, if Iy > s medyy + T
Xy .

0, otherwise

Here, 1P 5" represents the value of the resulting binary image at pixel coordinates (x,y),
while I , represents the value of the original gray-scale image at the corresponding coordi-
nate points. medy , represents the median of the w x h surrounding pixels at coordinate
(x,y). Adaptive thresholding preserves hard contrast lines while ignoring soft gradient
changes. Our approach resembles the methods of [40]. However, it compares each image
pixel to the median of the w x h surrounding pixels, instead of their average, since this
approach effectively removes outliers and better preserves details and edges. The value s is
a scale factor that contributes to the classification of more or fewer pixels as foreground. We
have modified the original method by adding a constant value, T, to the threshold matrix,
with the intent of exploiting the fact that the intensity difference between the markers
and the background is more significant than in the diffuse marker case. Even though the
retro-reflective markers are considerably brighter than their surroundings, the large spec-
ular reflections of the cassette surface and some degree of inhomogeneity of the lighting
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conditions deem advantageous the use of a local thresholding method. However, this has a
tendency to increase the number of false blobs detected in the background, which will be
handled by morphological filtering. In the following processing steps, several techniques
are utilized to determine the suitability of marker candidates. If these point to an incorrect
segmentation, the software returns to the thresholding step and the operator is asked to
intervene by modifying the threshold parameters in small incremental steps. Decreasing
s and/or T will lead to a higher number of pixels being classified as foreground. While
manually refining the parameters, the operator is presented with the thresholded image
and the result of the overall marker detection pipeline.

Image Capture, Linearization,

; Undistortion

Greyscale Image

Binarization, Morphological
> | < Processing (Closing, Flood-fill,
A Convex Hull)

Binary Image

<«——— Connected Components

\ 4 Labelling
List of connected
Components
ifN<8 | <+—— Removal of False Detections

Candidate Markers

(N>=8)
< Agglomerative Hierarchical
\ 4 Clustering
Candidate Markers
(N=8)

Centroiding, Marker Ordering
v and Correspondence

Ordered Marker
Coordinates

Position Estimation, Calculation
< of MRE

A\ 4

Mean Reprojection
Error

if MRE>1 pixel

Figure 6. Workflow of image processing operations leading to marker detection and identification.

After segmentation, each marker is represented by an array of blobs that are merged
into a single elliptical shape by applying morphological closing and flood-fill opera-
tions [41], consecutively followed by determination of the binary convex hull image.
The blobs in the resulting image are identified by connected component labeling [42] and
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non-markers are excluded through the comparison of several properties of the connected
compound elements to appropriate thresholds. We consider that markers often differ from
the remaining blobs with respect to their size (area) and/or and shape (circularity and
eccentricity). Circularity is defined by the following ratio:

4mA
Circularity = e

Perimeter? ©)
and has a minimum value of 1 for a circular disk, and is greater than 1 for all other geometric
features. For an ellipse, it increases with the imaging angle monotonously and has a value
of 1.5 at 60 degree angle [43]. Eccentricity describes the ratio of the distance between the
foci and major axis length of the ellipse that has the same second-moments as the region.
It is closer to O for a circle-like object, and closer to 1 for a line-like object.

If after the elimination step, the number of identified markers is less than expected,
the procedure returns to the segmentation step and prompts the operator to adjust the
segmentation parameters.

If after the elimination step, the number of candidate markers is higher than expected,
markers are grouped into clusters according to their features, creating an agglomerative
hierarchical cluster tree. Selected features are: area, perimeter, circularity, solidity, convex
area, equivalent diameter, extent, minimum Feret diameter and maximum, and minimum
intensity of the grayscale blob. Solidity describes the extent to which a shape is convex or
concave. It corresponds to the ratio between the area and the convex area (area enclosed by
a convex hull). The equivalent diameter corresponds to the diameter of a circle with the
same area as the region. Extent refers to the ratio of pixels in the region to pixels in the total
bounding box. The minimum Feret diameter expresses the minimum distance between
any two boundary points on the antipodal vertices of the convex hull that encloses the
object. Data values are normalized before computing similarity and the Euclidean distance
is used as a distance metric. The hierarchical tree is pruned at the lowest branch, where a
class of eight elements can be found. A single feature point is found within each marker by
calculating the centroid coordinates (x, yo):

w h .. JBW w h .. TBW
Yig Zj:l Xi Ii,j Yo = i=1 Zj:l Yi Ii,j
w h BW Ul w h w
i=1 =1 i i=1 Xj=1 I

Xg =

@)

where w, h represent the size of the window in which the centroid is being computed
and [ fjw represents the value of the binary image at coordinate (i,j). By making the
approximation that the centroid of the detected markers corresponds to the center of the
original circles, we disregard the perspective bias [44] introduced by perspective projection.
We assume that the camera and target have been roughly aligned and, consequently, that
the value of the perspective bias is rather small.

In order to establish a one-to-one correspondence between the known relative marker
positions in the world coordinate frame and the detected image coordinates, the detected
markers must be correctly ordered. The proposed marker ordering approach is shown in
Figure 7 and finds the line passing through four of the proposed markers. This is achieved
by computing all possible combinations of the markers in groups of two (28 groups), fitting
a line to each marker pair and finding the six groups of parameters corresponding to
the same line using agglomerative hierarchical clustering. The hierarchical cluster tree is
pruned at the lowest point, where there is a class composed of five elements. After the line
has been determined, the remaining four points can be projected onto the line, and markers
can be discriminated from their distance along the line to the origin marker.
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Figure 7. Workflow of marker ordering.

Pose Estimation

Pose estimation refers to the calculation of the rigid body transformation between the
camera and the target (Tgl,-) based on a set of detected 2D image points and 3D known
world point correspondences.

Pose estimation has been extensively studied in the literature, and many iterative and
non-iterative methods have been proposed to solve the problem under different conditions,
depending on the number of available point correspondences, presence of outliers, how
noisy their coordinates are, whether the problem has to be solved online or offline, and if
the camera parameters are known or estimated simultaneously [45-47].

In our application, control points are known to be co-planar and are detected with
a relatively high degree of accuracy. We use the pose estimate provided by the direct
linear transform (DLT) homography estimation method [36,48] as an initial estimate to
start an iterative approach that minimizes the re-projection error as a non-linear least
squares problem.

The minimization of the re-projection error is solved using the Levenberg—-Marquardt
algorithm [49,50] and can be written for the single-camera case in the following manner:

N
arg min Z [m; — P(M;,K,, t)]z , 8
1t i=1

>.<

where P describes the projection of world points (X, Y, Z) into image points (x,y):
x
y| =AK[ R t]
1

©)

— N = X
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M; and m; represent world and image point coordinates, respectively. A represents a
scaling factor. The three-dimensional vector r represents the axis-angle representation of
the rotation matrix, R, obtained using the Rodriguez formula [51].

The intrinsic matrix, K, describing the internal parameters of the camera is computed
at the calibration stage and is written as function of the camera focal length (f, f,) and
principle point (cy, cy) as follows:

fx 0 ¢y
K=10 f ¢ |. (10)
0 0 1

We solve the stereo camera case in a similar manner. Here, the homography estimation
and decomposition approach is used to compute an estimate of the transformation be-
tween each camera and the world reference frame (Tgl, Té<2). The known extrinsic camera
parameters describing the rigid body transformation between the auxiliary and reference
camera (TCCf) are used to relate the estimate provided by the auxiliary camera to the frame
of the reference camera:

TE = T& Té.- (11)

The average value of the estimate provided by each camera is taken as the initial
estimate, which is minimized in the following manner:
N 2
argmin )_ [m! — P(M!, K/, 1, 1)]
rto =1

+ [ml — P(ML,K, 7, 1)) (12)

3. Results

In this section, we evaluate the performance of the proposed system and, when possi-
ble, of its individual components, on synthetic and real data, and establish a comparison
between the single and stereo estimation methods. In all the upcoming experiments,
the threshold parameters for marker detection (as defined in Section 2.3) have the following
values: initial proposal of thresholding parameters s and T are 1.18 and 0.03, respectively.
These values are set based on the lighting conditions and should be refined for each specific
setup. They can also be tuned by the operator if the search for the markers is unsuccessful.
The neighborhood size for adaptive thresholding is 11 x 11 pixels. The structural element
for the morphological closing operation is a disk with radius of three pixels. The flood
fill operation and connected component labeling use a pixel connectivity of 4. For the
elimination of false blobs, the acceptable ranges for area and circularity are [20, 400] pixels
and [1, 1.5], respectively. The maximum allowed value for eccentricity is 0.9. These val-
ues are set based on the relative sizes of the markers and the image for the specified
operating distances.

3.1. Synthetic Data

The main synthetic dataset is composed of 20 images corresponding to different
relative poses of the camera and the target. The poses were generated randomly, while
assuring that the target was fully visible and within the following limits:

(1) Distance of 300 to 500 mm from the camera to the target, corresponding to the
working range established by the application.

(2) Horizontal and vertical deviations of —50 to 50 mm and —100 to 100 mm from
the central position in the x and y axis. Rotations of —10 to 10 degrees in relation to the
aligned position in each rotation axis. The operator is expected to be able to easily make a
preliminary alignment within these limits based on the camera feeds.

The images of the main synthetic dataset are used to evaluate the performance of
single-camera approaches and correspond to the left-most camera in approaches using a
stereo camera pair. In order to study the effect of different baseline values in estimations
using stereo vision, five additional sub-datasets were generated, each composed of 20 im-
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ages corresponding to the right-most camera for a certain baseline value. In addition to
being translated by the baseline value, the right-most camera is rotated horizontally in the
direction of the other camera to increase the shared field of view of the stereo pair. Sets of
values for baseline and rotation are 100 mm and 10°, 150 mm and 15°, 200 mm and 20°,
250 mm and 25°, and 300 mm and 30°.

(a) (b)

Figure 8. Example synthetic images of the checkerboard (a) and the bead array (b) targets, at the same relative position.

We generated synthetic images of both a checkerboard and our developed bead-array
target (Figure 8). Synthetic images were generated using our own software, in which the
retro-reflective beads are modeled as flat white diffuse circles on the black target plane.
Ground truth checkerboard corners and bead-array center values are extracted from the
rendering software and are used as ground truth for evaluating the accuracy of feature
detection. These datasets also have associated ground truth intrinsic and extrinsic camera
calibration parameters. The rigid body transformation between the left-most camera and
the origin of the target is extracted as the ground truth value for evaluating the accuracy of
pose estimation methods.

3.1.1. Evaluating the Performance of Marker Detection

The performance of the marker detection algorithm was evaluated by comparing
the ground truth and detected feature center points for each of the 20 images of the main
synthetic dataset, as shown in Figure 9. The difference in image coordinates between
the detected and ground truth points is shown in Figure 10 in the x and y dimensions.
This representation shows that error in feature detection is well in the sub-pixel range for
the studied range of positions. For comparison, results of the gold-standard algorithm for
checkerboard detection with sub-pixel refinement of [52] are included.

Figure 9. Cropped section of a synthetic image of the bead array target. The center of the marker
detected from the image is shown in red, while the ground truth value is shown in blue.
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Figure 10. Error in the X and Y axes corresponding to the detection of marker centroids (x) and
checkerboard corners (*) in synthetic data. Each data point represents an image feature point.

3.1.2. Evaluating the Performance of Pose Estimation

Performance of position determination was evaluated by comparing the calculated
reference-camera-to-target transformations (Tg\{i) to the ground truth. We calculate the
translation error (¢;) between the estimated and ground truth rigid body transformations as
the Euclidean distance in each of the two axes that are parallel to the target plane. Since it
is not relevant for the alignment task, we disregard the depth axis.

The rotation error (eR) is calculated as the absolute difference between the magnitude
of the angle around the rotation axis (as defined in the axis-angle representation). At this
stage, we use the ground truth feature point coordinate values. We evaluate the perfor-
mance of monocular and stereoscopic estimates for baseline values of 100, 150, 200, 250,
and 300 mm. We observed that using ground truth feature points, errors are in the range of
10~° mm in translation and 105 degrees in rotation for all approaches, which is considered
to be insignificant. Therefore, in the following experiments, random noise with a uniform
distribution and several range values was added to the feature point coordinate values,
and the results were averaged over 20 tests.

In Figure 11, we present position estimation errors e; and eg, averaged over the
20 positions of the synthetic dataset for added noise in the range of —0.5 to 0.5 pixels.
We can see that stereoscopic estimation produces the best results and performs better as the
baseline increases. We can also see that standard deviation follows the same trend, showing
that more consistent results are found with stereo, particularly for higher baseline values.

In Figure 12, we compare the performance of monocular and stereoscopic approaches
for the smallest and largest considered baselines as a function of the added noise level.
We see that stereoscopic estimation performs best and is the most robust to added noise.
We observe that the error for approaches using stereo vision becomes lower as the cameras’
baseline increases for all considered noise levels.

We can consider in the application a baseline range of 100-300 mm and a maximum
expected corner noise level of two pixels. In these conditions, the difference in translation
and rotation error between monocular and stereoscopic estimates is less than 0.1 mm and
0.1 degrees.
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Figure 11. Translation (left side) and rotation (right side) error of position estimation over the images
of the synthetic dataset using ground truth feature points with added random noise within the
interval of [-0.5, 0.5] pixels. Data points in the graph represent the average error over the 20 images
of the dataset and error bars represent the standard deviation.
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Figure 12. Translation (left side) and rotation (right side) error of position estimation over the images
of the synthetic dataset using ground truth feature points for several added noise levels. Data points
in the graph represent the average error over the 20 images of the dataset and error bars represent
the standard deviation.

3.2. Real Data
3.2.1. Experimental Setup

Our experimental setup is shown in Figure 13. The KUKA KR 16 L6-2 industrial robot
was used to simulate the manipulator that would be used in the application. The manu-
facturing of the entire target assembly, as described in the methods section, is costly and
time-consuming; therefore, it was approximated by a prototype of similar characteristics.
The glass beads are made of borosilicate glass (n = 1.48) instead of fused silica (n = 1.46)
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and the sieve-like holding structure is made of a single 1 mm thick metal piece attached to
a prototype of the target.

We use two Basler acA1920-50gc industrial machine vision cameras with native res-
olution of 1920 x 1200. The cameras have an RGB Bayer filter to produce color images.
To emulate the use of radiation-tolerant (RADTOL) cameras, the images were converted to
grayscale in-camera. The original resolution was down-sampled by a factor of three using
a bicubic kernel on 4 x 4 neighborhoods. The resulting effective resolution (640 x 400)
is close to that of a RADTOL camera that we considered as a reference, the Visatec RC2
(586 x 330), producing a fairly realistic approximation of the image quality of the appli-
cation. We used lenses with 6 mm focal length that had a horizontal field of view of
approximately 82 degrees. The stereo camera pair was attached to a metal plate and had a
fixed baseline of 210 mm. A set of radial illuminators (Smart Vision RC130) were mounted
as closely as possible to the camera lenses. Each illuminator was constituted of eight
high-intensity LEDs that create a near collimated, uniform light pattern that has a diameter
of 280 mm at a distance of 500 mm from the lamp. In Figure 14, we show an example image
taken in these conditions. For calibration of the cameras, we used a set of 20 images of a
24 x 17 checkerboard pattern.

Figure 13. Experimental setup.

Figure 14. Example image. The bead arrays can be seen as significantly brighter spots in an otherwise
underexposed background.

3.2.2. Reference Values

The reference values for assessing the accuracy of the system were obtained by using
an alignment piece, shown in Figure 15, made of a transparent polymer that had been
engraved with alignment axes. Reference values were obtained by manually positioning
the alignment piece in the aligned position and acquiring the transformation provided by

the manipulator’s CS, TVTVCPO.
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Figure 15. Image of part of the target and the developed alignment piece in the aligned position.

Provided that the robot’s TCP has been assigned to the cross-hair, the transformation
between the TCP and the target origin is, in the aligned position, the identity matrix.
The definition of the TCP position is a built-in function of the KUKA robot controller,
where the transformation between the robot’s flange and the alignment piece is estimated
through the XYZ Four-Point TCP Calibration Method. This method involves bringing the
tool center to a known position and recording several points as the position is approached
from different orientations.

For a given test position, 7, the rigid body transformation between the optical axis of
the camera and the coordinate system of the target, Tgli, is given as follows:

-1 1cp,\~1 .TCP,
Tgli:(T%éP) (T ") Ty OT]KCPO/ (13)

where TV{,CP" is provided by the robot’s CS at position i and TS!, is the calibrated hand-eye
transformation. The transformation between the tool center point, T%CPO, is the identity
matrix. In our experiments, for each test position, we estimate Tgl,» and compare it with the
reference value described above.

3.2.3. Evaluation of Overall System Performance

The overall performance of the proposed system is evaluated in a set of 20 initial
camera positions, similar to those described in Section 3.1. In Figure 16, we show the
translation errors between the estimated and ground truth transformations in each of the
two axes that are parallel to the target plane.

% Monocular
3.5 X Stereoscopic

Y(mm)

Figure 16. Error in each of the X and Y axes for monocular (blue) and stereoscopic (red) estimates
using our proposed approach.
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3.2.4. Evaluation of Position Estimation

The performance of the position determination step was evaluated by using a checker-
board pattern as a target and full-resolution images. We used a state-of-the-art checkerboard
detection algorithm [52], which is considered to be very accurate. In this manner, we at-
tempted to limit, to the extent possible, the effect of the developed target and marker
detection methods on the results.

This experiment was run on approximately the same camera poses as described above.
The distance between the camera and the target was increased to fit the larger checkerboard
target in the cameras’ fields of view. The results are presented in Figure 17.
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Figure 17. Error in each of the X and Y axes for monocular (blue) and stereoscopic (red) estimates
using corner values provided by the checkerboard detection algorithm in full-resolution images.

3.2.5. Study of the Effect of Camera Slant in the Original Position on the Overall
System Performance

For the sake of completeness, an extensive analysis was conducted over a more
comprehensive set of positions outside of the limits established in Section 3.1. We analyzed
a set of 296 images taken at random initial camera positions and orientations.

In Figures 18-20, we present the results as a function of the characteristics of the initial
position: total rotation between camera and target and the horizontal and vertical deviation
(Euclidean distance) from the central position and distance between the camera and the
target. In these figures, the red cross signifies the mean of the observations and the dashed
black circle represents the error tolerance of the application.
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Figure 18. Error in each of the X and Y axis for the estimation provided by the monocular (a) and stereoscopic (b) approaches.
The colours represent the total rotation between the camera and target planes.
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(a)
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Figure 19. Error in each of the X and Y axis for the estimation provided by the monocular (a) and stereoscopic (b) approaches.

The colours represent the horizontal and vertical deviation from the from the central position.
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Figure 20. Error in each of the X and Y axis for the estimation provided by the monocular (a) and stereoscopic (b) approaches.

The colours represent the distance between the camera and target.

3.2.6. Comparison to the Earlier Solution

In order to establish a comparison between the newly developed marker-based method

and the approach of [10], we ran corresponding data through their method that consists
of estimating a 3D representation of the scene by stereo matching and aligning it to
the reference CAD model using an iterative closest point (ICP) algorithm. To obtain
corresponding data, we captured the same sequence of robot poses with the same scene
object, but with different lighting conditions. Since the stereo reconstruction relies on
Lambertian reflectivity of the target object, it requires more light than the new marker-

based approach.
The earlier approach relies on a number of parameters, which should be tuned to the

current scene properties. This is needed to avoid falling into local minima and converging
on false position estimates. To avoid the time-consuming manual tuning step to adapt to
this particular setup, we gave an initial estimate to the algorithm based on the known true
target position with an added offset. For the objective of measuring the accuracy (not the
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robustness) of the earlier solutions, this approach is justified for the sake of a comparison.
We found that adding up to 25 mm of position error and five degrees of angular error
still results in the algorithm converging as close to the correct position as the data allow
(Figure 21, left side). Larger amounts (such as 50 mm and 10 degrees) make it difficult for
ICP to find the correct neighborhood to converge, and the pose estimates start having large
amounts of outliers (Figure 21, right side).
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Figure 21. Error in each of the X and Y axis for the estimation provided by the stereo ICP based method from earlier work,

with different amounts of initial position deviation from ground truth. Offset values of |Aa| =5 deg, |At| = 25 mm (a). Offset

values of |Aa| =10 deg, |At| = 50 mm (b). Each colour point represents a different position of the camera in relation to the

target. The continuous black circle represents the error tolerance of the application.

3.2.7. Analyses of Overall System Performance Using an Image-Based Metric

An alternative, image-based metric was designed to evaluate the overall performance
of the system without relying on the manual alignment procedure and alignment tool
calibration (described in Section 3.2.2) to provide a reference value, allowing us to rule
out errors in those processes. However, this metric expresses not only the accuracy of our
system and the ability of the robot’s CS to report its position correctly, but also its ability to
reach the target position. Therefore, we can expect the overall errors to be potentially higher.

The procedure starts by capturing an image at the initial position and calculating the
transformation between the left camera and the target, Tgli, using our developed methods.
As a second step, the base-to-end-effector transformation that brings the camera to the

. . TCP; . .
desired position, T, /, is determined by:

TTCPf — TTCPi C1

K —K —14C1
W w ' Trce Ty, Ter, - Trees (14)

where T(I_fl , the transformation between the camera and the target in the desired position,
]
has the value:

100 0
010 0

K _

=10 0 1 250]" (15)
000 1
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which corresponds to aligning the camera and target plane at a distance of 250 mm from
the target. The command is given to the robot controller, which moves the camera to the
calculated position, where a full-resolution image of the target is taken (Figure 22).

Figure 22. Example image taken at the aligned position. If the estimate is correct, the center of the
reference marker should correspond to the center of the image.

If the alignment is correct, the center of the reference marker is expected to coincide
with the center of the image. Therefore, an alignment error can be measured in pixels, i.e., as
the difference between the center of the marker and the center of the image (Figure 23).
The measured error can be converted into millimeters, since the dimensions of the target
are known (e.g., we know that the diameter of one bead corresponds to 1.95 mm).

Figure 23. Example of a cropped image taken at the aligned position. The yellow cross represents the
center of the marker and the red cross the center of the image. A combined overall performance error
can be calculated, in pixels, as the difference between the two points.

In Figure 24, we show the calculated error using this method for the set of 20 initial
camera positions that we have been analyzing so far.

3.2.8. Discussion

Through the study of the overall performance of the system, we conclude that both
the monocular and stereoscopic approaches satisfy the requirements of the application for
the studied range of positions, as all data points are within the £3 mm tolerance (Figure
16). Furthermore, the results are considered to be quite precise, as the errors are distributed
within a circle of approximately 1 mm radius around the mean value. There are no sig-
nificant performance differences between the monocular and stereoscopic approaches.
This indicates that the system can be simplified to its monocular version without signif-
icant loss of accuracy or precision. This is a clear improvement over methods based on
3D reconstruction from multiple cameras, since the physical space on the manipulator
is limited.

When using the reference method for marker detection (checkerboard target), we
observe a similar trend in the results (Figure 17). However, precision is lower, with errors
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distributed in a circle of around 1.5 mm radius around the mean value, which is likely
related with the increased distance between the camera and the target.
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Figure 24. Error in each of the X and Y axes for monocular (blue) and stereoscopic (red) estimates
provided by the image-based method.

In all experiments, regardless of the evaluation metric, we observe an offset in the
estimated errors. When relating the local coordinate systems of the targets with the physical
setup, it becomes clear that the offset has a strong directional component that coincides
with the gravity vector. Furthermore, the remaining directional components of the offset
tend to follow the direction in which the end effector extends from the base. The offset can
be traced back to an error in the positions reported by the control system of the robot, and it
is higher the further the arm extends from the robot base. This data leads us to conclude
that the offset is related to a deflection of the robot base under the manipulator’s weight.

This is a known problem in robotics, often tackled through non-kinematic calibration of
the manipulator. Non-kinematic calibration of robot manipulators is of particular interest
to the ITER application due to the fact that the high payloads can cause considerable
deflections of the robot base [53]. However, the investigation of such methods falls out of
the scope of this work, and in our results, no methods have been applied to compensate for
this deviation.

Therefore, in the upcoming discussion on how several characteristics of the initial
pose affect the quality of our estimate, we consider better estimates those that are nearest
the mean error value.

In this setting, it is clear from Figure 18 that the overall system provides better esti-
mates for less slanted initial camera positions. This is likely influenced by the characteris-
tics of the developed marker detection algorithm, which assumes that the centroid of the
detected ellipses in the images corresponds to the center of the circular markers. This ap-
proximation is better when the camera plane and the object plane are parallel. We also note
that the stereoscopic estimation seems to have a more advantageous performance for higher
angles, reducing the spread of the results and increasing the precision of our estimation.

In Figure 19, we see that a higher distance from the central position is similarly associ-
ated with worst estimates, although the difference is not as obvious as in the previous case.

As Figures 18 and 19 indicate, images from initial poses with lower angle and smaller
distance generally lead to consistent estimates closest to the mean error, i.e., have the best
precision. In Figure 20, we see a slightly different pattern. Higher distance from the target is
associated with higher error, while poses closer to the target have error closer to 0. We can



Appl. Sci. 2021, 11,3

24 of 26

conclude that there is a direct influence of the distance to the target (and degree to which
the robot arm is extended) on the reported error values.

As the comparison between Figures 16 and 21 shows, our proposed approach signif-
icantly outperforms, as hypothesized, the state-of-the-art method for pose estimation in
the ITER environment, even while using a single camera. Furthermore, our approach is
significantly more tolerant to the variation of light conditions, needing far less fine-tuning
to be adapted to a new setting. The maximum deviation from the mean is, in the best case,
around 3 mm, contrasting with the 1 mm of the proposed approach and consuming all the
available tolerance.

The experiment that uses an image-based metric (Figure 24) provides a similar distri-
bution of error to those of the other experiments, although both the precision and accuracy
are lower due to the inclusion of the alignment task.

4. Conclusions

Our studies demonstrate that marker-based tracking is a suitable option for localiza-
tion of the elements of the divertor remote handling system of the ITER, as well as for other
similar applications. Even though characteristics of these environments might invalidate
the use of retro-reflective markers of the kind conventionally used in photogrammetry,
such as retro-reflective tape, we have shown that it is possible to develop a custom made
retro-reflective marker out of materials that are commonly used in industrial environments
(stainless steel and fused silica). The results of the overall system performance are within
the targeted range of error and the system was demonstrated to work quite robustly, even
without compensating for the deviations in the positions reported by the manipulator’s
control system. Furthermore, the proposed approach was demonstrated to be considerably
better than the earlier stereo-matching-based solution. It was demonstrated that the system
can be simplified to a single camera without significant loss of accuracy or precision.

Further developments of this work should include the optimization of the brilliancy of
the retro-reflective markers, as well as the development of marker detection and correspon-
dence methods to allow handling of marker occlusion. Further, it is particularly relevant
that future studies consider how the errors caused by the deflection of the robot base
under the manipulator’s weight can be estimated and compensated, taking into account
the high and variable payloads in the ITER application. How the information computed
by the proposed system can be optimally presented to the operator and the effect of the
availability of this information on teleoperation performance should also be subject to a
dedicated study in the future.

Author Contributions: Conceptualization, L.G.R. and O.].S.; Methodology, L.G.R. and O.].S.; Project
administration, O.J.S. and E.R.M.; Resources, A.D.; Software, L.G.R.; Supervision, O.].S., S.P.,, and
A.G; Validation, L.G.R.; Writing—original draft, L.G.R.; Writing—review and editing, O.].S., S.P,
and A.G. All authors have read and agreed to the published version of the manuscript.

Funding: The work in this paper was funded by the European Union’s Horizon 2020 research and
innovation program under the Marie Sklodowska Curie grant agreement No. 764951, Immersive
Visual Technologies for Safety-Critical Applications and by Fusion for Energy (F4E), and Tampere
University under the F4E grant contract FAE-GRT-0901. This publication reflects the views only of
the authors, and Fusion for Energy cannot be held responsible for any use which may be made of the
information contained herein. The research infrastructure of the Center for Immersive Visual Tech-
nologies (CIVIT) at Tampere University provided the robotic manipulator, sensors, and laboratory
space for conducting the experiments.

Conflicts of Interest: The authors declare no conflict of interest. This publication reflects the views
only of the authors, and Fusion for Energy cannot be held responsible for any use which may be
made of the information contained herein.



Appl. Sci. 2021, 11,3 25 0f 26

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Pérez, L.; Rodriguez, I; Rodriguez, N.; Usamentiaga, R.; Garcia, D.F. Robot guidance using machine vision techniques in
industrial environments: A comparative review. Sensors 2016, 16, 335. [CrossRef] [PubMed]

Malamas, E.N.; Petrakis, E.G.; Zervakis, M,; Petit, L.; Legat, ].D. A survey on industrial vision systems, applications and tools.
Image Vis. Comput. 2003, 21, 171-188. [CrossRef]

Lichiardopol, S. A Survey on Teleoperation; DCT Rapporten; Vol. 2007.155; Technical Report; Technische Universiteit Eindhoven:
Eindhoven, The Netherlands, 2007.

Hoff, W.A ; Gatrell, L.B.; Spofford, J.R. Machine vision based teleoperation aid. Telemat. Inform. 1991, 4, 403—423. [CrossRef]
Miyanishi, Y.; Sahin, E.; Makinen, J.; Akpinar, U.; Suominen, O.; Gotchev, A. Subjective comparison of monocular and stereoscopic
vision in teleoperation of a robot arm manipulator. Electron. Imaging 2019, 2019, 659-1-659-6. [CrossRef]

Tesini, A.; Palmer, J. The ITER remote maintenance system. Fusion Eng. Des. 2008, 83, 810-816. [CrossRef]

Sanders, S.; Rolfe, A.; others. The use of virtual reality for preparation and implementation of JET remote handling operations.
Fusion Eng. Des. 2003, 69, 157-161. [CrossRef]

Heemskerk, C.; De Baar, M.; Boessenkool, H.; Graafland, B.; Haye, M.; Koning, J.; Vahedi, M.; Visser, M. Extending Virtual Reality
simulation of ITER maintenance operations with dynamic effects. Fusion Eng. Des. 2011, 86, 2082-2086. [CrossRef]

Niu, L.; Aha, L.; Mattila, J.; Gotchev, A.; Ruiz, E. A stereoscopic eye-in-hand vision system for remote handling in ITER. Fusion
Eng. Des. 2019. [CrossRef]

Niu, L.; Smirnov, S.; Mattila, J.; Gotchev, A.; Ruiz, E. Robust pose estimation with the stereoscopic camera in harsh environment.
Electron. Imaging 2018, 1-6. [CrossRef]

Burgess, G.; Shortis, M.; Scott, P. Photographic assessment of retroreflective film properties. ISPRS |. Photogramm. Remote Sens.
2011, 66, 743-750. [CrossRef]

Schauer, D.; Krueger, T.; Lueth, T. Development of autoclavable reflective optical markers for navigation based surgery.
In Perspective in Image-Guided Surgery; World Scientific: Singapore, 2004; pp. 109-117._0015. [CrossRef]

Bhatnagar, D.K. Position Trackers for Head Mounted Display Systems: A Survey; University of North Carolina: Chapel Hill, NC,
USA, 1993; Volume 10.

Vogt, S.; Khamene, A; Sauer, F; Niemann, H. Single camera tracking of marker clusters: Multiparameter cluster optimization
and experimental verification. In Proceedings of the International Symposium on Mixed and Augmented Reality, Darmstadt,
Germany, 1 October 2002; pp. 127-136. [CrossRef]

Bergamasco, F.; Albarelli, A.; Torsello, A. Pi-tag: A fast image-space marker design based on projective invariants. Mach. Vis.
Appl. 2013, 24, 1295-1310. [CrossRef]

Nakazato, Y.; Kanbara, M.; Yokoya, N. Localization of wearable users using invisible retro-reflective markers and an IR camera.
In Proceedings of the Stereoscopic Displays and Virtual Reality Systems XII, International Society for Optics and Photonics,
San Jose, CA, USA, 22 March 2005; Volume 5664, pp. 563-570.

Sereewattana, M.; Ruchanurucks, M.; Siddhichai, S. Depth estimation of markers for UAV automatic landing control using stereo
vision with a single camera. In Proceedings of the International Conference Information and Communication Technology for
Embedded System, Ayutthaya, Thailand, 23-25 January 2014.

Faessler, M.; Mueggler, E.; Schwabe, K.; Scaramuzza, D. A monocular pose estimation system based on infrared leds. In Proceed-
ings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May-5 June 2014; pp.
907-913. [CrossRef]

Hattori, S.; Akimoto, K.; Fraser, C.; Imoto, H. Automated procedures with coded targets in industrial vision metrology.
Photogramm. Eng. Remote Sens. 2002, 68, 441-446.

Tusheyv, S.; Sukhovilov, B.; Sartasov, E. Architecture of industrial close-range photogrammetric system with multi-functional
coded targets. In Proceedings of the 2017 2nd International Ural Conference on Measurements (UralCon), Chelyabinsk, Russia,
16-19 October 2017; pp. 435-442. [CrossRef]

San Biagio, M.; Beltran-Gonzalez, C.; Giunta, S.; Del Bue, A.; Murino, V. Automatic inspection of aeronautic components. Mach.
Vis. Appl. 2017, 28, 591-605. [CrossRef]

Liu, T.; Burner, A.W.,; Jones, T.W.; Barrows, D.A. Photogrammetric techniques for aerospace applications. Prog. Aerosp. Sci. 2012,
54, 1-58. [CrossRef]

Clarke, T.A. Analysis of the properties of targets used in digital close-range photogrammetric measurement. In Proceedings of
the Videometrics III, International Society for Optics and Photonics, Boston, MA, USA, 6 October 1994; Volume 2350, pp. 251-262.
[CrossRef]

Dong, M.; Xu, L.; Wang, J.; Sun, P.; Zhu, L. Variable-weighted grayscale centroiding and accuracy evaluating. Adv. Mech. Eng.
2013, 5, 428608. [CrossRef]

Bender, P.; Wilkinson, D.; Alley, C.; Currie, D.; Faller, J.; Mulholland, J.; Siverberg, E.; Plotkin, H.; Kaula, W.; MacDonald, G.
The Lunar laser ranging experiment. Science 1973, 182, 229-238. [CrossRef]

Feng, Q.; Zhang, B.; Kuang, C. A straightness measurement system using a single-mode fiber-coupled laser module. Opt. Laser
Technol. 2004, 36, 279-283. [CrossRef]


http://dx.doi.org/10.3390/s16030335
http://www.ncbi.nlm.nih.gov/pubmed/26959030
http://dx.doi.org/10.1016/S0262-8856(02)00152-X
http://dx.doi.org/10.1016/S0736-5853(05)80062-0
http://dx.doi.org/10.2352/ISSN.2470-1173.2019.3.SDA-659
http://dx.doi.org/10.1016/j.fusengdes.2008.08.011
http://dx.doi.org/10.1016/S0920-3796(03)00307-7
http://dx.doi.org/10.1016/j.fusengdes.2011.04.066
http://dx.doi.org/10.1016/j.fusengdes.2019.03.036
http://dx.doi.org/10.2352/ISSN.2470-1173.2018.09.IRIACV-126
http://dx.doi.org/10.1016/j.isprsjprs.2011.07.002
http://dx.doi.org/10.1142/9789812702678_0015
http://dx.doi.org/10.1109/ISMAR.2002.1115082
http://dx.doi.org/10.1007/s00138-012-0469-6
http://dx.doi.org/10.1109/ICRA.2014.6906962
http://dx.doi.org/10.1109/URALCON.2017.8120748
http://dx.doi.org/10.1007/s00138-017-0839-1
http://dx.doi.org/10.1016/j.paerosci.2012.03.002
http://dx.doi.org/10.1117/12.189137
http://dx.doi.org/10.1155/2013/428608
http://dx.doi.org/10.1126/science.182.4109.229
http://dx.doi.org/10.1016/j.optlastec.2003.09.016

Appl. Sci. 2021, 11,3 26 0f 26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.
43.

44.

45.
46.

47.

48.

49.

50.

51.

52.

53.

Nakamura, O.; Goto, M.; Toyoda, K.; Takai, N.; Kurosawa, T.; Nakamata, T. A laser tracking robot-performance calibration system
using ball-seated bearing mechanisms and a spherically shaped cat’s-eye retroreflector. Rev. Sci. Instrum. 1994, 65, 1006-1011.
[CrossRef]

Shortis, M.R.; Seager, ].W. A practical target recognition system for close range photogrammetry. Photogramm. Rec. 2014,
29, 337-355. [CrossRef]

Ribeiro, L.G.; Suominen, O.; Peltonen, S.; Morales, E.R.; Gotchev, A. Robust Vision Using Retro Reflective Markers for Remote
Handling in ITER. Fusion Eng. Des. 2020, 161, 112080. [CrossRef]

Lundvall, A.; Nikolajeff, F.; Lindstrém, T. High performing micromachined retroreflector. Opt. Express 2003, 11, 2459-2473.
[CrossRef] [PubMed]

Stoudt, M.; Vedam, K. Retroreflection from spherical glass beads in highway pavement markings. 1: Specular reflection. Appl.
Opt. 1978, 17, 1855-1858. [CrossRef] [PubMed]

Yuan, J.; Chang, S.; Li, S.; Zhang, Y. Design and fabrication of micro-cube-corner array retro-reflectors. Opt. Commun. 2002,
209, 75-83. [CrossRef]

Shin, S.Y.; Lee, ].I; Chung, W.J.; Cho, S.H.; Choi, Y.G. Assessing the refractive index of glass beads for use in road-marking
applications via retroreflectance measurement. Curr. Opt. Photonics 2019, 3, 415-422. [CrossRef]

Yongbing, L.; Guoxiong, Z.; Zhen, L. An improved cat’s-eye retroreflector used in a laser tracking interferometer system. Meass.
Sci. Technol. 2003, 14, N36. [CrossRef]

MATLAB. Version 9.6.0 (R2019a); The MathWorks Inc.: Natick, MA, USA, 2019.

Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330-1334. [CrossRef]
Heikkila, J.; Silven, O. A four-step camera calibration procedure with implicit image correction. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 17-19 June 1997; pp. 1106-1112.
[CrossRef]

Tan, L.; Wang, Y,; Yu, H.; Zhu, J. Automatic camera calibration using active displays of a virtual pattern. Sensors 2017, 17, 685.
[CrossRef]

Alj, I; Suominen, O.; Gotchev, A.; Morales, E.R. Methods for Simultaneous Robot-World-Hand-Eye Calibration: A Comparative
Study. Sensors 2019, 19, 2837. [CrossRef]

Bradley, D.; Roth, G. Adaptive thresholding using the integral image. J. Graph. Tools 2007, 12, 13-21. [CrossRef]

Soille, P. Morphological Image Analysis: Principles and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany,
2013. [CrossRef]

Haralick, R.M.; Shapiro, L.G. Computer and Robot Vision; Addison-Wesley: Boston, MA, USA, 1992; Volume 1, pp. 28-48.

Ahn, S.J.; Rauh, W,; Kim, S.I. Circular coded target for automation of optical 3D-measurement and camera calibration. Int. J.
Pattern Recognit. Artif. Intell. 2001, 15, 905-919. [CrossRef]

Mallon, J.; Whelan, PE. Which pattern? Biasing aspects of planar calibration patterns and detection methods. Pattern Recognit.
Lett. 2007, 28, 921-930. [CrossRef]

Collins, T.; Bartoli, A. Infinitesimal plane-based pose estimation. Int. J. Comput. Vis. 2014, 109, 252-286. [CrossRef]
Schweighofer, G.; Pinz, A. Robust pose estimation from a planar target. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2024-2030.
[CrossRef] [PubMed]

Sturm, P. Algorithms for plane-based pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2000 (Cat. No. PR00662), Hilton Head Island, SC, USA, 13-15 June 2000; Volume 1, pp. 706-711. [CrossRef]
Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, MA, USA, 2003.
[CrossRef]

Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164-168.
[CrossRef]

Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. |. Soc. Ind. Appl. Math. 1963, 11, 431-441.
[CrossRef]

Rodriguez, O. Des lois geometriques qui regissent les desplacements d"un systeme solide dans I'espace et de la variation des
coordonnees provenant de deplacements consideres independamment des causes qui peuvent les produire. J. Math. Pures Appl.
1840, 5, 380-440.

Geiger, A.; Moosmann, F,; Car, O.; Schuster, B. Automatic camera and range sensor calibration using a single shot. In Proceedings
of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14-18 May 2012; pp. 3936-3943.
[CrossRef]

Kiveld, T.; Saarinen, H.; Mattila, J.; Himaéldinen, V.; Siuko, M.; Semeraro, L. Calibration and compensation of deflections and
compliances in remote handling equipment configurations. Fusion Eng. Des. 2011, 86, 2043-2046. [CrossRef]


http://dx.doi.org/10.1063/1.1145104
http://dx.doi.org/10.1111/phor.12070
http://dx.doi.org/10.1016/j.fusengdes.2020.112080
http://dx.doi.org/10.1364/OE.11.002459
http://www.ncbi.nlm.nih.gov/pubmed/19471358
http://dx.doi.org/10.1364/AO.17.001855
http://www.ncbi.nlm.nih.gov/pubmed/20198085
http://dx.doi.org/10.1016/S0030-4018(02)01630-9
http://dx.doi.org/10.3807/COPP.2019.3.5.415
http://dx.doi.org/10.1088/0957-0233/14/6/404
http://dx.doi.org/10.1109/34.888718
http://dx.doi.org/10.1109/CVPR.1997.609468
http://dx.doi.org/10.3390/s17040685
http://dx.doi.org/10.3390/s19122837
http://dx.doi.org/10.1080/2151237X.2007.10129236
http://dx.doi.org/10.1108/sr.2000.08720cae.001
http://dx.doi.org/10.1142/S0218001401001222
http://dx.doi.org/10.1016/j.patrec.2006.12.008
http://dx.doi.org/10.1007/s11263-014-0725-5
http://dx.doi.org/10.1109/TPAMI.2006.252
http://www.ncbi.nlm.nih.gov/pubmed/17108375
http://dx.doi.org/10.1109/CVPR.2000.855889
http://dx.doi.org/10.1017/CBO9780511811685.020
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1109/ICRA.2012.6224570
http://dx.doi.org/10.1016/j.fusengdes.2010.12.032

	Introduction
	Methods
	Retro-Reflective Marker Design
	Automatic Offline Calibration Routine
	Marker Detection and Identification

	Results
	Synthetic Data
	Evaluating the Performance of Marker Detection
	Evaluating the Performance of Pose Estimation

	Real Data
	Experimental Setup
	Reference Values
	Evaluation of Overall System Performance
	Evaluation of Position Estimation
	Study of the Effect of Camera Slant in the Original Position on the Overall System Performance
	Comparison to the Earlier Solution
	Analyses of Overall System Performance Using an Image-Based Metric
	Discussion


	Conclusions
	References

