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Abstract: This paper presents an autonomous robotic assembly system for Soma cube blocks, which,
after observing the individual blocks and their assembled shape, quickly plans and executes the
assembly motion sequence that picks up each block and incrementally build the target shape.
A multi stage planner is used to find the suitable assembly solutions, assembly sequences and
grip sequences considering various constraints, and re-grasping is used when the block target pose is
not directly realizable or the block pose is ambiguous. The suggested system is implemented for a
commercial UR5e robotic arm and a novel two degrees of freedom (DOF) gripper capable of in-hand
manipulation, which further speeds up the manipulation speed. It was experimentally validated
through a public competitive demonstration, where the suggested system completed all assembly
tasks reliably with outstanding performance.

Keywords: robotic assembly; re-grasping; in-hand manipulation

1. Introduction

Although industrial robots have long been used for various manufacturing tasks,
their role has mostly been limited to repetitive high-volume tasks as robot deployment
has typically required task-specific fixtures, end effectors and hand-programmed motion
sequences [1,2]. The introduction of human-safe, quickly programmable collaborative
robots has broadened the robot deployment to high-mix, low-volume works. Thanks to
the recent advances of sensor technology and major breakthrough in the machine learning
field, we are now expecting a widespread adoption of intelligent robots that can perceive
the environment and make decisions by itself.

In this work, we present an integrated system, which, given individual components
and their assembled shape, perceives their positions, orientations and assembled con-
figuration using sensors; generates the optimal assembly plan to build the target shape
from components while avoiding a collision; and rapidly executes the assembly motions
using a robotic manipulator and gripper. The suggested system was validated in both
simulated and real environments using multiple combinations of sensor, manipulator and
gripper systems and was successfully used to rapidly solve a number of assembly tasks
autonomously in a public competitive demonstration with outstanding results.

The remainder of the paper proceeds as follows. Section 2 introduces the related
works and highlights how the suggested work differs from each of them. Section 3 presents
the overview of the hardware and software used for the system. Section 4 explains how the
robot system processes the sensor data to perceive the environment. Section 5 presents how
the system finds the optimal motion plan that rapidly assembles the components while
avoiding a collision. Section 6 describes the simulation setup we used to test the system
with different hardware configurations. Section 7 shows the experimental results acquired
from the laboratory experiment and public demonstration. Finally, we conclude with a
discussion of potential future directions arising from this work.
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2. Related Work

In this work, we present an integrated robotic assembly system that can perceive the
environment, plan for the assembly sequence, feasible grasps and manipulator motion
and control the hardware in real time. The system is deployed and tested for reliability
and performance beyond controlled laboratory environment. As such a system requires
multiple components to work together reliably, previous works mostly focus on individual
components rather than an integrated system. In [3], the authors provided a summary of
recent robot manipulation research topics, which include robotic hand design, perception
for manipulation, grasping, manipulation and approaches to utilize machine learning for
manipulation, but most of the works presented are focused on individual components.
For example, in [4], the authors focused on assembly sequence and grasp planning for
assembly tasks, and, in [5,6], the authors used deep learning based approach to learn grasp
planning strategy from data acquired by repeated trials.

There have been a few works that address an integrated system that can perceive,
plan and control its manipulators for assembly tasks. In [7], the authors presented an
integrated system for autonomous robotic manipulation that integrates 3D perception,
motion planning and real-time motion control. In [8], the authors presented a robot system
that has 2D stereo vision camera to detect target objects and uses two 7 DOF arms for
a simple assembly task. In [9], the authors presented an integrated robotic system for
autonomous bin picking task, which integrates the 3D perception, grasp and arm motion
planning and motion control of the hardware. The system has been validated in public
competition, the Amazon Robotics Challenge, and has shown exceptional performance in
terms of reliability, accuracy and speed.

Recently, there have been a number of works using the Soma cube assembly task as a
demonstration [10–14]. The Soma cube assembly task is a good benchmark task for robotic
assembly as it has nontrivial number of possible assembly solutions and grasp plans,
yet most of the assembly can be realized using a single robotic manipulator. In [14], the
authors focused on finding robust grasping strategies by 2-D form closure with cylindrical
fingers for arbitrarily shaped objects. The suggested algorithm has been demonstrated by
assembling Soma cube blocks into a cube.

In [10], the authors proposed an integrated planning system that plans for the assembly
sequence and motion to stack a Soma cube block on another. Although the suggested work
is close to this work as it integrates the assembly sequence planning, motion planning and
re-grasping required for the Soma cube assembly task, the suggested system is largely
limited as it relies upon full information of the blocks and the assembly is limited for only
two blocks. The authors extended the suggested system in [11], which allows for stacking
up to five blocks. In [13], the authors proposed a planner that plans the optimal assembly
sequence of Soma cube blocks for a dual armed robot. Given the mesh model of objects
and the final assembly configuration, the suggested algorithm finds an optimal assembly
sequence for dual armed robot considering the stability, graspability and assemblability.
Finally, recently, in [12], the authors proposed the single-arm motion planner for Soma cube
block assembly, which, given the initial and final pose of a Soma cube block, automatically
generates the collision free arm motion plan with optional re-grasping to assemble the
blocks incrementally.

3. System Overview

Figure 1 shows the overall system architecture. The only inputs to the system are the
target shape provided as blocks assembled by human operator and individual building
blocks needed for the assembly. The robot observes the target shape and individual
building blocks, calculates all possible block configurations for the target shape and plans
the assembly sequences and grasp strategy for moving each block while satisfying multiple
constraints. If there exists no manipulation sequence that can move each block to the target
pose in a single manipulation, the planner performs additional re-grasp planning to move
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the block in multiple steps. The suggested system is modular and platform agonistic, and
it can accept different sensors, manipulators and gripper hardware with little effort.

Figure 1. Overall system architecture.

As the system is designed primarily to handle the Soma cube assembly task, which is
described in Section 7 in detail, we use following assumptions while designing the system:

• Seven standard Soma blocks are used as building components.
• Each block is separated from others with distance larger than the unit block size.
• The assembly sequence does not require peg-in-hole assembly or screwing.
• The assembly sequence can be realized using a single robotic manipulator.

The first two assumptions allow simplifying the perception modules, while the last
two allow using simple placement to assemble the blocks. However, the suggested system
can be easily extended for more general tasks by adding new software and hardware
modules, which we discuss more in detail in Section 7.

3.1. Manipulator and Gripper

We used a commercial UR5e 6 DOF manipulator for the task. To manipulate the
blocks, we iterated through multiple different gripper systems during the development.
First, we tried using a commercial Robotiq 2F-85 adaptive gripper without modification,
and found its long, center located fingers are not ideal for lateral block release. We replaced
its fingers with a pair of short, off-center custom made fingers, as shown in Figure 2a.
Based on the experience from using the commercial gripper for the task, we developed
a custom designed parallel gripper with an additional degree of freedom at the fingers,
which is shown in Figure 2b. This gripper allows the pickup and placement motions to be
simplified thanks to its short finger length, parallel actuation and the ability of rotating the
grasped object without a wrist movement. We present the Soma cube assembly process
using various manipulator and gripper setups in the following sections.
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(a) (b)
Figure 2. Two gripper systems used for the system: (a) 1 DOF gripper with short off-center fingers;
and (b) 2 DOF gripper with tilting fingers.

3.2. Sensors

For perception, we prepared a dual-sensor setup that consists of a ceiling-mounted
high-resolution RGB camera and a wrist-mounted RGBD camera. To achieve the very high
pose accuracy required for the assembly task, we used a Sony A7R Mark II commercial
mirrorless camera paired with Zeiss Sonnar T* 55 mm 1.8 lens as the RGB camera, which
can output 7952 × 5304 resolution image with low noise even under indoor lighting. The
camera uses stock firmware and is connected to control PC via USB-C cable and remotely
controlled by libgphoto2 library. For the wrist RGBD camera, we tested Intel Realsense
D435 and SR305 cameras and decided to use the SR305 camera, which we found to be
better optimized for close-range subjects. Two sensors setups are shown in Figure 3.

(a) (b)
Figure 3. Dual sensor setup for the system: (a) ceiling RGB camera; and (b) wrist RGBD camera.

3.3. Computation

As our software modules are fairly lightweight and do not require a powerful com-
puter for processing, we used a single laptop with core i7 CPU and GTX 1080 GPU to
process all CPU and GPU bound computational tasks, which includes the RGB and depth
based perception, assembly and grasp planning and finally real-time control of the robotic
arm and gripper. We did not use the preemptive real-time kernel on the control PC as the
UR5E manipulator has low external control rate of 500 Hz and has internal motion planner
and controller that ensure smooth arm motion.

4. Perception

To assemble arbitrarily positioned blocks into the target shape, the system needs to
perceive the type, position and orientation of each block first. Standard seven colored
Soma cube blocks are used, which are shown in Figure 4, and we label them Blocks 1–7
according to their shapes. To make planning easier, we define the pose and the orientation
of blocks separately. As there are 24 3D orientations resulting from multiple applications of
90◦ rotations about X-axis, Y-axis and Z-axis, we enumerate all 24 orientations and label
each block’s orientation as a number from 1 to 24. We define the pose of a block as the
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position and orientation of the bounding cuboid of the block. For a general block in 3D
space, we denote its pose by a tuple (x, y, z, φ, θ, ψ) where (x, y, z) is the 3D center position
of the bounding cuboid and (φ, θ, ψ) is its Euler angle. To remove the duplicate cases, we
limit Euler angles as 0 ≤ φ < π/2, 0 ≤ θ < π/2, 0 ≤ ψ < π/2. For blocks that lie flat on
the surface, we use a simpler 2D pose (x, y, φ) where (x, y) is the center position of the
bounding box and 0 ≤ φ < π/2 is the yaw angle. Examples of 2D and 3D block pose, as
well as blocks with the same pose but different orientations, are shown in Figure 5.

Figure 4. Seven Soma cube blocks types and their default colors.

(a) (b) (c)
Figure 5. Block pose and orientation: (a) 2D pose; (b) 3D pose; and (c) different block orientations.

4.1. RGB-Based Block Detection

We implemented a RGB-based block detection module to get accurate 2D poses of
building blocks required for the assembly task. When a RGB image is requested, the
ceiling camera is triggered and the recorded high-resolution jpeg image is transferred
to control PC and rectified using the calibration parameters. Then, the Deeplab-v3 [15]
deep learning-based semantic segmentation algorithm is used to segment the image it into
separate blocks, which we found to be better at preserving outlines of blocks than Mask
R-CNN [16] algorithm we also tested. Once each block is segmented from the image, their
type is classified using the average RGB value, and rotated bounding boxes are fitted to
each block. Then, the segmented block images are rotated to be aligned with the X-Y axis of
the image space. Finally, they are compared to the standard Soma cube blocks to determine
their orientation. have found that the resulting RGB-based block detecting algorithm is
reliable against lighting changes, takes less than 200 ms for processing on the core i7 laptop
with GTX 1080 GPU and has less than 1 mm positional error and 1.5 degree of orientation
error in the worst case compared to the ground truth data. The RGB-based block detection
pipeline is shown in Figure 6a.
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(a)

(b)
Figure 6. RGB and depth-based block detection: (a) RGB block detection pipeline; and (b) depth
block detection pipeline.

4.2. Depth-Based Block and Target Shape Detection

In addition to the RGB-based block detection, we also implemented a perception
module based on the wrist-mounted RGBD camera. Recently, several studies have focused
on detecting and estimating 6D pose of known objects from RGBD data [17]. Although such
general RGBD-based object detection algorithms can robustly detect and estimate poses of
complex-shaped objects even under heavy occlusion, we decided not to use them as the
Soma cube assembly task requires a very high positional accuracy to reliably assemble the
blocks using a single robotic manipulator, 1 mm or less for Soma cube blocks with 25 mm
unit size we used. Instead, we devised a custom cube perception pipeline based on the 2D
heightmap generated from the depth image, exploiting the specific shapes of Soma cube
blocks.

Using the camera transform calculated from manipulator forward kinematics, the
depth image is projected into 3D space to form the point cloud of the blocks. Then, a
2D heightmap is generated based on the distance of each point in point cloud from the
supporting surface, and a 2D detection pipeline similar to the RGB-based detection is used
afterward. As we can arbitrarily move the RGBD camera using the robotic manipulator,
we use multiple different camera positions, which includes the whole block observation
position, individual block observation positions and target shape observation position, to
overcome the limitation of lower resolution of the RGBD camera compared to the high-
resolution ceiling camera. We found that the RGBD camera used at a close range provides
accuracy excelling that of high-resolution ceiling camera, while having two issues: (a) close
camera position makes some area of the blocks occluded with no registered point on it, and
as a result single block tends to show up as separate blocks instead of a single connected
one in heightmap image; and (b) depth readings have noise at the edge of the blocks,
which shows up as spike-shaped artifacts in the point cloud. We used multi-stage filtering
to handle those issues, which includes k-nearest neighbors filtering in the depth space
and erosion/dilation of the heightmap image. After filtering, each connected block is
segmented and a rotated bounding box is fitted for each block. Then, each segmented
heightmap is rotated to be aligned with the X-Y axis of the image space and discretized
into a small 2D height array. This discretized target array can be directly used for target
shape or further matched with individual building blocks with all possible orientations to
detect each block type, orientation and pose. We found this depth based block detection
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algorithm, while not using the GPU, takes less than 20 ms for processing on the core i7
laptop with GTX 1080 GPU, is lighting independent and has superior accuracy to the
RGB-based detection algorithm. The depth-based block detection pipeline is shown in
Figure 6b.

5. Motion Planning

Once the individual blocks and the final assembled shape are known, we need to
determine how the final shape can be assembled using the blocks and how each block
can be grasped using the robotic gripper and moved to target pose without collision. We
describe how each step is implemented in the following subsections.

5.1. Assembly Solving

There often exist a number of different block configurations that fills the 3D target
shape without overlapping, which we call the assembly solutions. Although finding
the solution in general is a hard combinational optimization problem, all solutions of a
small-sized problem can be found quickly by a simple recursive search. For example, a
3 × 3 × 3 cube can be assembled using the standard Soma cube blocks shown in Figure 4
in 240 distinctive ways excluding rotations and reflection, some of which are shown in
Figure 7. The pseudo-code of the recursive search algorithm is shown in Algorithm 1. We
start with the empty target volume as the root node and recursively expand each node by
testing the fitness of all possible block positions and orientations. To remove a family of
symmetric solutions derived from one unique solution, we fix the orientation of L shaped
block and start expanding the tree from that block. We found that it takes less than 5 ms to
find all the solutions of 3 × 3 × 3 cube using the core i7 laptop with GTX 1080 GPU that
we used for the system.

Figure 7. Example of multiple assembly solutions for 3 × 3 × 3 cube.

Algorithm 1: Find_assembly_solutions(blocks, space)

1 if blocks is not empty then
2 for ori← 1; ori<num_total_orientations do
3 for pos← 1; pos<num_total_positions do
4 block_candidate← ( blocks[0], pos, ori);
5 if can_pack( space, block_candidate) then
6 blocks_new← blocks.remove(blocks[0]) ;
7 space_new← space.remove(block_candidate) ;
8 solutions.append(block_candidate,

Find_assembly_solutions(blocks_new, space_new) );
9 end

10 end

5.2. Assembly Sequence Planning

For each assembly solution, which contains the position and orientation of each block
in the assembled shape, there can exist multiple assembly sequences to incrementally build
the final shape from blocks, as shown in Figure 8. As we use a single manipulator without
any fixture for assembly, we only consider the cases where each block can be moved to the
final pose vertically downwards, otherwise a secondary manipulator or fixture would be
needed for additional support. To find all the possible assembly sequences for a solution,
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we use a recursive algorithm whose pseudo-code is shown in Algorithm 2. The algorithm
starts with an empty list of possible sequences and a 3D array that represents blocks fully
assembled according to the target shape. Then, it finds all blocks that can be picked up
vertically without colliding with other blocks and recursively solves its subproblems after
removing one of the possible blocks. Finally, the algorithm ends with a list of all possible
assembly sequences for the solution.

Figure 8. Example of assembly sequence planning.

Algorithm 2: Find_assembly_sequence(sequence, solution)

1 if solution is not empty then
2 top_blocks← all blocks in solution;
3 for i← 1; i<top_blocks.size do
4 if top_blocks[i] is blocked by other blocks in solution then
5 top_blocks← top_blocks.remove(top_blocks[i]);
6 end
7 for i← 1; i<top_blocks.size do
8 solution_new← solution.remove(top_blocks[i]);
9 sequence_new← sequence.append(top_blocks[i]);

10 Find_assembly_sequence(sequence_new,solution_new);
11 end
12 else
13 total_assembly_sequences.append(sequence);

5.3. Grasp Planning

Once an assembly sequence is found for an assembly solution, we can iteratively pick
up each block from its initial position, rotate it to its final orientation and finally move it
to its final position to assemble the final shape from blocks. To accomplish such actions
using robotic manipulator and gripper, we need to find a stable grasp for the block and
plan the manipulator motion sequence that moves the block from the initial pose to the
final pose without a collision. As finding a stable grasp for arbitrary shaped object is a hard
problem under active research [18–20], we use the following additional constraints to make
the search space tractable:

• The Z-axis of the pickup grasp pose should always be parallel to the Z-axis of the
block pose (vertical pickup constraint, as shown in Figure 9a).

• The Z-axis of the release grasp pose should be either parallel to the Z-axis of the build
surface (vertical release case, shown in Figure 9b) or perpendicular to the Z-axis of the
build surface (horizontal release case, shown in Figure 9c).

• The Y-axis of the pickup and release grasp pose is either parallel to the X-axis of the
block (X-axis grasp) or the Y-axis of the block (Y-axis grasp).

• The tip positions of the gripper fingers should be aligned with the centers of the unit
building cubes each block is composed of.
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(a) (b) (c)
Figure 9. Pickup and release constraints: (a) vertical pickup; (b) vertical release; and (c) lateral
release.

As grasp pose relative to the block is fixed during the manipulation, we only need to
determine the release grasp pose, and then the pickup grasp pose can be automatically found.
Figure 10c,d shows all collision-free Y-axis and X-axis release gripper pose candidates for
target block pose shown in Figure 10b. However, not all of them satisfy the vertical pickup
constraint and are directly realizable without re-grasping. For example, the release grasp pose
shown in Figure 10e results in the lateral pickup grasp pose in Figure 10f, which should be
avoided due to the high risk of collision. On the other hand, the release grasp pose shown in
Figure 10g results in the vertical pickup grasp pose shown in Figure 10h, which means we
can move the block from initial pose to target pose without re-grasping.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Grasp Planning process: (a) initial block pose; (b) target block pose; (c) Y-axis grasp
candidates; (d) X-axis grasp candidates; (e) infeasible release grasp; (f) infeasible pickup grasp;
(g) feasible release grasp; and (h) feasible pickup grasp.
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To find feasible grasp satisfying all the constraints, we use the grasp planning al-
gorithm shown in Algorithm 3, For each block, we enumerate all collision free release
grasp pose candidates in X-axis and Y-axis first, and then calculate the pickup grasp poses
for each release grasp poses using the relative transform of the block orientations. Due
to symmetry, some blocks can have identical block configurations for multiple different
orientations.We pre-calculate the transform results of all 24 each orientations for each
block and put together orientations that result in the same configuration. Based on this
information, we build the transform list, which contains all possible transforms for each
block that transforms from one orientation to another orientation. Then, the transform list
is used to calculate all possible pickup grasp poses. Finally, we calculate the Euler angles of
pickup grasp pose and calculate the cost of each pickup–release grasp pose pair according
to the pickup and release grasp pose pitch angle, relative yaw angle between pickup and
release grasp poses and the grasp width. This process is iterated for each block movement
in the sequence, and the grasp plan with the lowest cost is selected for each move to
form the best move sequence for the solution. If all pickup grasp poses in the best move
sequence have zero pitch angle, the move sequence satisfies the vertical pickup constraint
and can be directly realizable without re-grasping. Otherwise, the specific solution requires
re-grasping, which we explain in more detail in the next subsection.

Algorithm 3: Find_grasp_plan(block_type, block_initial_orientation, solution )

1 Release_grasp_candidates← {};
2 for x← 1; x<solution.xsize do
3 Release_grasp_candidates.add(Find_Y_axis_release_grasp(block_type,solution,x,0) );
4 Release_grasp_candidates.add(Find_Y_axis_release_grasp(block_type,solution,x,π/2) );
5 Release_grasp_candidates.add(Find_Y_axis_release_grasp(block_type,solution,x,−π/2) );
6 end
7 for y← 1; y<solution.ysize do
8 Release_grasp_candidates.add(Find_X_axis_release_grasp(block_type,solution,y,0) );
9 Release_grasp_candidates.add(Find_X_axis_release_grasp(block_type,solution,y,π/2) );

10 Release_grasp_candidates.add(Find_X_axis_release_grasp(block_type,solution,y,−π/2) );
11 end
12 Target_orientation← Get_block_orientation(block_type,solution);
13 Trans f orm_list← Get_block_transforms (block_type,

block_initial_orientation, Target_orientation);
14 for i← 1; i< Release_Grasp_candidates.size do
15 for j← 1; j<Trans f orm_list.size do
16 Release_grasp← Release_grasp_candidates[i].pose ;
17 Release_grasp_RPY← Transform_to_euler(Release_grasp);
18 Pickup_grasp← Release_grasp* Trans f orm_list[j]−1;
19 Pickup_grasp_RPY← Transform_to_euler(Pickup_grasp);
20 Release_Grasp_candidates[i].cost← kwidth*Release_grasp_candidates[i].width

+ kpickup_pitch* Pickup_grasp_RPY.pitch + krelease_pitch* Release_grasp_RPY.pitch
+ kyaw* abs(Release_grasp_RPY.yaw-Pickup_grasp_RPY.yaw) ;

21 end
22 end
23 return Release_grasp_candidates with smallest cost ;

5.4. Re-Grasp Planning

Some block orientations, such as two orientation families shown in Figure 11a,f, cannot
be directly moved to the other ones with a single movement and requires two movements
with an intermediate orientation. To find the best move sequence with re-grasping, we
start with the best move sequence found by grasp planner first, and then divide the move
that violates the vertical pickup constraint into two separate moves, which move the
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initial block to the intermediate pose and then to the final pose. To determine the best
intermediate block orientation, we first find the stable block orientations for each block by
checking the center of gravity and support polygon and make two consecutive moves for
each intermediate pose, one from the initial pose to the intermediate pose and the other
from the intermediate pose to the final pose. We use the grasp planning algorithm shown
in Algorithm 3 to find the best grasp for both moves and add their costs to get the cost
of selecting the intermediate pose as the re-grasping pose. Finally, we evaluate all stable
orientations for the block and find the best intermediate orientation that results in the
lowest cost moves of the block. The re-grasp planning process is shown in Algorithm 4.

(a) (b) (c) (d) (e) (f)
Figure 11. Orientation families and re-grasping. Unstable configuration is shown as transparent
blocks: (a) 4 initial block orientations rotationally symmetric about Z-axis; (b) orientations acquired by
a 90◦ rotation about X-axis; (c) orientations acquired by a −90◦ rotation about X-axis; (d) orientations
acquired by a 90◦ rotation about Y-axis; (e) orientations acquired by a −90◦ rotation about Y-axis;
and (f) target block orientations which cannot be directly reached by a 90 ◦ or −90◦ rotation about
X-axis or Y-axis.

Algorithm 4: Find_regrasp(block_type, block_initial_orientation, solution )

1 for intermediate_orientation← 1; intermediate_orientation<24 do
2 if is_stable(block_type, intermediate_orientation) then
3 temporary_solution← {};
4 temporary_solution.add_block(block_type,intermediate_orientation) ;
5 grasp_plan1← Find_grasp_plan(block_type, block_initial_orientation,

temporary_solution) ;
6 grasp_plan2← Find_grasp_plan(block_type, intermediate_orientation,

solution) ;
7 if grasp_plan1.is_feasible() and grasp_plan2.is_feasible() then
8 return grasp_plan1, grasp_plan2 ;
9 end

10 end

5.5. Arm and Gripper Motion Planning

After we get the optimal move sequence which consists of pickup grasp pose and
release grasp pose for each block, we need to plan the motions of the robotic manipulator
and gripper to realize the movement. For a physical robot, the motion control is handled
by the provided motion API, which takes the Cartesian and joint space waypoints and
maximum speed and acceleration parameters to plan the arm motion. For simulated robot
which does not have such API available, we use an additional control layer that uses
analytical inverse kinematics of the robot to move the simulated robotic arm in Cartesian
and joint spaces. For arm motion planning, the most important thing is to make sure that
the arm trajectory does not make the arm collide with the environment or itself. Motion
planning for collision avoidance is an active area of research [21,22], especially an additional
sensor can detect obstacles in the workspace [23–26]. Instead of using a full-blown path
planning to avoid possible collision, we separate the task space into two regions and use
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different control strategy for each region to achieve collision-free arm motion without
lengthy optimization.

• When the end effector is close to the support surface, for example during picking up
and releasing a block, we only use vertical linear motions in Cartesian space, which
guarantees that the gripper fingers do not touch other blocks thanks to the vertical
pickup constraint we use for grasp planning. To make sure that the manipulator does
not encounter singularity during the Cartesian space motion, we use the simulated
environment to test all possible pickup and grasp motions at the designated areas.

• When the end effector has enough clearance from the support surface, we use the
joint level movement using the analytic inverse kinematics of the manipulator to
quickly move the arm to the target pose. To change the end effector orientation among
perception, pickup and release poses, we use a set of arm joint angles where the 5th
joint of the manipulator can be freely rotated without collision, which we call the safe
joint angles. The 2nd, 3rd, 4th and 6th joints are first moved to the safe joint angles,
and then the 5th joint is moved to the reach the safe joint angles without self-collision.
The joint movements are done in reverse to reach target joint angles from safe joint
angles. This process is shown in Figure 12.

• When a 2 DOF gripper is used, the additional DOF can be used for the pitch control,
and we can keep the manipulator end-effector pitch angle to be zero. In that case, the
direct joint space motion between two poses is guaranteed to have no self-collision for
the workspace we assume and we skip the motion going through the safe joint angles
to save time.

Once we generate motion plans in the Cartesian and joint space, we integrate multiple
motions into one continuous motion with multiple waypoints, so that the manipulator
executes consecutive motions without stopping in between. Figure 13 shows snapshots of
such a continuous motion which includes picking up the block, moving and rotating the
block to the target pose and placing the block to the final pose.

Figure 12. Collision free arm motion planning using the safe joint angles.

(a) (b) (c) (d) (e)
Figure 13. Arm motion plan for UR5e arm and 2 DOF gripper: (a) pickup start; (b) pickup end;
(c) move and rotation to the release pose; (d) release start; and (e) release end.
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6. Simulation Results

We set up a simulation environment using the Webots open-source robotic simula-
tor [27] to test the feasibility of the assembly task using different combinations of sensors,
manipulators and grippers. We first used the PUMA 560 manipulator model with three
wrist joint axes all intersecting at a common point, which eliminates the need for wrist
collision-avoidance steps. The block poses were provided by the ground truth data from
the simulator, and the 3D pose representation was used. Figure 14a shows the assembly
process under such a simulation setup, where the motion planning algorithm successfully
finds proper move sequence, grasp poses and arm motions to assemble the given blocks
from blocks with arbitrary poses.

Figure 14b shows a more realistic simulation setup, where the UR5e manipulator
model is used and block information is acquired using the depth-based perception module
from a simulated depth camera mounted at the wrist of the manipulator. Collision-avoiding
arm motion planning is used to prevent the self collision of the wrist actuators. We found
that the depth-based block detection and the collision avoiding motion planning algorithm
successfully let the system assemble target shape from individual blocks.

(a)

(b)
Figure 14. Soma cube assembly experiments in simulated environments: (a) simulation with PUMA
560 manipulator mode and ground truth block information; and (b) simulation with UR5e manipula-
tor model and depth based perception.

7. Experimental Results

The suggested software system was implemented for physical UR5e robotic manipu-
lator and custom 2 DOF gripper and tested with a number of block poses and target shapes
in both lab environment and public demonstration.

7.1. Lab Environment

We first evaluated the system performance in the lab environment using multiple
combinations of different initial block poses and target shapes. Figure 15 shows the building
sequences for some of the standard shapes we tested and Table 1 shows the analysis of the
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result. For all target shapes we tested, the assembly solutions can be found very quickly,
taking 1.64 ms on average for four target shapes tested. Checking feasible grasp for all the
solutions takes significantly longer, 400 ms on average. As many solutions can have feasible
grasps for all its blocks, we tried the faster but suboptimal planning strategy that stops
at the first feasible solution and immediately executes the best move sequence found for
that solution. We found that, at least for the three shapes that have feasible solutions, this
strategy succeeds to find optimal solutions while reducing the planning time by more than
a factor of 10. Thanks to an exhaustive grasp pose search considering block symmetries,
only one of four target shapes has no feasible solution and requires re-grasping, which adds
14 s to the total time for additional perception, pickup and release movements. Overall, we
found that assembly takes approximately 1 min on average.

(a)

(b)

(c)
Figure 15. Cont.
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(d)
Figure 15. Automatic assembly experiments in the lab setup: (a) 3 × 3 × 3 cube; (b) pyramid shape;
(c) bridge shape; and (d) bathtub shape.

Table 1. Summary of lab experiment results.

Target Shape

Total number of assembly solutions 240 39 13 79
Time to find all the solutions (ms) 3.5 1.0 0.47 1.58

Time for checking all the solutions (ms) 908.9 557.6 56.69 78.57
Number of non-re-grasp solutions 3 3 1 0

Cost of the first non-re-grasp solutions 620 620 590 -
Time to find the first non-re-grasp solution (ms) 40.2 18.6 56.65 -

Best cost of non-re-grasp solutions 620 620 590 -
Average cost of non-grasp solutions 768 780 590 -

Time spent for re-grasp searching (ms) - - - 4.04

Total planning time (ms) 43.7 19.6 57.12 82.54

Average time spent for grasping blocks (s) 1.92 1.87 1.84 1.97
Average time spent for moving blocks (s) 3.59 3.47 2.94 3.26

Average time spent for returning (s) 2.98 2.39 2.80 2.54
Extra time spent for re-grasping (s) - - - 14

Total assembly time (s) 64 62 59 66

Total path length (m) 17.17 16.36 16.94 18.43

7.2. Public Demonstration

The suggested system was validated by a competitive public demonstration held at
COEX, Seoul, Korea in December 2019. The public demonstration was held as the one of
the selection processes of competitive research funding provided by the Korean Ministry
of Science, ICT and Future Planning. Out of four teams that submitted the proposals,
two teams were selected for the first phase, and one team was selected after the public
demonstration and funded for the second phase of the research.

The demonstration was divided into three stages with different difficulties, and at
each stage the referees decided the target shape and initial block formation. Once the timer
started, each team began assembling the blocks autonomously, and the total score was
determined by whether the system provided correct assembly plans on display, how many
blocks were successfully picked up and placed correctly, if the target shape was successfully
assembled and the total time spent for the assembly. In the case of failure, each team could
request the referee reset the block formation for restart, with a time penalty. Each stage
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used two different sets of target shapes and initial block formations, and the best score of
the two runs was recorded as the stage score.

To make the system as reliable as possible, we used lower maximum acceleration
and velocity parameters for the manipulator motion control, and added more delay for
block pickup and perception transitions by 0.5 s. In addition, we added the pre-positioning
moves, which moved blocks with ambiguous orientation and tall blocks that could collide
with gripper during pickup motion to the re-grasp position before motion planning. Finally,
to handle the worst cases where the initial block formation was extremely close to the
assembled target shape, we added an additional “plowing” motion that moved away the
assembled blocks away from the blocks to be picked up. Even with those conservative
settings, we achieved the official assembly time of 1 min 38 s at the third stage, which is
more than three times faster than the other team’s third stage assembly time exceeding
5 min.

Figure 16 shows a number of block assembly sequences at the public demonstration
setup for hard assembly cases with upright blocks and Table 2 shows the detailed analysis
of them. One of the four shapes, the tower shape, had a very large number of assembly
solutions, which made the full grasp search take a fairly long 6497.59 ms to complete. Using
the first feasible solution decreased the search time by more than a factor of 100 and made
the total motion planning time less than 100 ms. In addition, due to the tricky initial block
placements, all four target shapes required the initial repositioning of blocks, which was
major cause of increasing the total assembly time compared to the lab experiments without
one. Figure 17 shows a detailed assembly sequence with multiple re-grasping of blocks.

(a)

(b)

(c)
Figure 16. Cont.
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(d)
Figure 16. Automatic assembly runs during the public demonstration: (a) apartment shape; (b) stair
shape; (c) well shape; and (d) tower shape.

Figure 17. Detailed assembly steps for a 3 × 3 × 3 cube.
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Table 2. Summary of Public Demonstration Results.

Target Shape

Total number of assembly solutions 82 122 147 1400
Time to find all the solutions (ms) 1.86 2.4 1.42 14.74

Time for checking all the solutions (ms) 994.5 1478.1 786.03 6497.59
Number of non-re-grasp solutions 10 2 5 117

Cost of the first non-re-grasp solutions 500 480 750 720
Time to find the first non-re-grasp solution (ms) 52.0 463.32 43.66 55.84

Best cost of non-re-grasp solutions 450 480 360 420
Average cost of non-grasp solutions 598 490 633 686

Time spent for re-grasp searching (ms) - - - -

Total planning time (ms) 53.86 465.72 45.08 70.58

Average time spent for grasping blocks (s) 2.97 2.34 2.54 2.42
Average time spent for moving blocks (s) 4.30 4.13 4.24 4.38

Average time spent for returning (s) 3.35 3.45 3.39 3.75
Number of blocks initially repositioned 1 2 2 2

Extra time spent for initial repositioning (s) 12.54 23.83 24.12 24.15

Total assembly time (s) 104 110 113 115

Total path length (m) 17.04 16.37 17.97 16.97

7.3. Discussions
7.3.1. Time Analysis

Figure 18 shows the average time decompositions from the data in Tables 1 and 2. We
found that the average time spent for motion planning is very short, occupying 0.11% of
the total assembly time on average and 0.42% for the worst case. Although the perception
itself is done very quickly, taking less than 20 ms, we added some delay to stabilize the
camera before perceiving the block, which adds up to 14.9% of the total assembly time for
the open demonstration case. We also used delays before and after the gripper actuation to
reliably grasp and release blocks, which adds up to 13.8% of the total assembly time for
the open demonstration case. Finally, the arm movement time takes more than 70% of the
total assembly time, which differs by approximately 25% according to the acceleration and
velocity parameters used. As each of these steps has room for improvement, we think the
total assembly time can be further reduced in the future.

7.3.2. Effect of Additional DOF of Gripper

Although we used a custom 2 DOF gripper for the public demonstration, the suggested
system does not rely upon one, and the system with 1 DOF gripper was tested in both
simulation and real environments to have no workspace or self-collision issues. We did
not measure the assembly time with 1 DOF gripper setup, but, even assuming the arm
movement times triple due to the collision avoidance motion planning, we estimate the
total assembly time will increase by approximately 60% based on the timing breakdown in
Table 1.
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Figure 18. Time decomposition of lab experiment and open demonstration.

7.3.3. Generalization to More Tasks

In Section 3, we list the assumptions that helped to keep the perception and motion
control simpler for the Soma cube assembly problem. However, those assumptions can
be removed to make the suggested system handle a wider range of tasks. For detection
and 6D pose estimation of arbitrary building components, we can use deep learning-
based approaches using RGB image [16,17] in addition to point cloud-based registration
methods [28] to further improve the accuracy. Reliable detection and grasping of cluttered
objects is a hard problem, where a scattering-based technique can be used to separate each
object [29]. Finally, the assembly tasks that require peg-in-hole assembly or screwing can
be realized by adding a second robotic arm for support during the assembly, as well as
adding force or compliance based peg-in-hole motion controller (e.g., [30]).

We further think that the suggested system, especially with the help of the interactive
human–robot collaboration, which we discuss below, can play a big role in future industry
environments, which need to quickly adapt to a fast changing market demand with a
high variety of products in small quantities. Compared to typical industrial robot setup
that requires pre-scripted motion sequences and custom designed fixtures for assembly
parts, the suggested system is much more flexible as it can autonomously plan for pickup
sequences and assembly motions without human programming, and custom fixtures for
new parts are not required as the perception subsystem can detect arbitrarily placed parts.

7.3.4. Extension to Human-Robot Collaborative Tasks

While the suggested system is only tested in a fully autonomous setup, where a human
sets up the target shape and the robot does the rest, the system can be straightforwardly
extended for a semi-autonomous setup where human operators interact with the robot to
help and guide the assembly process using voice-, gesture- or touch-based communication.
For example, the robot may ask human operator to disambiguate visual perception or
move or hold parts that exceed the capability of the robotic manipulator. To ensure a safe
operation, the current setup already uses a collaborative robotic manipulator with a safety
stop feature, and we can make the system safer and more robust by adding additional
sensors to detect the presence of human operator inside its workspace before movements.

7.3.5. Distinctive Contribution of the Paper

As presented in Section 2, the distinctive contributions of the software framework
we suggest in this work are as follows: (a) full integration of various software modules
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required for accomplishing assembly task with full autonomy, which includes 3D per-
ception, assembly planning, arm and gripper motion planning, re-grasp planning and
real-time control; (b) platform agonistic modular software that accepts different sensors,
manipulators and grippers with little effort; and (c) rigorously tested and proven to work
reliably in a public competitive demonstration.

Compared to previous works addressing integrated robotic assembly system [7,8],
the suggested system is applicable for much wider range of tasks as it includes explicit
assembly sequence planning for complex tasks. Compared to recent works that use Soma
cube assembly as a demonstration task [10–14], this work is arguably more practical as it
does not require a priori information of the block states and is much faster overall due to a
more optimized motion planning stage.

We are currently working on the public release of our software framework, which we
hope will help other researchers in the field.

8. Conclusions

In this work, we present a robotic system that integrates a highly accurate 3D percep-
tion module, multi-layer motion planning module and real-time motion control module to
autonomously perform a complex robotic assembly task without any human instruction. The
suggested system is platform agonistic and was tested with multiple sensor, manipulator and
gripper combinations in both simulated and real environments. The system was tested exten-
sively in lab environment and public demonstration, where it showed excellent reliability and
outstanding performance. Future work will include generalizing the framework to support a
wider range of practical assembly tasks, by adding a precise insertion stage using the force
and torque feedback.
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