Bermed Earth-Sheltered Wall for Low-Income House: Thermal and Energy Measure to Face Climate Change in Tropical Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Local Climate Identification and Bioclimatic Zone Characterization
2.2. Characterization of the Study Case
2.3. Simulation Method
2.4. Generating Future Climate Scenarios Weather Data
2.5. Indicators for Energy Consumption and Thermal Performance Evaluation
2.5.1. Estimation of the Cooling and Heating Energy Consumption
2.5.2. Indicator of the Envelope Performance by RTQ-R
2.5.3. Adaptive Thermal Comfort Conditions in the Indoors Long Permanence Rooms
3. Results and Discussion
3.1. Energy Consumption in Accordance with RTQ-R
3.2. Envelope Performance According to RTQ-R
3.3. Indoor Operative Temperatures and Thermal Comfort Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α | Absorptance (dimensionless) | LIH | Single-family low-income house |
φ | Thermal lag | LIHe | Efficient Single-family low-income house |
A | Floor area | LIHb | Efficient Single-family low-income house with Bermed Earth-Sheltered in the bedrooms walls |
ABNT | Brazilian Association of Technical Standards | HadCM3 | Hadley Centre Coupled Model version 3 |
AR4 | Fourth Report of the Intergovernmental Panel on Climate Change | HVAC | Heating, ventilation, and air conditioning |
Aw | Tropical Savannah climate | PVC | Polyvinyl chloride chloride |
CDH | Cooling Degree-Hours | R-value | Thermal resistance |
COP | Coefficient of performance | RTQ-R | Energy Efficiency Level of Residential Buildings |
CT | Thermal capacity (kJ/(m2K) | SF | Sun factor |
EPS | Expanded polystyrene | Tint | Internal temperature |
EPW | EnergyPlus Weather file | Text | External temperature |
GCM | General Circulation Model | Tn | Monthly average neutral temperature |
GHG | Greenhouse gas | Top | Operative temperature |
HDH | Heating Degree-Hours | TEmed | Monthly average outdoor air temperature |
IPCC | Intergovernmental Panel on Climate Change | U | Total thermal transmittance |
References
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Levesque, A.; Pietzcker, R.A.; Baumstark, L.; De Stercke, S.; Grübler, A.; Luderer, A. How much energy will buildings consume in 2100? A global perspective within a scenario framework. Energy 2018, 148, 514–527. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. Eur. Geosci. Union 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.; Stape, J.; Sentelhas, P.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Tol, R.S.J. Adaptation and mitigation: Trade-offs in substance and methods. Environ. Sci. Policy 2005, 8, 572–578. [Google Scholar] [CrossRef]
- Wang, X.; Chen, D.; Ren, Z. Assessment of climate change impact on residential building heating and cooling energy requirement in Australia. Build. Environ. 2010, 45, 1663–1682. [Google Scholar] [CrossRef]
- Van Hooff, T.; Blocken, B.; Hensen, J.L.M.; Timmermans, H.J.P. On the predicted effectiveness of climate adaptation measures for residential buildings. Build. Environ. 2014, 82, 300–316. [Google Scholar] [CrossRef]
- Invidiata, A.; Ghisi, E. Impact of climate change on heating and cooling energy demand in houses in Brasil. Energy Build. 2016, 130, 20–32. [Google Scholar] [CrossRef]
- Song, X.; Ye, C. Climate Change Adaptation Pathways for Residential Buildings in Southern China. Energy Procedia 2017, 105, 3062–3067. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Brown, H. Prediction of the impacts of climate change on energy consumption for a medium-size office building with two climate models. Energy Build. 2017, 157, 218–226. [Google Scholar] [CrossRef]
- Triana, M.A.; Lamberts, R.; Sassi, P. Should we consider climate change for Brazilian social housing? Assessment of energy efficiency adaptation measures. Energy Build. 2018, 158, 1379–1392. [Google Scholar] [CrossRef] [Green Version]
- Jorge, S.H.M.; Guarda, E.L.A.; Durante, L.C.; Callejas, I.J.A.; Blumenschein, R.N.; Rosseti, K.A.C. Climate change impact on energy consumption and thermal performance in low-income in Brazilian Savanna. In Proceedings of the International Conference for Sustainable Design of the Built Environment (SBDE), London, UK, 12–13 September 2018. [Google Scholar]
- Sánchez-García, D.; Rubio-Bellido, C.; Del Río, J.J.M.; Pérez-Fargallo, A. Towards the quantification of energy demand and consumption through the adaptive comfort approach in mixed mode office buildings considering climate change. Energy Build. 2019, 187, 173–185. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y. Cooling load reduction by using thermal mass and night ventilation. Energy Build. 2008, 40, 2052–2058. [Google Scholar] [CrossRef]
- ABNT. Brazilian Association of Technical Standards. NBR 15.220. Thermal Performance of Buildings—Part 2: Method of Calculating Thermal Transmittance, Thermal Capacity, Thermal Delay and Solar Factor of Elements and Components of Buildings; ABNT: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- Gagliano, A.; Patania, F.; Nocera, F.; Signorello, C. Assessment of the dynamic thermal performance of massive buildings. Energy Build. 2014, 72, 361–370. [Google Scholar] [CrossRef]
- Jideofor, A.A. Earth shelters: A review of energy conservation properties in earth sheltered housing. Energy Conserv. 2012, 31, 125–148. [Google Scholar]
- Cheng, B.; Peng, G.; Xibin, M.W.L. A numerical simulation of transient heat flow in double layer wall sticking lining envelope of shallow earth sheltered buildings. In Proceedings of the International Joint Conference on Computational Sciences and Optimization, Sanya, China, 24–26 April 2009; pp. 195–198. [Google Scholar]
- UN General Assembly, Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. 21 October 2015. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 1 December 2020).
- Bisegna, F.; Mattoni, B.; Gori, P.; Asdrubali, F.; Guattari, C.; Evangelisti, L.; Sambuco, S.; Bianchi, F. Influence of Insulating Materials on Green Building Rating System Results. Energies 2016, 9, 712. [Google Scholar] [CrossRef] [Green Version]
- De Cian, E.; Wing, I.S. Global Energy Consumption in a Warming Climate. Environ. Resour. Econ. 2019, 72, 365–402. [Google Scholar] [CrossRef]
- Van Ruijven, B.J.; De Cian, E.; Wing, I.S. Amplification of future energy demand growth due to climate change. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Callejas, I.J.A.; Biudes, M.S.; Machado, N.G.; Durante, L.C.; Lobo, F.A. Patterns of Energy Exchange for Tropical Urban and Rural Ecosystems Located in Brazil Central. J. Urban Environ. Eng. 2019, 13, 69–79. [Google Scholar] [CrossRef]
- INMETRO Instituto Nacional de Metrologia, Qualidade e Tecnologia. Requisitos Técnicos da Qualidade para Nível de Eficiência Energética de Edifícios Residenciais (RTQ-R). 2012. Available online: http://www.inmetro.gov.br/legislacao/rtac/pdf/RTAC001788.pdf (accessed on 1 May 2020).
- BRASIL. Ministério das Cidades (Org.). Resultados do Programa Minha Casa, Minha Vida. 2016. Available online: http://www.minhacasaminhavida.gov.br/ (accessed on 19 April 2018).
- Guarda, E.L.A.; Gabriel, E.; Domingos, R.M.A.; Durante, L.C.; Callejas, I.J.A.; Sanches, J.C.M.; Rosseti, K.A.C. Adaptive comfort assessment for different thermal insulations for building envelope against the effects of global warming in the mid-western Brazil. Earth Environ. Sci. 2019, 329, 012057. [Google Scholar] [CrossRef]
- DesignBuilder Software. 2009. Available online: http://www.designbuildersoftware.com/docs/designbuilder/DesignBuilder_2.1_Users-Manual_Ltr.pdf (accessed on 13 September 2020).
- Resende, B.C.; Souza, H.A.; Gomes, A.P. Modelling of basement heat transfer in EnergyPlus simulation program. Ambiente Construído 2019, 19, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Department of Energy Efficiency and Renewable Energy. Engineering Reference. US. Documentation, EnergyPlus™ Version 8.5. 2016. Available online: https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.5.0/EngineeringReference.pdf (accessed on 13 September 2020).
- Mazzaferro, L.; Melo, A.P.; Lamberts, R. Manual de Simulação Computacional de Edifícios com o uso do Objeto Ground Domain no Programa EnergyPlus; LABEEE: Florianópolis, Brazil, 2015. [Google Scholar]
- Cordeiro, C.C.M.; Brandão, D.; Durante, L.C.; Callejas, I.J.A.; Campos, C.A.B. Thermophysical characterization of lateritic soil for manufacturing rammed earth walls. Matéria 2020, 25, e-12564. [Google Scholar]
- Belcher, S.E.; Hacker, J.N.; Powell, D.S. Constructing design weather data for future climates. Build. Serv. Eng. Res. Technol. 2005, 26, 49–61. [Google Scholar] [CrossRef]
- Jentsch, M.F.; Bahaj, A.S.; James, P.A.B. Climate change future proofing of buildings-generation and assessment of building simulation weather files. Energy Build. 2018, 40, 2148–2168. [Google Scholar] [CrossRef]
- Casagrande, B.; Alvarez, C. Preparation of future weather files to evaluate the impact of climate change on the thermoenergetic performance of buildings. Ambiente Construído 2013, 13, 173–187. [Google Scholar] [CrossRef] [Green Version]
- ABNT. Brazilian Association of Technical Standards. NBR 15575-1: Housing Developments-Performance—Part 1: General Requirement; ABNT: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Rios, G.A.A.; Durante, L.C.; Callejas, I.J.A.; Rosseti, K.; De, A.C. White roofs as strategy for reducing energy consumption and carbon emissions. Rev. de Eng. e Tecnol. 2017, 9, 76–90. [Google Scholar]
- De Dear, R.; Brager, G. Developing an Adaptive Model of Thermal Comfort and Preference; Center for the Built Environment: Berkeley, UC, USA, 1998; Available online: https://escholarship.org/uc/item/4qq2p9c6 (accessed on 13 July 2020).
- ASHRAE. ANSI/ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2013. [Google Scholar]
- Guarda, E.L.A.; Durante, L.C.; Gabriel, E.; Domingos, R.M.A.; Mizgier, M.O.; Callejas, I.J.A. Influence of roof thermal insulation under the climate change impacts. In Proceedings of the XV Encontro Nacional de Conforto no Ambiente Construído e XI Encontro Latino-Americano de Conforto no Ambiente Construído: Mudanças climáticas, concentração urbana e novas tecnologias (ENCAC), João Pessoa, Brazil, 18–21 September 2019. [Google Scholar]
- Nasrollahia, N.; Abarghuieb, F.A. Thermal Performance of Earth-Sheltered Residential Buildings: A Case Study of Yazd. Naqshejahan 2017, 6, 56–67. [Google Scholar]
- Department of Energy Efficiency and Renewable Energy. EnergyPlus Testing with Building Thermal Envelope and Fabric Load Tests from ANSI/ASHRAE Standard 140-2007. US. Documentation, EnergyPlus™ Version 6.0.0.023. 2010. Available online: https://labeee.ufsc.br/sites/default/files/disciplinas/ECV4202_EnergyPlus%20testing%20with%20Ashrae140.pdf (accessed on 13 July 2020).
- Staniec, M.; Nowak, H. Analysis of the earth-sheltered buildings’ heating and cooling energy demand depending on type of soil. Arch. Civ. Mech. Eng. 2011, 11, 221–235. [Google Scholar] [CrossRef]
- Shen, P. Impacts of climate change on U.S. building energy use by using downscaled hourly future weather data. Energy Build. 2017, 134, 61–70. [Google Scholar] [CrossRef]
- Callejas, I.J.A.; Durante, L.C.; Guarda, E.L.A.; Apolonio, R.M. Thermal Performance of Partially Bermed Earth-Sheltered House: Measure for Adapting to Climate Change in a Tropical Climate Region. Proceedings 2020, 58, 6919. [Google Scholar] [CrossRef]
Code | Opening’s Recommendations | Guidelines for Building Envelope | Strategies for Passive Thermal Conditioning | |||
---|---|---|---|---|---|---|
Wall System | Roof System | |||||
NBR 15220 1 | Small openings: 10% < A < 15% Shade openings | A: NR Type: Heavy U ≤ 2.2; CT:NR φ ≥ 6.5 h SF ≤ 3.5% | A:NR Type: Heavy U ≤ 2.0; CT: NR φ ≥ 6.5 h SF ≤ 6.5% | Evaporative Cooling; Thermal mass for cooling; Selective ventilation (Tint > Text) | ||
RTQ-R 1 | A ≥ 5% | α ≤ 0.6 | α > 0.6 | α ≤ 0.4 | α > 0.4 | No requirement established |
U ≤ 3.70 | U ≤ 2.50 | U ≤ 2.30 | U ≤ 1.50 | |||
CT ≥ 130 | CT ≥ 130 | NR | NR |
Building Characteristics | Envelope | Materials Layers | Thickness (m) | R-Value 1 (m²K/W) | U 2 (W/m²K) | CT (J/m²K) | α |
---|---|---|---|---|---|---|---|
Efficient low-income house systems (LIHe) | Wall System | White painting | 1.128 | 0.886 | 169.38 | 0.15 | |
Mortar | 0.025 | ||||||
EPS sheet | 0.040 | ||||||
Ceramic brick | 0.09 | ||||||
Mortar | 0.025 | ||||||
White painting | |||||||
Roof System | White painting | 0.847 | 1.18 | 41.92 | 0.15 | ||
Ceramic tiles | 0.01 | ||||||
Aluminum foil | - | ||||||
Attic space | >0.05 m | ||||||
PVC ceiling | 0.01 | ||||||
Bermed earth-sheltered low-income house systems (LIHb) | Wall System | Similar Layer and Thickness of the Efficient LIH | Similar properties of the LIHe | ||||
Wall System in contact with ground | Similar Layer and Thickness of the LIHe + ground contact | Evaluated by the Energyplus program according to the Basement (GDomain) input data. | |||||
Roof System | Similar Layer and Thickness of the LIHe | Similar properties of the LIHe |
Input Data | Adopted Input Values |
---|---|
Ground Domain Depth (m) | 15 |
Soil Thermal Conductivity (W/m K) | 0.52 [32] |
Soil Density (kg/m3) | 1700 [32] |
Soil Specific Heat (J/kg K) | 840 [32] |
Mesh Density Parameter | 6 |
Month | 1961–1990 | 2020s | 2050s |
---|---|---|---|
January | 27.94 | 28.73 | 29.87 |
February | 27.76 | 28.32 | 29.71 |
March | 27.73 | 28.63 | 30.11 |
April | 26.78 | 27.65 | 29.59 |
May | 26.10 | 27.05 | 29.04 |
June | 25.67 | 26.90 | 28.32 |
July | 24.35 | 24.87 | 26.51 |
August | 26.38 | 28.95 | 30.82 |
September | 27.36 | 29.08 | 31.13 |
October | 28.36 | 30.78 | 32.62 |
November | 27.83 | 29.09 | 30.91 |
December | 28.21 | 28.87 | 30.26 |
Level of Efficiency | Cooling Degree-Hours Condition |
---|---|
A | CDH ≤ 12,566 °Ch |
B | 12,566 < CDH ≤ 18,622 °Ch |
C | 18,622 < CDH ≤ 24,679 °Ch |
D | 24,679 < CDH ≤ 30,735 °Ch |
E | CDH > 30,735 °Ch |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Callejas, I.J.A.; Apolonio, R.M.; Guarda, E.L.A.d.; Durante, L.C.; de Andrade Carvalho Rosseti, K.; Roseta, F.; Amarante, L.M.d. Bermed Earth-Sheltered Wall for Low-Income House: Thermal and Energy Measure to Face Climate Change in Tropical Region. Appl. Sci. 2021, 11, 420. https://doi.org/10.3390/app11010420
Callejas IJA, Apolonio RM, Guarda ELAd, Durante LC, de Andrade Carvalho Rosseti K, Roseta F, Amarante LMd. Bermed Earth-Sheltered Wall for Low-Income House: Thermal and Energy Measure to Face Climate Change in Tropical Region. Applied Sciences. 2021; 11(1):420. https://doi.org/10.3390/app11010420
Chicago/Turabian StyleCallejas, Ivan Julio Apolonio, Raquel Moussalem Apolonio, Emeli Lalesca Aparecida da Guarda, Luciane Cleonice Durante, Karyna de Andrade Carvalho Rosseti, Filipa Roseta, and Leticia Mendes do Amarante. 2021. "Bermed Earth-Sheltered Wall for Low-Income House: Thermal and Energy Measure to Face Climate Change in Tropical Region" Applied Sciences 11, no. 1: 420. https://doi.org/10.3390/app11010420
APA StyleCallejas, I. J. A., Apolonio, R. M., Guarda, E. L. A. d., Durante, L. C., de Andrade Carvalho Rosseti, K., Roseta, F., & Amarante, L. M. d. (2021). Bermed Earth-Sheltered Wall for Low-Income House: Thermal and Energy Measure to Face Climate Change in Tropical Region. Applied Sciences, 11(1), 420. https://doi.org/10.3390/app11010420