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Abstract: An important as well as challenging task in modern applications is the management and
processing with very short delays of large data volumes. It is quite often, that the capabilities of
individual machines are exceeded when trying to manage such large data volumes. In this regard, it is
important to develop efficient task scheduling algorithms, which reduce the stream processing costs.
What makes the situation more difficult is the fact that the applications as well as the processing
systems are prone to changes during runtime: processing nodes may be down, temporarily or
permanently, more resources may be needed by an application, and so on. Therefore, it is necessary
to develop dynamic schedulers, which can effectively deal with these changes during runtime. In this
work, we provide a fast and fair task migration policy while maintaining load balancing and low
latency times. The experimental results have shown that our scheme offers better load balancing
and reduces the overall latency compared to the state of the art strategies, due to the stepwise
communication and the pipeline based processing it employs.

Keywords: dynamic scheduling; big data; stream processing; task migrations

1. Introduction

The increasing availability of sensors and computing devices (from smaller to larger
ones) has led to a tremendous increase in the data volumes being produced and imposed
certain needs of some kind of data analysis. The rapid growth of cloud computing and
Internet of Things (IoT) promoted the sharp growth of data further. Managing the produced
data and gaining insights from it, is a big challenge. Many organizations’ decisions depend
on the analysis and processing of this data, just as it arrives. Environmental monitoring,
fraud detection, emergency response, sensors, scientific experiments are just a few examples
of applications that require continuous and timely processing of information [1–5]. The term
“big data” refers to these huge amounts of data and the challenges posed to its transfer,
processing, storage, and use.

For most of the big data applications mentioned just above, the data have some
value only in cases when they are analyzed at a time very close to the time they were
actually produced. This means that the vast and continuous data streams should be
scheduled in such a way, that they are delivered to the processing elements and be processed
with very short delays. Therefore, an efficient plan to place specific processing tasks
on specific processing resources and to control the job execution has to be employed.
The careful arrangement of tasks into the cluster resources, so that the task completion time
is minimized and resource utilization is achieved is known as scheduling and it is a very
important factor in the overall processing of big data streams. Efficient task scheduling
algorithms reduce the processing latencies and significantly improve resource utilization
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and the platform stability of cloud services. Therefore, these schedulers are absolutely
necessary to deal with transmission of massive data among large-scale tasks.

The difficulty of the scheduling problem is aggravated by the dynamic nature of both
the applications and the cloud environment on which they run. Particularly, challenges
present themselves when the system parameters (like the number of available processing
nodes or executing tasks) need to change during runtime. This is a quite natural sce-
nario, considering the fact that an application may require more resources from the cloud
whenever they are available or, in the reverse scenario, some processing or transferring
resources may become temporarily unavailable while an application is running. Static
schedulers cannot efficiently handle such cases [6,7]. Therefore, dynamic schedulers which
can effectively deal with these changes during runtime are quite important to handle big
data applications.

The dynamic scheduling strategies generally deal with the important and interrelated
issues of task migrations (or state migrations) and of elasticity. Task migrations refer to the
cases where some tasks have to be assigned to a node other than the one they are being
executed. However, these tasks have to migrate along with their context or state (for exam-
ple, all the data having been processed, assigned variable values, etc.). Thus, the overall
latency can increase and this poses another big challenge for the scheduling strategies.
The elasticity refers to the ability of a cloud system to allow an executing program to obtain
additional resources or release idle resources as required. Some challenges regarding
elasticity include the placement of processing tasks on available resources (processing
nodes), the handling of node failures to which an application has to adapt properly, and the
network contentions among transferred stream.

Apparently, the degree to which a system can handle system changes both in terms
of resources and executing tasks is of vital importance. For example, the buffer space
required for an application’s data may need to change, load balancing strategies need to be
imposed as some nodes with very heavy processing load may become a bottleneck for the
whole system, and tasks may need to migrate, for example in cases of node crushes. It is
rather important to handle such cases in an efficient manner to maintain overall optimal
performance of the system.

In this work, we extend our previous research efforts [1] in order to develop a scheme
that can also redistribute the migrated tasks in a fair and fast way by examining the load
of the nodes in close proximity to the node whose tasks are to be migrated. In this way,
we manage to maintain the system’s load balancing and reduce the overall latency as our
simulation results have shown. The main contributions of this work are the following:

1. It uses our previously designed scheduler to handle task migrations as well. This
feature was not present in our previous work.

2. It introduces an straightforward model to estimate each node’s load, in order to decide
about the task migrations.

3. The total processing latencies can still be reduced by the pipeline based method we
proposed in our previous scheme.

4. This work is expandable to larger-scale networks.

In the remainder of this work, we initially describe some schemes that handle the
elasticity and task migration issues. Then, in Section 3, we present some mathematical
preliminaries and our communication scheduling policy. This section includes already
published material which we present in a few pages to make the paper self-contained.
In Section 4, we present the model that estimates the load assigned to each node in
order to make a fair distribution of migrated tasks. In Section 5, we present our pipeline-
based scheduling, which includes not only the data transferring and processing stages of
every stream processing problem, but the task migrations as well. Section 6 presents our
simulation results, where we compare our strategy in terms of load balancing and latency
with two well known state-of-the-art schemes. Section 7 concludes this work and offers
aspects for future work.
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2. Related Work and Discussion

Generally, the change of parallelization degree (number of nodes working in parallel)
of a stream processing system is the main reason that causes the necessity for state migra-
tions. In such cases, the usual practice is to use some type of system monitoring, where a
system monitor observes the usage of the system’s resources (links, CPU, memory) [5,8–12].
After monitoring, some type of strategy determines where the tasks are going to migrate.
In this paragraph, we discuss papers that mostly focus their attention on migration policies.

In [13], the authors define five operator patterns based on which they generate rules
for increasing scalability by load distribution and achieving elasticity: (1) Simple Standby:
For a critical query node N there is a standby node S on a separate unit. This standby
node is activated in case of failure of node N, so N needs to be continuously monitored.
(2) Checkpointing: Similar to 1, but supports stateful operators for storing and accessing
information across multiple events (stateless operators store and access information based
on the last event only). The state of N is periodically monitored and the standby node
S restarts from this checkpoint. (3) Hot Standby: The input stream is sent to redundant
nodes S, usually by multicasting, so they act as hot standby’s whenever the time of failure
incurred during checkpointing is unacceptable. This pattern works for stateful and stateless
operators. (4) Stream Partitioning: The input stream is partitioned and each tuple is directed
to one of the nodes N1, . . . Nn. This pattern is used to exploit data parallelization. and (5)
Stream Pipelining: Same as pattern 4, but the streams are placed to different computation
units to be processed in a pipeline fashion.

In [14], the authors manage and expose the operator state directly to the stream
processing system. In this way, they create an integrated approach for dynamic scale out
and recovery of the stateful operators. The operator state is periodically checkpointed
by the stream processing engine and the state is backed-up. When possible bottlenecks
are identified through monitoring of the CPU utilization, a scale-out operation is invoked
and new virtual machines are allocated. The checkpointed state is re-partitioned and
the overall processing is divided between the new processing elements. This scaling out
increases parallelization when the system resource monitoring gives results which are
above a predefined threshold. Recovery of failed operators is achieved by restoring the
checkpointed state on a new virtual machine and replaying and unprocessed tuples.

Heinze et al. [15] propose an approach named FUGU, which optimizes the scaling
policy automatically. Thus the user avoids the need to set the configuration parameters for
a selected scaling policy. The idea is to use an online parameter optimization approach.
The approach employs three algorithms: a Scaling Algorithm, that takes decisions that
characterize a host as overloaded or underloaded, based on a vector of measurements re-
garding the node utilization (CPU, memory, and network elements), an Operator Selection
algorithm, which decides which operators to move, and an Operator Placement algorithm,
which determines where to move these operators.

Each scaling decision is translated into a set of moving operators. If the system is found
to be underloaded, it selects all operators running on the least loaded hosts, in other words,
it releases a host with minimum latencies (scale-in). When a host is found overloaded,
the Operator Selection algorithm chooses a subset of operators to remain in the host, so
that their summed load is smaller than the given threshold. The remaining operators will
move to a new host (scale-out). The operator placement is modeled as a problem defined
by nodes occupying a CPU capacity and by operators with a certain CPU load.

In [16], the authors introduce a model for estimating the latency of a data flow, when
the level of parallelization between the tasks changes. They continuously measure the
necessary performance metrics, like CPU utilization thresholds, the rate of processed tuples
per operator, and the overall latency. Thus, appropriate scaling actions are determined
during runtime and thus the elasticity is enhanced. The main goal of the strategy is
to provide latency guarantees while the resource use is minimized, in cases where the
resource provisioning is variable. The latency under heavy data flows is estimated by
an estimating model and the resource consumption is minimized using an automated
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strategy which aims at adjusting the data parallelization during runtime. A bottleneck
resolving technique is used to resolve bottlenecks through scaling out, giving way to the
parallelization adjustment scheme for future use.

In [17], an elastic stream processing scheme named StreamCloud is presented. Stream-
Cloud introduces a new parallelization technique which divides queries into subqueries.
These subqueries are allocated to independent node sets, such that the total overhead
is minimized. The number of sub-queries depends on the number of stateful operators
included in the original query. Each sub-query includes one stateful operator and all the
stateless operators that follow until the next stateful operator. The elasticity protocols being
employed allow for effective resource adjustment according to the incoming processing
load. A resource management architecture monitors the resource utilization and the load
is balanced if the utilization exceeds certain limits or it is beyond certain limits. The load
balancing enables the minimization of the computational resources. In addition, other
actions to be taken are to release or add resources. The load balancing is implemented via
a load-balancing operator.

In [18,19], the authors identify four fundamental properties for their migration pro-
tocol: (i) Gracefulness: the splitter and the replicas should never discard input streams,
process out-of-order any tuples having the same key or generate duplicated results. (ii)
Fluidness: the splitter should not wait for the migration to complete before re-distributing
new incoming tuples to the replicas. (iii) Non-intrusiveness: the migration should involve
only the replicas which exchange parts of their state. (iv) Fluentness: a replica waiting to
get the state of an incoming key during migration must be able to process all the input
tuples having other keys and for which the state can be used. Based on these properties
and after a reconfiguration decision, a reconfiguration message is transmitted to the splitter
with a new routing table. Upon receipt of the reconfiguration message, the splitter becomes
aware of the keys that must be migrated and transmits to the proper replicas the set of
migration messages.

Xu et al. [20] introduced T-Storm, which aims at reducing the inter-process and inter-
node communication. The workload and the traffic are monitored during runtime and
the future load is estimated using a machine learning prediction method. A schedule
generator periodically reads the above information from the database, sorts the executors
in a descending order of their traffic load, and assigns executors to slots. Executors from one
topology are assigned in the same slot to reduce inter-process traffic. The total executors’
workload should not exceed worker’s capacity and the number of executors per slot is
calculated with the help of a control parameter.

In [21], the authors present STream processing ELAsticity (Stela), a stream processing
system that supports scale-out and scale-in operations on-demand manner. Stela optimizes
post-scaling throughput and minimizes interruption to the ongoing computation while
carrying out scaling. For scale-out operations, Stela first identifies operators that are con-
gested based on their input and output rates. Then it computes the Expected Throughput
Percentage (ETP) on an operator basis. Based on the topology, it captures the percentage of
the application throughput directly impacted by an operator and provides more resources
to a congested operator with higher ETP to improve the overall application throughput.
Based on the new execution speed achieved, Stela selects the next operator and repeats the
process.

For scale-in operations, Stela assumes that the user simply specifies the number of
machines to be removed and chooses the most suitable machines for removal based on the
ETPSum. The ETPSum for a machine is the sum of all ETP of instances of all operators
that currently reside on the machine. This is an indicator of the machine’s contribution
to the overall throughput. Thus, machines with lower ETPSum are preferred for removal
during scale-in.

In [22], the authors propose two task migration approaches that allow a running
streaming dataflow to migrate, without any loss of in-flight messages or their internal
tasks states: (i) the Drain, Checkpoint, and Restore (DCR) policy pauses the source tasks’
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execution and allows the in-flight messages to execute across the dataflow until completion,
thus draining the dataflow without any loss of messages. (ii) The Capture, Checkpoint,
and Resume (CCR) directly broadcasts checkpoint events from the source task to each task
in the dataflow and processes only one event, that is, the event that a task may currently
be executing. In this way, extra latencies that incur from incremental flows of checkpoint
messages and their full processing are reduced.

Ding et al. [23] introduced a scheme that performs live, progressive migrations without
resorting to expensive synchronization barriers. In addition, they introduced algorithms
for finding the optimal task assignment for the migration. The main components of the
proposed migration mechanism include a migration manager (MM), a retriever of operator
states from remote nodes, a re-router for misrouted tuples, and a file server that serves
operator states to remote retrievers. When a migration is triggered, the master node
notifies all the workers. Upon receiving such a notification, a worker updates its local task
assignment. Then, the worker restarts the executors whose assigned tasks have changed.
Finally, they introduced an algorithm to maintain statistics from past workloads to predict
future migration costs.

N-Storm [24] is a thread-level task migration scheme for Storm. N-Storm adds a
key/value store on each worker node to make workers be aware of the changes of the
overall task scheduling. In this regard, a worker node can manage its executors during
run time (kill or start executors). With this mechanism, unnecessary stopping of executors
and workers during a task migration is avoided and the performance of task migration is
improved. Further they optimized N-Storm to make it efficient for multiple task migrations.

Cardellini et al. [25] modeled the elasticity problem for data stream processing as a
linear programming problem, which is used to optimize different QoS metrics. For the
operator migration, they proposed a general formulation of the reconfiguration costs and
they considered that system performs the state migrations leveraging on a storage system,
called DataStore which stores the operators code and allows replicas to save and restore
their state when reconfigurations occur.

In addition, the work of Ma et al. [26] presented a migration cost model and a balance
model as metrics to evaluate their migration strategy. Based on these models, a live
data migration strategy with particle swarm optimization (PSO) was proposed, with two
improvement measures, the loop context, and particle grouping. As an improvement of
stream processing framework, the nested loop context structure supports the iterative
optimization algorithm. Grouping particles before in-stream processing speeds up the
convergence rate of the PSO policy.

A different, however interesting approach called E-Storm [27] is a replication-based
state management that actively maintains multiple state backups on different nodes. A re-
covery module restores any lost states by transferring states among the tasks. In this way,
lost task states are recovered in case of JVM or node crashes.

In [28], the authors presented a work on the placement and deployment of data
stream processing applications in geo-distributed environments. The strategy targeted
fog resources and was named Foglets. Their main target is to meet the QoS and the
load balancing considerations. There are two aspects as far as migration is concerned: (i)
Computation Migration: Refers to changing the parent of a given child in the network
hierarchy due to QoS or load-balancing considerations.

To facilitate computation migrations, Foglets expect the application to provide two
handlers: One of them is executed at the current parent and the other at the new parent.
(ii) State migration: It is related to the data that are generated by an application component,
which has to be made available when this application component is to migrate to another
node. The state migration and execution are parallel in the new node. The authors
provide two mechanisms for QoS migration and a scheme for workload migration. Table 1
summarizes the main properties and offers a brief description of the strategies which are
described in this section.
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Table 1. Migration policies in dynamic stream scheduling schemes.

Paper Properties Description

[18,19] 4 Properties: Gracefulness, Fluidness, A reconfiguration message is transmitted to the splitter with
Non-intrusiveness, Fluentness a new routing table. Then, the splitter transmits to the

proper replicas the set of migration messages.

[22] Maintain in-flight messages and DCR policy: executes in-flight messages until their completion
their internal tasks states CCR policy: directly broadcasts checkpoint events and processes

only one event at a time.

[23] Minimizes synchronization barriers Workers update their local task assignment and restart execution
upon notification by the master node.

[24] thread-level migration A key/value store is placed on each worker node so the workers
(N-Storm) become aware of the scheduling changes and manage

the executors during runtime

[25] linear programming modeling Use a repository that stores the operators code
so the replicas save and restore their state during reconfigurations.

[26] A migration cost model and Particle swarm optimization (PSO), with
a balance model are used as metrics two improvement measures, the loop context and particle grouping

[27] Maintains persistence by storing Replication-based state management that keeps state backups
(E-Storm) operator states on different node to facilitate recovery.

[28] QoS and Workload driven Computation Migrations: Changing the parent of a given child in
(Foglets) migrations the network hierarchy due to QoS or load-balancing considerations

State migration: The data that is generated by an application
component, must be made available during migration of this
component.

Generally, the systems discussed assume that the nodes store their operators locally
to increase processing performance. Moreover, each operator divides its workload into
tasks and each operator has its own state. Thus, the migration process moves tasks among
the system’s nodes, and accordingly, the states also have to move. Apart from these
movements according to the new task assignment schedule, the corresponding dataflows
have to be re-routed, the tasks in their previous positions have to be killed, and their
resources must be released and made available for future use. Apparently, the overall
migration process has certain difficulties and it is not a matter of simple movement of
tasks and their states. The most important difficulties of all the migration strategies are
synchronization and buffering:

1. Synchronization: The synchronization issue refers to the fact that tasks cannot be
executed during migration. In such cases, erroneous results may be produced and
this means that processing has to be interrupted while tasks migrate. In this regard,
some of the migration policies try to minimize these "idle processing periods" in a
variety of ways. For example, the fluentness property in [18,19] guarantees that a
replica waiting to get the state of an incoming key during migration must be able to
process all the input tuples having other keys and for which the state can be used,
while the non-intrusiveness property guarantees that the migration should involve
only the replicas which exchange parts of their state. In this sense some processing
can continue during migrations. The N-Storm strategy [24] kills its executors; thus,
unnecessary stops of the executors are avoided.

2. Buffering: Buffering is commonly involved in stream processing systems, to support
internode communications and communications among the tasks. Usually, nodes
run multiple tasks that receive buffered data from input queues, and these data may
remain in the queues after task migrations. Again, there is a synchronization issue
regarding buffering, as there may be input tuples transmitted before the migration
begins, but when their turn comes for processing, the corresponding task has already
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migrated. Thus, synchronization is required. Usually, most of the strategies do not
efficiently address this buffering issue.

The scheme presented in this work deals with these issues in an efficient manner.
Specifically, synchronization is achieved by pipelining the various operations involved
in processing, transferring as well as migrating of data and tasks. The buffering issue
is resolved by applying a stepwise procedure, where each task receives data in its input
queue, only from one task at a time, thus buffering needs are minimized.

3. Preliminaries and Communication Scheduling
3.1. Preliminaries

In this paragraph, we present the mathematical notations required to implement our
stepwise scheduler (the interested reader can find more details and proofs in [1]). The main
idea is to organize all the communications in a set of communication pairs, such that there
is one-to-one communication between the system’s nodes at any given time.

First, let us define an equation that describes the round-robin placement of t consecu-
tive tasks into a set of nodes. This equation describes the initial task distribution.

n = bi/tc mod N, (1)

where N is the number of nodes in the initial distribution, p ∈ [0, . . . , N − 1], n is the node
where a task indexed i is placed and t is the number of tasks assigned per node.

The range of i is from 0 to N × t. For example, if there are t = 4 tasks per node and
N = 6, our model assumes 24 tasks. Then, tasks i = 0, 1, 2, and 3 will be located at node
n = 0, tasks i = 4, 5, 6, and 7 will be located at node n = 1, tasks i = 8, 9, 10, and 11 will
be located at node n = 2, . . . and tasks i = 20, 21, 22, and 23 will be located at node n = 5.
From Equation (1), for some integer L we get that

bi/tc = LN + n. (2)

Now, if we set an integer x, such that x = i mod t, 0 ≤ x < t, Equation (2) becomes

i = (LN + n)t + x (3)

Equation (3) describes the initial task distribution. We use R(i, n, L, x) to symbolize this
distribution. A task migration usually occurs if a node has certain indications that it will
be be down after a while or when it has become overloaded. In such a case, certain task
that it processes have to be migrated. Now, if we wish to describe such a different scenario,
where the number of tasks changes, we need a second equation. This equation is derived
in a similar way. Now, if we assume that the number of nodes changes from N to Q, so Q
is now the number of nodes, q is the node where a task indexed j will be placed and s is the
new number of tasks. Thus, we get:

j = (MQ + q)s + y (4)

where q ∈ [0, . . . , Q− 1] and the integers M, y are defined similarly as L and x in Equation (4).
For y, we have 0 ≤ y < s. We use R′(j, q, M, y) to symbolize a distribution that would incur
in case of the system changes described before.

Now, we will use Equations (3) and (4) to define sets of one-to-one communication
steps among the systems nodes. The idea is to equate the two distributions R and R′ and
generate a linear Diophantine equation. From modular arithmetic, we know that the linear
Diophantine equations can have solutions divided into classes. The linear Diophantine
equation required by our schedule is provided as follows:

R = R′ ⇒ (LN + n)t + x = (MQ + q)s + y (5)
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or
nt− qs + (x− y) = MQs− LNt (6)

In [1], it was proven that every communicating pair (p, q) belongs to a class k if it
satisfies the equation:

(pt− qs) mod g = k (7)

For the members (p, q) of every class k, there is a constant number of combinations
of x and y values, name it c, (recall that x and y are limited by t and s, respectively) that
produce k when we get their modulo to g [29]. Totally, there are g classes and there may be
two or more classes with the same value of c. These classes are referred as homogeneous.

We now illustrate the ideas described so far in this section with an example. Assume
that initially, we have N = 6 nodes and t = 4 tasks are executed per node. Then, based on
system monitoring, one node is reported to be heavily overloaded and need to be relieved
from certain processing load (recall that nodes may be executing a variety of tasks at any
time). This means that its tasks will have to be redistributed to the remaining 5 nodes.
Then, each of the remaining nodes will have to handle s = 5 tasks. Based on the ideas, we
can form the communication steps required to change the tasks distribution for P = Q = 6,
r = 4 and s = 5. Table 2 shows the communicating pairs that belong to each of the 6
classes. These pairs and the c values for each class have been computed using Equation (7).
The table that contains all this information is named Class Table (CT).

Table 2. Class Table (CT) for N = Q = 6, t = 4, s = 5.

Class Communicating Nodes c

0 (0,0), (3,0), (1,2), (4,2), (2,4), (5,4) 4
1 (0,1), (3,1), (1,3), (4,3), (2,5), (5,5) 4
2 (2,0), (5,0), (0,2), (3,2), (1,4), (4,4) 3
3 (2,1), (5,1), (0,3), (3,3), (1,5), (4,5) 3
4 (1,0), (4,0), (2,2), (5,2), (0,4), (3,4) 3
5 (1,1), (4,1), (2,3), (5,3), (0,5), (3,5) 3

3.2. Communication Scheduling

In our previous work, we described our stepwise strategy and proved that it reduces
the overall communication cost. In this subsection, we briefly repeat the scheduling,
but without many details. By the end of this section, we show how this scheduler can
be used for task migrations. In the big data literature, the latency of communication
between two nodes is generally defined by their index difference. For two nodes ni and
nj, the communication latency ` increases as the difference |i− j| becomes larger. In our
example, if the tasks from node 5 need to communicate with the tasks of node 0 and
vice versa, we have the maximum possible latency of ` = |5− 0| or ` = |0− 5| = 5 time
units. In our context, we use the term "time units" as a unit that measures the inter-node
communication latencies. Our scheduler organizes the internode communication in such
a way that each node receives tuples from only one other node. In other words, each
node’s tasks receive tuples that have been previously processed by the tasks of only one
other node. The communicating tasks are explicitly defined by the application’s topology.
The three steps of our scheduling approach are described below:

Step 1: Transform CT to a Single Index Matrix

The first step transforms the CT to a single-index matrix SIM. To make the transforma-
tion from the CT to the SIM, we simply pick each communicating node pair (n, q) found in
row k and we place the q values interchangeably to column n of SIM. By interchangeably,
we mean that no similar values are placed between adjacent nodes. Thus, the CT of Table 2
will be transformed into the following SIM matrix:



Appl. Sci. 2021, 11, 61 9 of 20

SIM =

Node n
Communicating Step 0 1 2 3 4 5

0 0 2 4 0 2 4
1 1 3 5 1 3 5
2 2 4 0 2 4 0
3 3 5 1 3 5 1
4 4 0 2 4 0 2
5 5 1 3 5 1 3

Step 2: Mix Class Elements to Define Communicating Steps

Here, we simply interchange α elements from homogeneous classes, that reside in
corresponding columns, where α is the number of communications towards different target
nodes within each class, α ≥ 2. In our example, α = 3, so we interchange 3 elements
of the homogeneous classes 0 and 1, 3 elements of the homogeneous classes 2 and 3,
and 3 elements of the homogeneous classes 4 and 5. These elements reside in columns
N3 − N5 of the SIM. In this way, will produce the initial scheduling matrix (ISM):

ISM =

Node n
Communicating Step 0 1 2 3 4 5 Communication Cost

0 0 2 4 1 3 5 2
1 1 3 5 0 2 4 3
2 2 4 0 3 5 1 4
3 3 5 1 2 4 0 5
4 4 0 2 5 1 3 4
5 5 1 3 4 0 2 5

23

Step 3: Reducing the Communication Costs

Step 3 reorganizes the matrix produced in Step 2, by taking the following actions:

3.1. A zero cost communicating step that includes only internal operations (among a
node’s tasks) is defined. We put these communicating pairs in the first raw of ISM
and make the proper index changes.

3.2. Restrict the number of maximum communication cost steps to one. This step costs
|Q− 1− 0| = |0− (Q− 1)| = Q− 1 (the two communications between nodes 0
and Q− 1). Thus, we put these two communications in the same step by making
the necessary index changes.

For Step 3.1, we must have row 0 include the values 0,1,2,3,4,5. This necessitates the
following changes in the entire table: 0 → 0 (no change), 2 → 1, 4 → 2, 1 → 3, 3 → 4,
5→ 5 (no change) and we have the intermediate scheduling matrix InSM:

InSM =

Node n
Communicating Step N0 N1 N2 N3 N4 N5 Communication Cost

0 0 1 2 3 4 5 0
1 3 4 5 0 1 2 3
2 1 2 0 4 5 3 2
3 4 5 3 1 2 0 5
4 2 0 1 5 3 4 2
5 5 3 4 2 0 1 5

17



Appl. Sci. 2021, 11, 61 10 of 20

To implement Step 3.2, we first locate the two rows with the maximum cost Q− 1.
Then, we interchange proper values, so that the two pairs (Q− 1, 0) and (0, Q− 1) appear
in the same row. In this way, we obtain the final schedule matrix (FSM):

FSM =

Node n
Communicating Step N0 N1 N2 N3 N4 N5 Communication Cost

0 0 1 2 3 4 5 0
1 3 4 5 0 1 2 3
2 1 2 0 4 5 3 2
3 5 4 3 1 2 0 5
4 2 0 1 5 3 4 2
5 4 3 5 2 0 1 4

16

(8)

In our previous work, we proved that the implementation of these steps leads to a
minimum communication cost scheme.

4. Fair Distribution of the Migrated Tasks

One of the most important issues raised in task migrations is to redistribute the tasks
in a fair manner. This means that, when migrations are required, the scheduler has to plan
and locate the tasks to their new nodes. A task has to process all the in-flight data events
and hold the very last state. These events are buffered in input queue (buffer) for every task
in the dataflow. There are four challenges to be addressed here: (1) To assure that the very
last state is formed, checkpoint messages are needed and this imposes more overheads,
(2) to avoid losses, all the in-flight data events must have their processing completed before
killing the migrated tasks from the nodes they were located before, (3) an input arrival
threshold has to be determined, above which task migrations have to be redirected to
different target nodes, and (4) the migrated tasks have to be “fairly” redistributed among
the nodes of a sub-cluster. For the fist issue, the checkpoint messages are directly added
to the dataflow and transmitted from the source task to the target task by employing the
communication strategy of Section 3. To resolve the second challenge, processing is orga-
nized in a synchronized pipeline fashion as will be described in the next section. By careful
scheduling, we can have the migrated messaged processed at specific times and thus plan
the killing of the tasks from their previous “hosts” immediately after. In the remainder of
this section, the third and fourth issues are discussed.

The Maximum Acceptable Input Arrival Rate for Migrated Tasks We can assume that
the nodes of a cluster are loaded with migrated tasks based on distance to the source that
previously accommodated these tasks and based on an acceptable input rate. Clearly, we
need to distribute the migrated tasks from their host node to nodes of close proximity
while maintaining the data input rate of these nodes (do not overload them). To examine
the input rate, a simple model is proposed: First, the nodes current state is expressed as
a vector K = (K1, K2, . . . , Km), where Km is the buffer space available to accommodate
newly migrated tasks in node m [30]. The buffer size is measured in terms of the number
of tasks it occupies. The conditional probability of moving from state K to K′ is denoted by
p(K, τ|K, τ + δ), where τ denotes the time and δ is a period long enough to accommodate
only one change of state. The overall probability of reaching a state K′ is

p(K
′
1, K

′
2, . . . , K

′
m) = p1(K

′
1) · p2(K

′
2), . . . pm(K

′
m) (9)

where pmK
′
m is the probability of a node’s buffer to have K

′
m space. The pm values indicate

the utilization of a node m and it is computed by

pj =
λm

µm
≤ 1 (10)
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where µm is the mean forwarding time (or service time) for the migrated tasks relayed to
node m and the λ values are the mean input rates of tasks to the nodes. Each λm is a sum
of the form

λm = bm−1λm−1, (11)

where bm−1 is the probability of task migrations to node m− 1. For example, see Figure 1
and consider the parameter values of Table 3. Then, Equation (11) would produce λ2 =
15 tasks/s and λ3 = 20 tasks/s. Then, from Equation (10), p1 = 30×20

1000 = 0.6, p2 =
15×20
1000 = 0.3, and p3 = 20×40

1000 = 0.8. Then, the maximum acceptable input rate per node
is the one that saturates it, for example m1 is saturated for λm > 50 tasks/s because
(50× 20)/1000 = 1.

 

                 

        

λ

Migrated tasks

with 

probability bi

 

 Next

node

1,
λ2

λ

m1

 Task input queue

Task input queue

m2

m3

μ2

 Task input queue
μ1

μ3

3

Figure 1. Task migration example.

Table 3. Parameters for the task migration example of Figure 1.

Parameter Symbol Value

Mean arrival rate an node m1 λ1 30 tasks/s
Mean service time at node m1 1/µ1 20 ms
Mean service time at node m2 1/µ2 25 ms
Mean service time at node m3 1/µ1 40 ms

Probability of task migrations through m1 b1 0.25
Probability of task migrations through m2 b2 0.3
Probability of task migrations through m3 b3 0.4

Fair Distribution of the Migrated Tasks By “fair distribution”, two things are meant: (1)
fairness in terms of distance between nodes, that is, the nodes located closer to the source
of migrated tasks should take more load to keep the communication cost to the minimum,
and (2) fairness in terms of the load itself, that is, the load of the migrated tasks should be
distributed as evenly as possible taking into consideration the maximum acceptable input
rate and the nodes distance. To distribute the tasks fairly, we use the following simple
three-stepped procedure:

Step 1: Find the maximum number of tasks Uj max that can be re-allocated to each node: This
number is dependent on the total utilization of each node at the current time, that is, on the
acceptable input rate discussed previously (see Equation (10)).

Uj max = T × pj (12)

where T is the total number of migrated tasks.

Step 2: Divide the number of migrated tasks by the sum of the maximum number of tasks that can
be re-allocated to all the nodes based on their utilization.

f =
T

m

∑
j=1

Uj max

(13)
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This will produce an analogy of the number of migrated tasks compare to the number
of tasks that the system can re-accommodate based on its node utilization.

Step 3: Compute the loading factor per node:

Fj = Uj max × f (14)

The loading factor will decide about the total number of migrated tasks each node
can accommodate.

For the example of Figure 1, if T = 50 and the utilization values yielded are p1 =
0.6, p2 = 0.3, and p3 = 0.8, then U1 max = 50 × 0.6 = 30, U2 max = 50 × 0.3 = 15,
and U3 max = 50× 0.8 = 40. The sum of the Uj max values is 30 + 15 + 40 = 85 and the f
value is 50/85 = 0.58. Then, the F values are F1 = 30× 0.58 = 17.4, F2 = 15× 0.58 = 8.7,
and F3 = 40× 0.58 = 23.2. Thus, the 50 migrated tasks would be re-allocated as follows:
18 to node m1, 9 to node m2, and 23 to node m3.

Two things are worth noticing:

1. The model presented for fair redistribution of the migrated tasks monitors the load
per node. Under the assumption that the tuples distributed are of equal size (this is
quite natural and many times desirable), then because of the stepwise strategy of our
scheduling, the node utilization values would be very close. This would produce
even and fair task redistribution. For different sized transmitted tuples, again there
is a guarantee that big parts of the cluster would remain balanced in terms of load
processing.

2. The method can be expanded to a larger number of clusters or networks by using
relay nodes that connect different clusters. We will explain this when we present our
experimental results.

Finally, note that, as a result of the queuing approach of our fair task re-allocation
policy, there is some type of exponential effect on the system’s throughput (see [30]).

5. Pipelined Scheduling

This section shows how to pipeline the main procedures involved in a data stream
processing problem. The overall work required by data stream processing applications
is divided into three stages: The transferring stage is the stage at which data streams are
forwarded according to the communicating steps defined by the FSM of Section 3 and
B1 is used to denote the maximum-cost communication step. The processing stage is the
stage at which the streams are processed by the nodes. In this context, we will assume
with no loss of generality that all the data streams are considered equal so processing
is implemented in constant time B2. Finally, the packing stage is the stage at which the
resulting processed streams are put into buffers, in order to be forwarded to the next nodes
for further processing. This is the fastest stage. The packing time is B3, and is equal for all
the streams being processed. It should be noted that the migrated task go through these
stages as well.

In the analysis that follows, some communication steps are more expensive compared
to the actual stream processing (apparently the ones that involve nodes placed far apart),
while others are less expensive. Thus, B1 > B2 > B3. Other cases that may arise (for
example all communication steps are “cheaper” or “more expensive” than the processing
costs) can be examined similarly.

In Figure 2, the gray areas indicate pipeline stage stalls, that is, a stage has no work to
do and waits until it becomes busy again. The “fade to black” areas indicate the work being
implemented for migrations. Let two communication steps, S0, S1, have the maximum
cost B1 and let there be two task migrations. Since B1 > B2, the streams with maximum
cost are transferred in 2u time, while their processing will have finished at time 2B1 + B2.
The next two steps S2, S3, require B4 time, where B4 < B1, but B4 > B2. This means
that their transfer would be completed at times, 2B1 + B4 and 2B1 + 2B4, respectively,
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while their processing will have finished at times 2B1 + B4 + B2 and 2B1 + 2B4 + B2,
respectively. The communication steps S4, S5 require B5 and B6 time, where B1 > B5 > B6.
The transfer stage for S4 and the processing stage for S3 start at time 2B1 + 2B4, but the
streams of S4 would be transferred by 2B1 + 2B4 + B5, while the processing of S3 which
started simultaneously ends later, at time 2B1 + 2B4 + B2. Finally, the streams of S5 will
be transferred by 2B1 + 2B4 + B5 + B6 and during that time, the processing S4 streams
takes place. It takes 2B1 + 2B4 + B5 + B6 + B2 to transfer, process, and pack all the streams
involved in steps S0 − S5. Now, assume that there are two task migrations. In our scheme,
to achieve synchronization, we start them immediately after transferring the streams for S5.
Thus, we always kill the tasks found in the former hosts of the migrated tasks, after the
completion of the scheduled communication steps and after the completion of the task
migration. The nodes that will accommodate the migrated tasks are determined as shown
in Section 4. The migrated tasks are also transferred using the communication scheme
described in Section 3 and impose at most (assuming these migrations have the maximum
cost B1 plus an extra overhead B7 for the checkpoints) an extra latency of ρB1 + ρB7.
An approximation to the total cost TC is:

TC = (ρ + 2)B1 + (k− 2)B4 + B5 + B6 + B2 + B3 + ρB7 (15)

where k is the number of communication steps and ρ is the number of times migrations are
needed. Recall that, by employing this pipelined organization, some processing/packing
costs are actually “absorbed” resulting in reduced overall delays. This will be shown in the
next section.
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        S0        S1          S2          S3         S4      S5  

       S0     S1    S2     S3   S4   S5 
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Figure 2. Pipelined scheduling with task migrations.

6. Simulation Results and Discussion

The proposed task migration policy is evaluated using a simulation environment,
which provides a wide range of choices to develop, debug, and evaluate their experimental
system. In our experimental setup, the Storm cluster consists of nodes that run Ubuntu
16.04.3 LTS with an Intel Core i7-8559U Processor system, and clock speed at 2.7 GHz, 1 Gb
RAM per node. Further, there is all-to-all communication between the nodes, which are
interconnected at a speed of 100 Mbps. Experiments were conducted on a linear application
topology, with four bolts and one spout, where the number of tasks per component varied
from 4–16. As the cluster size expanded, our last experiments were implemented on
a cluster of 100 nodes with a total number of 600 tasks running in total. The overall
cluster was always divided into sub-clusters of Q = 5 nodes, although similar results
can be obtained with any other division of the cluster. The tuples are text datasets and
the application used for the experiments is the typical word count example. The tuples
are associated to simple text datasets. The application we used for our simulations is the
typical word count example. For example, one task processes a tuple and seeks for all the
words starting from a selected letter. Then, it passes the processed tuples to a next task,
which in turn, seeks for a word that starts with a combination of the selected letter and a



Appl. Sci. 2021, 11, 61 14 of 20

few more letters. Proceeding in this way, the application performs word counting on large
datasets. The application is run in parallel to a number of sub-clusters

To show how the scheme worked on larger clusters, see the example of Figure 3:

Sub-cluster 6Sub-cluster 1

Sub-cluster 2

nodes
Sub-cluster 3

nodes

Sub-cluster 4

nodes
Sub-cluster 5

nodes

Figure 3. A network divided to sub-clusters.

There are two cases:

1. A task migration involves (this decision is based on the model of Section 4 based on
link monitoring) only the nodes of a sub-cluster (for example, task migrations from
a node to the other nodes of sub-cluster 1). Then, a redistribution with parameters
N = Q = 5, t, s, s > t was executed. For example, if our fair distribution model
decided to redistribute 8 migrated tasks to 4 nodes with initial distribution of 4 tasks
per node, then the redistribution parameters would be N = Q = 5 (recall that we
kept each sub-cluster equal to 5 nodes), t = 4, s = 4 + 8

4 = 6.
2. A task migration involves moving tasks from one sub-cluster to another. Again,

the same type of redistribution was used. For example, assume that we need to
migrate 8 tasks from a node of sub-cluster 1 to 4 nodes of sub-cluster 2 of Figure 3.
Again, a redistribution with parameters N = Q = 5, t, s, s > t was executed but
this time with larger transfer times. Then, the communications can continue using the
communication scheme of Section 3.

The parameters we measured in our experiments are the load balancing and the
overall latency. We used two state-of-the-art new strategies for our comparisons: (1) The
approach of Shukla et al. [22], an approach that deals with task migrations and reduces
the extra latencies that incur from incremental flows of checkpoint messages and their
full processing and (2) the MT-Scheduler presented by Sinayyid and Zhu [31]. This work
is a fast technique that uses a dynamic programming scheme to efficiently map a DAG
onto heterogeneous systems. This scheme achieves system performance optimization
(throughput rate maximization) by estimating and minimizing the time incurred at the
computing and transfer bottlenecks and it is a good candidate for latency comparisons.
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6.1. Load Balancing

We conducted two sets of experiments regarding load balancing. In the first set, we try
to find how the migrations affect the load balancing, so we computed the latency during
the migration periods. The overall migration process required from 10 to 100 s, depending
on the number of tasks migrated and the corresponding data (tuples) that they processed.
We repeated the migration experiment for 20 times and for different cluster sizes and we
regularly computed (every 5 s) the average standard deviation of the load being delivered
to each node (see Figures 4–7). An increase of the standard deviation value indicated less
load balancing among the system’s nodes.

The approach of Shukla and Simmhan is based on using the link information through
dataflow checkpoints. A timeout period is employed, where no data but only in-flight
messages are transmitted. The timeout regulation helps Shukla’s and Simmhan’s to have
somehow better balancing results compared to the MT scheduler, as Figures 4–7 show.
In the MT-Scheduler, the only regulation policy used is that the users are allowed to
configure and regulate the data locality, in order to maintain execution of the tasks as
close to the data. This cannot guarantee load balance. As Figures 4–7 show, this strategy
suffers from higher imbalances. Our work was found to have smaller standard deviation
values compared to the other schemes, thus better balancing. For the communications
implemented within each sub-cluster, there is a one-to-one communication among the
system nodes. Some imbalances incur (notice that some points have higher values as
seen in Figures 4–7) in cases when some nodes are somehow more overloaded and the
migrated tasks are not evenly redistributed to maintain fairness. However, one can notice
that, because our communication strategy generally keeps load balancing among the nodes,
there are only a few of these points.

In the second set of experiments, we compute the average load balancing for a period
of one hour (3600 s). Specifically, Figure 8a shows the average load balancing for clusters of
at most 50 nodes, while Figure 8b presents the load balancing results for a cluster of 50–100
nodes. Apparently, as more and more data streams are generated and more migrations are
involved, all the proposed schemes will suffer larger imbalances. Still, our scheme manages
to have smaller increases in the standard deviation value. Notice in Figure 8a,b that the
curve corresponding to our scheme appears to be growing slow and rather smoothly, as a
result of the stepwise communication strategy being employed.
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Figure 4. Load balancing comparisons. Q = 5, 1 sub-cluster.
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Figure 8. Overall load balancing comparisons: (a) for smaller clusters, (b) for larger clusters.

7. Average Latency

To study the average latency, we conducted two sets of experiments. In the first set,
we try to find how the migrations affect the total latency, so we computed the latency
during the migration periods. Again, the overall migration process required from 10 to
100 s, depending on the number of tasks migrated and the corresponding data (tuples) that
they processed. We repeated the migration experiment 20 times for clusters of 5–50 and
50–100 nodes (we gradually expanded the network size by adding subclusters) and we
regularly computed (every 5 s) the average latency (see Figures 9 and 10).

The small ups and downs that one can see indicate that, every time we expanded the
network (added another sub-cluster) and redistributed the tasks, we got a latency drop
for a short period of time, but as more data kept arriving, this small gain was eliminated
and the latency increased. As an example, notice, in Figure 10, the large drop of the latency
found in our scheme, when we expanded the network size from 85 to 100 nodes, at time ≈
45 s. This latency reduction lasted for a few seconds. As more and more data streams kept
arriving, the latency gradually increased.

For our strategy, one can notice that the latency increases in a rather smooth way,
especially for smaller networks (see Figure 9). As the network size and the number of
tasks further increase, so does the latency for all the schemes (see Figure 10). Particularly,
Shukla’s and Simmhan’s scheme had almost identical behavior for smaller and larger
networks (see the shape of the 2 curves in Figures 9 and 10), but the latency experienced for
larger networks was quite larger. This can be explained by the regular timeouts employed
in this scheme. Although the MT scheduler optimizes the system performance, it incurs
regular and large imbalances when task migrations occur and thus, under such conditions,
it experiences the largest latencies.

In the second set of experiments, we study the overall latency for a period of one hour.
The results are shown in Figure 11a,b, for networks of 5–50 and 50–100 nodes. Again, our
work outperforms its competitors for two main reasons: (1) the buffering required by our
scheme is minimized because the communications are performed in such a manner that
each node gets data from only one node at a time. On the long term, when there are large
amounts of unprocessed data buffered, the latency increases, and (2) the overlapping of
certain communication and processing procedures.
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Figure 9. Average latency comparisons, Q = 50, 10 sub-clusters.
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Figure 10. Average latency comparisons, Q = 100, 20 sub-clusters.
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Figure 11. Overall latency comparisons: (a) for smaller clusters, (b) for larger clusters.

8. Conclusions-Future Work

This work presented a dynamic scheduling scheme to handle task migrations in large-
scale networks. The approach is organized in a set of communication steps, where there is
an one-to-one communication between the system’s nodes. Then, it uses a new probabilistic
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model to estimate the acceptable migrated task input rates and finally, the basic stages
involved in stream processing are pipelined and thus, latencies are reduced. The task
migrations are efficiently handle by this type of scheduling. Another advantage of our
work, as the simulations have shown, is that it can be expanded to larger networks divided
into relatively small clusters. The simulation results have verified that the proposed scheme
offers better load balancing and reduces the overall latency compared to state-of-the-art
schemes.

In the future, this work will be extended to test the scheduler’s performance on
even larger clusters and on different application topologies (like diamond, or random
topologies). Moreover, other fair allocation policies are examined. In addition, one of
the key considerations in big data management is fault-tolerance which may overturn
the whole process’s effectiveness. Our future work will also consider this point in our
testing experiments. Finally, we investigate the possibility of integrating the fair scheduling
approach to other well-established schedulers.
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