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Abstract: This study classified chaotic time series data, including smooth and nonsmooth problems
in a dynamic system, using a convolutional neural network (CNN) and verified it through the
Lyapunov exponent. For this, the classical nonlinear differential equation by the Lorenz model was
used to analyze a smooth dynamic system. The vibro-impact model was used for the nonsmooth
dynamic system. Recurrence is a fundamental property of a dynamic system, and a recurrence
plot is a representative method to visualize the recurrence characteristics of reconstructed phase
space. Therefore, this study calculated the Lyapunov exponent by parametric analysis and visualized
the corresponding recurrence matrix to show the dynamic characteristics as an image. In addition,
the dynamic characteristics were classified using the proposed CNN model. The proposed CNN
model determined chaos with an accuracy of more than 92%.
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1. Introduction

The problem of predicting chaotic dynamics has been studied for a long time in dy-
namical systems [1–5]. Chaos is a non-periodic solution with unstable parameters in a
dynamic system, but it has a limitation within a strange attractor. This has been intro-
duced into widely known nonlinear equations, such as Lorenz, Rossler [1], and Van der Pol.
The classical method to analyze a dynamic system uses a time series and a phase portrait.
On the other hand, after the Cooley–Tudkey algorithm in the 1960s, research and develop-
ment of many dynamic systems have led to studies, such as higher-order spectrum analysis
(HOSA), logistic maps, the Lyapunov exponent, and recurrence plots to analyze methods,
including high-dimensional nonlinearity. Among them, the Lyapunov exponent has been
developed and studied in many papers as the most popular method for quantifying chaos.
Wolf et al. [6] developed a numerical algorithm determining the Largest Lyapunov expo-
nent. On the other hand, this algorithm cannot be applied to dynamic systems including
discontinuities, and can only be used in smooth dynamic systems. Muller’s algorithm,
developed to overcome this problem, can be used in a nonsmooth dynamical system,
making it possible to calculate the Lyapunov exponent by applying it to impact and friction
problems, including discontinuities [7].

In mechanical vibration, chaotic signals are a phenomenon that occurs in various appli-
cations, such as friction-induced vibration, impact noise, and fault diagnosis. In particular,
mechanical vibrations can generate a chaotic phenomenon because they contain strong
nonlinearity stemming from the discontinuity of friction and impact. Vibration problems
occurring in general friction systems, including nonlinearity, were analyzed for stability
via linearization [8–10]. On the other hand, after frictional vibration occurs, the nonlinear
signal of the vibration increases and can become chaotic. Kang [11] examined the chaos
phenomenon caused by friction-induced vibration using a 2-DOF model that includes the
negative slope of a continuous friction curve. In particular, the negative slope was found to
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be a control parameter capable of expressing chaotic characteristics. In addition, studies
on the parameters that express the chaotic characteristics occurring in dynamic systems,
including friction, have been investigated in many papers [2–5].

In the impact condition, the collision force is extremely discontinuous at the moment
of impact. The resulting kinetic phenomena for impact motion have been studied exten-
sively to assess the chaos phenomenon. Serweta et al. [12,13] investigated the chaotic
characteristics by calculating the Lyapunov exponent for a dynamic system with disconti-
nuities through Muller’s procedure for Hertz’s and Newton’s contact models. Kang [14]
calculated the Lyapunov exponent for the truncated number of modes of the impact beam
under distributed contact using the continuous beam model.

In addition to the theoretical approach, the vibration signal can be analyzed using
the visualization method of the time series. The analysis method of visualization of the
vibration signals, including high-order nonlinearity, was developed in studies, such as
Gauss wavelets [15,16] and recurrence plots [17]. Marwan et al. [17] introduced various
recurrence plot analyses as a visualization method of dynamic characteristics occurring
in a complex system and analyzed the dynamic characteristics. The phase space is recon-
structed using the time delay method. The embedding dimension and time delay must be
determined to express the reconstructed phase space by the time delay method. The time
delay method is a dynamic problem that can be determined using the Mutual information
method [18]. The embedding dimension is a geometric problem that is being studied to
obtain the minimum physical embedding dimension [18,19]. In this study, the embedding
dimension was determined using the method of false nearest neighbors (FNN) proposed
by Kennel. Despite the many studies to understand the characteristics of dynamic systems,
the decision on the visualized dynamical characteristics was made by the subjective judg-
ment of the engineer. Therefore, uncertainty is always present, and a dynamical property
cannot be judged without a trained engineer.

As studies of visualization of time series have been carried out, methods of distinguish-
ing the characteristics of dynamic signals through the procedure of quantifying recurrence
characteristics have been proposed. In particular, recurrence quantification analysis (RQA)
can determine recurrence patterns through indices expressed as such in the recurrence
rate (RR), the determinism (DET), and the average diagonal line length [3,20–22]. Cluster
numbers provided the visualization of the bifurcation [21]. However, these methods for
quantifying recurrence patterns provide indices as a reference, and a professional engineer
is required to reinterpret these numbers. On the contrary, the Lyapunov exponent is known
as the most deterministic tool to determine chaos when the governing equation is explicitly
known [20].

In the recent rapid development of artificial intelligence, however, many algorithms
using machine learning have been developed. In particular, image classification developed
numerous algorithms based on a convolutional neural network. In 2015, ResNet in the
algorithm proposed by He et al. [23] exceeded the human cognitive ability in image classifi-
cation. A network adopting the Residual Learning method has an error rate of 4%, which is
lower than the error of 5% of human classification ability and has improved learning
ability over the existing learning speed. Based on the above results, this paper proposes a
convolutional neural network (CNN) model that can classify chaos by machine learning.
The model verified the appropriateness of the proposed CNN model by calculating the
Lyapunov exponent. Therefore, the present method is proposed in order to more quickly
and accurately determine chaos characteristics of general complex signals after learning the
predetermined data using the Lyapunov exponent of explicitly known analytical equations.

2. Methods

Figure 1 shows the vibro-impact model with mass, linear spring, and nonlinear elastic
contact. The spring k and kex are linear spring coefficients, and the system can be under
external kinematic excitation forcing. The spring kex at the left end has an amplitude f0 and
an excitation frequency ωex, and is excited harmonically. The distance between the impact
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surface at the static equilibrium position of the system is r. In addition, the nonlinear
elastic model of the collision force was defined as Hertz’s contact model [12]. The dynamic
behavior of the system can be made dimensionless for the generalization and efficiency of
interpretation, as shown in Figure 1b.Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 15 
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Figure 1. Dynamical impact system with external excitation, (a) 1-D impacting oscillator, (b) dimen-
sionless form of (a).

Consider a mass m attached to a spring stiffness coefficient k, ke and coefficient of
viscous damping c. If the impact force is 0, it is only a single degree-of-freedom equation of
motion by excitation. The equation of motion is as follows:

m
..
x + c

.
x + (k + kex)x = f0kex cos ωext. (1)

Using the dimensionless time, τ = t
√
(k + ke)/m and the coordinate transformation

x(t) = X(t), the dimensionless equation of motion can be written as:

X′′ + X′ + X = ξ f0 cos ητ (2)

where prime is the differentiation with respect to τ(≥ 0), and ωn = (
√
(k + ke)/m) is

the natural frequency of the undamped system. η = ωex/ωn is the relation between
the excitation and natural frequency. d = c/

√
(k + ke)m is the dimensionless damping

ratio, ξ = ke/(k + ke) is the relation between the spring coefficient, and u = X/ f0 is the
dimensionless displacement related to the magnitude of excitation forcing,

u′′ + u′ + u = ξ cos ητ. (3)

The most popular Hertz’s model of contact is the nonlinear elastic model, and the
dimensionless collision force is given by:

FL = 0 if u < L
FL = kc(u− L)3/2 if u ≥ L

(4)
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where kc = kcol
√

f0/(k + ke) is the dimensionless ratio of the stiffness of the surface,
which is dependent on the elastic properties and geometry of the rigid body. The dimen-
sionless equation of motion with impact force can be written as:

u′′ + u′ + u = ξ cos ητ + FL H(u− L)3/2 (5)

where H is the Heaviside function. For numerical integration, Equation (4) can be rewritten
in the state space such that:

.
z1 = z2
.
z2 = −z2 − z1 + ξ cos z3 + FLH(u− L)3/2
.
z3 = η

. (6)

The dynamical equation of motion can be converted to the state-space vector form as
follows:

.
z=f(z), z(t0)=z0. (7)

Here, y(t0) is the initial condition of the perturbed solution, and Equation (7) is taken
for the Taylor series at z(t) such that:

δ
.
z=

∂f
∂z

∣∣∣∣
z=zi

·δz + O(2), δz(t0) = δz0. (8)

By letting δz = [Φt(z0)]δz0 substitute into perturbation Equation (8), the variation
equation can be written as:[ .

Φt(z0)
]
δz0 = [Dzf][Φt(z0)]δz0, [Φt0(z0)]δz0 = [I]δz0 (9)

where [Dzf], [I], and [Φt(z0)] denotes the Jacobian matrix, identity matrix, and solution
of the variational equation, respectively. The spectrum of the Lyapunov exponent for the
linearized Equation (9) is estimated through Wolf’s algorithm using the QR-factorization
orthonormalization [6,24].

In this model, Equation (6) represents a nonsmooth dynamical system with discontin-
uous impact effects. The dynamic system, including the discontinuity at the moment of
impact, can be rewritten from Muller’s method. The discontinuity occurs at the point of
impact (t = ti).

ti−1 < t < ti:
.
z = fi(z), z(ti−1) = z(t+i−1) (10)

t = ti: 0 = h(z(t−i )) (11)

z(t+i ) = g(z(t−i )) (12)

ti < t < ti+1:
.
z = fi+1(z), z(ti) = z(t+i ) (13)

The perturbed trajectory is given by:

~
z(t) = z(t) + δz(t) (14)

t̃i = ti + δti (15)

and the perturbed trajectory satisfies the following equation.

t̃i−1 < t < t̃i:
.
~
z = fi(

~
z),

~
z(t̃i−1) =

~
z(t̃+i−1) (16)

t = t̃i: 0 = h(
~
z(t̃−i )) (17)

~
z(t̃+i ) = g(

~
z(t̃−i )) (18)
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t̃i < t < t̃i+1:
.
~
z = fi+1(

~
z),

~
z(t̃i) =

~
z(t̃+i ) (19)

where each interval of discontinuities is smooth, and h(z) and g(z) are the indicator
function and the transition condition, respectively. The plus and minus denote the right-
and left-sided limits, and

δti = t̃i − ti = −
Dh(z−i )δz−i

Dh(z−i )fi(z−i )
(20)

δz+i = Dg(z−i )δz−i + [Dg(z−i )fi(z−i )− fi+1(z+i )]δti (21)

in which

Dh(z−i ) =
∂h(z)

∂z

∣∣∣∣
z=z−i

, Dg(z−i ) =
∂g(z)

∂z

∣∣∣∣
z=z−i

(22)

are the Jacobian matrix of the indicator function and transition condition at point z−i ,
respectively, and z−i = z(t−i ) and z+i = z(t+i ). For the impact oscillator with Hertz’s model
of contact, the Jacobian matrix of transition condition and indicator function becomes the
following matrix:

Dh(z−i ) =
[

1 0 0
]T, Dg(z−i ) = I. (23)

The recurrence plot (RP) is used as a tool to visualize the recurrence pattern of a
dynamical system. A recurrence matrix is expressed by a series of solution vectors. The cor-
responding RP is based on the following recurrence matrix as follows:

Ri,j = ‖zi − zj‖, i, j = 1, . . . , N (24)

where ‖ · ‖ is an L-2 norm, N is the measured points, and {zi}N
i=1 is a system’s trajectory in

its phase space. Here, the element of phase space indicates the possible state of the system
for the time evolution law. In such cases, phase space needs to be reconstructed. The most
popular method of reconstruction is the time delay method

^
zi =

m

∑
j=1

ui+(j−1)νej (25)

where ui = u(i∆t) is the discrete-time series, ∆t is the sampling rate, m is the embedding
dimension, ν is the time delay, and ej are unit vectors. The reconstruction does not change
the dynamical properties, and the reconstructed phase space can be expressed through an
appropriately selected embedding dimension and time delay. In general, the time delay
can be determined appropriately using the Mutual information method.

During time-delay reconstruction, all self-crossing of the trajectory for the attractor’s
dimension dA can disappear if it is set to the embedding dimension d > 2dA. From a physi-
cal point of view, it is very important to determine the minimum embedding dimension
to minimize the numerical calculation of the Lyapunov exponent. From Equation (1) in
dimension d, zr is the rth nearest neighbor of z, and the square of the Euclidean distance
between the two vectors is

R2
d(i, r) =

ν−1

∑
e=0

[
u(i+eτ) − ur,(i+eτ)

]2

. (26)

As it expands on dimension d to dimension d + 1 by time-delay embedding, the Eu-
clidean distance between rth neighbors for dimension d + 1 can be written as follows:

R2
d+1(i, r) = R2

d(i, r) +
[
u(i+dτ) − ur,(i+dτ)

]2
. (27)
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Here, the error for the minimum embedding dimension may be determined through
the rate of change of the Euclidean distance as follows:√√√√R2

d+1(i, r)− R2
d(i, r)

R2
d+1(i, r)

> Rtol (28)

where Rtol is the threshold. According to a lecture, false neighbors can be identified clearly
if Rtol ≥ 10 [18,19]. Another condition for determining false neighbors is defined based on
the fact that the actual value of Rd(i) ≡ Rd(i, r = 1) is similar to the attractor’s standard
deviation, RA, using the finite data onto the noise signal. Thus, the Euclidean distance
from the dimension d + 1 becomes Rd+1(i) ≈ 2RA. The second criterion for determining
false neighbors is as follows:

Rd+1(i)
RA

> Atol . (29)

They are decided as false neighbors based on the conditions of Equations (28) and
(29).

3. Results

This study aimed to show that it is possible to classify chaos signals and non-chaos
signals using a CNN and verify it using the Lyapunov exponent. Figure 2 shows the
flow chart of the proposed methodology. First, the nonlinear time series data onto the
parametric dynamic system were obtained by numerical analysis using the Runge–Kutta
method. Second, the obtained time series data were determined using the FNN algorithm
to determine the embedding dimension, and the phase space was reconstructed. Third,
the reconstructed data were presented as an unthresholded recurrence plot to visualize
the dynamic characteristics. The Lyapunov exponent corresponding to the change in the
control parameter was calculated, and it was trained and verified using the proposed CNN
model. Table 1 shows the layer type, filter size, and shape of each layer of the proposed
CNN model.
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Figure 2. Flow diagram of the proposed methodology.

For image classification using a CNN, many sophisticated models have been devel-
oped that transcend human cognitive ability, but the proposed model is simply composed
of a two-stage structure to distinguish only chaos and non-chaos, as shown in Figure 3.
In each stage, the convolution layer, activation function, and pooling layer were included.
The proposed model had two convolution layers with a 32− 3× 3 filter and a 64 – 3 × 3 fil-
ter, respectively.
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Table 1. CNN model for the Lorenz system.

Layer Output Shape Param #

Conv2d(Conv2d) (None, 200, 200, 32) 896
Batch normalization (None, 200, 200, 32) 128

Max pooling2d (None, 100, 100, 32) 0
Conv2d 1 (None, 100, 100, 64) 18,496

Batch normalization 1 (None, 100, 100, 64) 256
Max pooling2d 1 (None, 50, 50, 64) 0

Flatten (None, 160,000) 0
Dense (None, 256) 40,960,256

Batch normalization 2 (None, 256) 1024
Dense 1 (None, 2) 514
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Figure 3. Flow diagram of the proposed convolutional neural network (CNN) model for the Lorenz system.

As mentioned above, the unthresholded recurrence plot is a tool to visualize the
recurrence characteristics of a dynamic system. In the case of chaotic signals, the repetition
characteristics can occur in a very short interval. Therefore, the filter size was set as small
as possible. In addition, two max pooling layers of 2 × 2 were used. At the end of the
last stage, through two convolution layers, the feature maps were flattened into a column
vector, and the features of the image were classified into a fully connected layer for the two
types of signals. Softmax was used as the activation function of the output.

One of the gradient-based optimization methods was used to estimate the minimized
cost function of the proposed model. The Adam optimizer is an optimization function
based on the gradient decent algorithm and achieved faster convergence [25].

The weight initialization is a very important problem. Many problems can occur if the
weight setup is wrong, such as convergence problems and local minimum problems. LeCun
initialization follows a Gaussian distribution and uniform distribution of weight initializa-
tion for effective backpropagation [26]. Xavier initialization sets the weight depending on
the number of previous and next nodes [27]. This is the most generalized method, but the
output value showed inefficient results when used in the ReLU function. He initialization
was developed to compensate for this [28]. In the proposed model, the weight initialization
was performed using the He initialization method following a Gaussian distribution.

The Lorenz system was used as the typical chaotic system for preliminary analysis
and CNN verification. ρ was selected as the control parameter; the other parameters were
σ = 10 and β = 8/3. The initial conditions were q(0) = v(0) = 0 and p(0) = 1. The Lorenz
equation is described in the state space such that:

.
q = −σ(q + p)
.
p = q(ρ− v)− p
.
v = qp− βv

(30)
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where q = [ q p v ]
T is the state vector and σ, ρ, and β are parameters. Figure 4 shows

the Lorenz system with chaotic attractors.
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Figure 4. Chaotic attractor for the Lorenz system when σ = 10, β = 8/3, and ρ = 28; the initial conditions were
q(0) = v(0) = 0 and p(0) = 1, (a) Phase portrait, (b) Time series plot of q(t).

In the Lorenz system, infinitesimal differences in the parameters or initial conditions
alter the state of the system. As shown in Figure 4a, the trajectory shows a butterfly shape
in phase space and moves in an infinite trajectory at a bounded steady state. Figure 4b
illustrates the time series result of q. Figure 5a presents the Lyapunov exponent of the
Lorenz equation with the change in the control parameter. Figure 5b shows the unthresh-
olded recurrence plot of visualized chaos and non-chaos. [1 0] is a chaos image and [0 1] is
a non-chaos image.
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matrix.

The explanation of critical A for the Lyapunov exponent of the Lorenz system has
been investigated [6]. To summarize this system briefly, if 215.8 > ρ > 24.86, it represents a
strange attractor for the control parameter ρ and the initial condition. On the other hand,
strange attractors are not displayed under some conditions. On the other hand, if ρ > 215.8,
the system was represented as a stable attractor. In 3D phase space, the Lyapunov exponent
has four types of attractors, such as stable fixed points, stable limit cycles, stable two-torus,
and strange attractors (Chaos), but only chaos and non-chaos were distinguished in this
system. In other words, the unthresholded recurrence matrix can be obtained from the
flow of the proposed method in the control parameter representing the chaotic attractor
(max(λi) > 0) of the dynamic system, which is classified using the CNN.
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The Lorenz system consisted of 3800 datasets and 200 × 200 pixels images. The time
series analysis and Lyapunov exponents were calculated with a time step of 0.01 and an
orthonormalization of 0.1, respectively. The dataset was divided into three main parts.
The total dataset was divided into 70% of the training dataset and 30% of the testing
dataset. From the divided training dataset, it was divided into 20% of the validation
dataset. The dataset samples used for training are described in Table 2. Because the images
are generated sequentially as the Lyapunov exponent increases, errors due to the sequential
dataset were removed by shuffling the dataset.

Table 2. Dataset samples.

Data Percentage Number of Samples

Training 56% 2128
Validation 14% 532

Testing 30% 1140

Figure 6 presents the results of the proposed CNN model. The chaos characteristics
were trained for 2128 training data samples and simultaneously verified by 532 data sam-
ples during each epoch. The tests were then performed on 1140 data samples using the
trained CNN model. The batch size was set to 10, and the learning rate of the optimiza-
tion function was 0.0001. The accuracies and losses were collected as the training and
verification data for each epoch, and are plotted in Figure 6a,b. As shown in the learning
results, the accuracies were illustrated as a logarithmic function and reached almost 100%.
The losses were indicated as a negative exponential function and converge close to 0%.
This suggests that the proposed model detects the recurrence properties of the Lorenz
system very well.
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Figure 7 shows the feature map in the first layer. Figure 7a shows the filter map
for weight and basis using the He Gaussian method, and Figure 7b presents the feature
map corresponding to each filter. In Figure 7b, the white image means that the feature
cannot be found by the corresponding filter. Overall, the filter finds chaos characteristics
well. Over 100 epochs, the proposed CNN model classified the chaotic characteristics
with 96% accuracy. This suggests that the proposed CNN model can analyze complex
dynamic characteristics that humans cannot recognize with high accuracy. Besides this,
the experimental results for 1140 datasets not used for learning were classified with 95%
accuracy. This shows that the CNN can extract more complex dynamical properties using
generalized features from the unthresholded recurrence plot. Therefore, a numerical
experiment was performed on the vibro-impact problem, as below.
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In the case of the Lorenz system, it is relatively easy to distinguish the recurrence prop-
erties because it is not a system that oscillates for all control parameters. In other words, the
system does not vibrate if the Lyapunov exponent reaches a stable equilibrium. Therefore,
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it is not well expressed for the recurrence properties of the dynamical system. On the other
hand, the vibration system with discontinuity has a highly complex recurrence property.
Therefore, the classification procedure of the proposed methodology was performed by
applying Muller’s method to Equation (6).

Figure 8 shows the Lyapunov exponent of the vibro-impact model calculated for the
control parameter η; the other parameters and initial conditions were r = 2, ξ = 0.05,
kh = 100, and z0 =

[
0.5 −1.2 0

]T. In this study, only chaos and non-chaos dynamic
characteristics were distinguished for the system with impact and excitation, so other
detailed types of attractors were not considered. In the analysis results, the Lyapunov ex-
ponent was changed drastically if the control parameter increases as infinitesimal. Figure 9
plots the characteristics of typical attractors for each generated type. Figure 9a and b shows
the time series plot and the corresponding phase portrait for the attractor, respectively,
for the case η = 0.65. The other cases η = 0.7416 are shown in Figure 9c,d. The attractor
showed a stable limit cycle without impact, and the sign of the largest Lyapunov exponent
was (λ1, λ2, λ3) = (0,−,−), as shown in Figure 9a. If the sign of the largest Lyapunov
exponent is zero and the others are negative, it means that the system does not diverge
and the oscillation is stable. In other words, it was not made a chaotic trajectory. On the
other hand, Figure 9b shows that an attractor diverges within the bounded steady state to
reach the critical region. A chaotic trajectory different from the periodic or quasi-periodic
solution was plotted. Here, the sign of the largest Lyapunov exponent is generated as
(λ1, λ2, λ3) = (+, 0,−). This suggests that it was generated as a strange attractor.
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Therefore, some of the unthresholded recurrence plots are shown in Figure 10 for
classification into two types: (λ1, λ2, λ3) = (+, 0,−) and others. [1 0] and [0 1] below the
image represent chaos and non-chaos, respectively. As shown in Figure 10, the images by
the chaos system and by the non-chaos system always oscillated. Therefore, images were
expressed in a very complex form. The complex systems require more sophisticated neural
networks. Therefore, we constructed a neural network using only eight residual blocks
based on ResNet, one of the most sophisticated neural networks. In total, 3800 datasets
were used for training and consisted of 200 × 200 pixels images. The results are shown in
Figure 11.

The proposed CNN model was converged with 95% accuracy over the 200 epochs
and appeared in the shape of a logarithmic function. Here, the reason for the fluctuation of
accuracy up to the initial 80 epochs was to give a large running rate for rapid convergence
of the experiment, and the learning was performed by decreasing the running rate after
80 epochs. On the other hand, the loss was converged over 200 epochs to 0% in the shape
of the negative exponential function. The proposed procedure and method of classification
using the CNN model was found on the chaotic characteristics of the vibro-impact model
well and classified with high accuracy. As a result of experimenting with 1140 datasets not
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used for training, the chaotic signal was classified with a high accuracy of approximately
92%. This shows that if the characteristics of a relatively very complex dynamic system can
be visualized, the characteristics of the signal can be analyzed clearly by the CNN.
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4. Discussions

This study developed a CNN model that visualizes a dynamic signal with high order
nonlinearity and distinguishes between chaos and non-chaos. In addition, the chaotic char-
acteristics were verified by calculating the Lyapunov exponent. The signal generated in the
dynamic system could be distinguished from the chaotic characteristics by calculating the
Lyapunov exponent. On the other hand, the actual signals were complexly generated with
noise and uncertainty. Visualization of the dynamic signals was used as a general method
of analyzing the signal characteristics, but signals with nonlinearity are very difficult for
engineers to analyze. In particular, chaotic signals cannot be classified accurately by the hu-
man cognitive ability, and theoretical analysis methods have limitations. CNN models have
been developed that overcome the errors in human cognitive ability owing to the rapid
development of artificial intelligence. Therefore, a simple CNN model that distinguishes
between chaos and non-chaos with an accuracy of approximately 95% was developed.
A new methodology that can analyze a real complex signal and more complex signals,
such as BSR noise, will be discussed in the future.

In the future, this method of obtaining the feature learned from explicitly known
equations and the Lyapunov exponent will be further applied to the experimental signal
from which the Lyapunov exponent is not clearly calculated.

Author Contributions: Conceptualization, J.K.; methodology, J.K.; software, J.K.; validation, J.K.
and J.N.; formal analysis, J.K. and J.N.; investigation, J.K. and J.N.; resources, J.K.; data curation,
J.K.; writing, original draft preparation, J.K and J.N.; writing, review and editing, J.K. and J.N.;
visualization, J.K. and J.N.; project administration, J.K.; funding acquisition, J.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Inha University Research Grant (INHA-63005-01).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barrio, R.; Blesa, F.; Serrano, S. Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors.

Phys. D 2009, 238, 1087–1100. [CrossRef]
2. Wei, D.; Zhu, W.; Wang, B.; Ma, Q.; Kang, Z. Effects of brake pressures on stick-slip bifurcation and chaos of the vehicle brake

system. J. Vibroengineering 2015, 17, 2718–2732.
3. Oberst, S.; Lai, J. Chaos in brake squeal noise. J. Sound Vibrat. 2011, 330, 955–975. [CrossRef]
4. Li, Z.; Cao, Q.; Nie, Z. Stick-slip vibrations of a self-excited SD oscillator with Coulomb friction. Nonlinear Dyn. 2020, 102, 1419–1435.

[CrossRef]
5. Wei, D.; Ruan, J.; Zhu, W.; Kang, Z. Properties of stability, bifurcation, and chaos of the tangential motion disk brake.

J. Sound Vibrat. 2016, 375, 353–365. [CrossRef]
6. Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D 1985, 16, 285–317.

[CrossRef]
7. Müller, P.C. Calculation of Lyapunov exponents for dynamic systems with discontinuities. Chaos Solitons Fractals 1995,

5, 1671–1681. [CrossRef]

http://dx.doi.org/10.1016/j.physd.2009.03.010
http://dx.doi.org/10.1016/j.jsv.2010.09.009
http://dx.doi.org/10.1007/s11071-020-06009-3
http://dx.doi.org/10.1016/j.jsv.2016.04.022
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0960-0779(94)00170-U


Appl. Sci. 2021, 11, 77 14 of 14

8. Kang, J.; Krousgrill, C.M.; Sadeghi, F. Comprehensive stability analysis of disc brake vibrations including gyroscopic, negative
friction slope and mode-coupling mechanisms. J. Sound Vibrat. 2009, 324, 387–407. [CrossRef]

9. Kang, J. Numerical calculation of hip squeak over the normal gait cycle. Int. J. Precis. Eng. Manuf. 2019, 20, 2205–2214. [CrossRef]
10. Nam, J.; Do, H.; Kang, J. Investigation of friction induced vibration in lead screw system using FE model and its experimental

validation. Appl. Acoust. 2017, 122, 98–106. [CrossRef]
11. Kang, J. Lyapunov exponent of friction-induced vibration under smooth friction curve. J. Mech. Sci. Technol. 2018, 32, 3563–3567.

[CrossRef]
12. Serweta, W.; Okolewski, A.; Blazejczyk-Okolewska, B.; Czolczynski, K.; Kapitaniak, T. Lyapunov exponents of impact oscillators

with Hertz’s and Newton’s contact models. Int. J. Mech. Sci. 2014, 89, 194–206. [CrossRef]
13. Serweta, W.; Okolewski, A.; Blazejczyk-Okolewska, B.; Czolczynski, K.; Kapitaniak, T. Mirror hysteresis and Lyapunov exponents

of impact oscillator with symmetrical soft stops. Int. J. Mech. Sci. 2015, 101, 89–98. [CrossRef]
14. Kang, J. Calculation of Lyapunov exponents in impacted beam on distributed contact. J. Sound Vibrat. 2018, 431, 295–303.

[CrossRef]
15. Hramov, A.E.; Koronovskii, A.A.; Makarov, V.A.; Pavlov, A.N.; Sitnikova, E. Wavelets in Neuroscience; Springer: Berlin/Heidelberg,

Germany, 2015; pp. 45–72.
16. Goryunova, M.; Kuleshova, L.; Khakimova, A. Application of signal analysis for diagnostics. In Proceedings of the 2017 Interna-

tional Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), St. Petersburg, Russia, 16–19 May 2017;
pp. 1–5.

17. Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007,
438, 237–329. [CrossRef]

18. Wallot, S.; Mønster, D. Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of
embedding parameters of multidimensional time series in matlab. Front. Psychol. 2018, 9, 1679. [CrossRef] [PubMed]

19. Adeli, H.; Ghosh-Dastidar, S.; Dadmehr, N. A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect
seizure and epilepsy. IEEE Trans. Biomed. Eng. 2007, 54, 205–211. [CrossRef] [PubMed]

20. Zou, Y.; Donner, R.V.; Donges, J.F.; Marwan, N.; Kurths, J. Identifying complex periodic windows in continuous-time dynamical
systems using recurrence-based methods. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 043130. [CrossRef]

21. Butusov, D.N.; Karimov, A.I.; Pesterev, D.O.; Tutueva, A.V.; Okoli, G. Bifurcation and recurrent analysis of memristive circuits. In
Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),
Moscow, Russia, 29 January–1 February 2018; pp. 178–183.

22. Ozken, I.; Eroglu, D.; Stemler, T.; Marwan, N.; Bagci, G.B.; Kurths, J. Transformation-cost time-series method for analyzing
irregularly sampled data. Phys. Rev. E 2015, 91, 062911. [CrossRef] [PubMed]

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

24. Parker, T.S.; Chua, L. Practical Numerical Algorithms for Chaotic Systems; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2012.

25. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
26. LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K. Efficient backprop. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg,

Germany, 2012; pp. 9–48.
27. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256.
28. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.

In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

http://dx.doi.org/10.1016/j.jsv.2009.01.050
http://dx.doi.org/10.1007/s12541-019-00221-x
http://dx.doi.org/10.1016/j.apacoust.2017.02.011
http://dx.doi.org/10.1007/s12206-018-0707-6
http://dx.doi.org/10.1016/j.ijmecsci.2014.09.007
http://dx.doi.org/10.1016/j.ijmecsci.2015.07.016
http://dx.doi.org/10.1016/j.jsv.2018.06.023
http://dx.doi.org/10.1016/j.physrep.2006.11.001
http://dx.doi.org/10.3389/fpsyg.2018.01679
http://www.ncbi.nlm.nih.gov/pubmed/30250444
http://dx.doi.org/10.1109/TBME.2006.886855
http://www.ncbi.nlm.nih.gov/pubmed/17278577
http://dx.doi.org/10.1063/1.3523304
http://dx.doi.org/10.1103/PhysRevE.91.062911
http://www.ncbi.nlm.nih.gov/pubmed/26172776

	Introduction 
	Methods 
	Results 
	Discussions 
	References

