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Abstract: In this paper, we investigated various physiological indicators on their ability to identify
distracted and drowsy driving. In particular, four physiological signals are being tested: blood vol-
ume pulse (BVP), respiration, skin conductance and skin temperature. Data were collected from
45 participants, under a simulated driving scenario, through different times of the day and during
their engagement on a variety of physical and cognitive distractors. We explore several statistical
features extracted from those signals and their efficiency to discriminate between the presence or not
of each of the two conditions. To that end, we evaluate three traditional classifiers (Random Forests,
KNN and SVM), which have been extensively applied by the related literature and we compare
their performance against a deep CNN-LSTM network that learns spatio-temporal physiological
representations. In addition, we explore the potential of learning multiple conditions in parallel
using a single machine learning model, and we discuss how such a problem could be formulated and
what are the benefits and disadvantages of the different approaches. Overall, our findings indicate
that information related to the BVP data, especially features that describe patterns with respect
to the inter-beat-intervals (IBI), are highly associates with both targeted conditions. In addition,
features related to the respiratory behavior of the driver can be indicative of drowsiness, while being
less associated with distractions. Moreover, spatio-temporal deep methods seem to have a clear
advantage against traditional classifiers on detecting both driver conditions. Our experiments show,
that even though learning both conditions jointly can not compete directly to individual, task-specific
CNN-LSTM models, deep multitask learning approaches have a great potential towards that end as
they offer the second best performance on both tasks against all other evaluated alternatives in terms
of sensitivity, specificity and the area under the receiver operating characteristic curve (AUC).

Keywords: diver monitoring; multitask learning; machine learning; deep learning

1. Introduction

Understanding human behavior is on the epicenter of modern AI research. Modeling
and monitoring a user’s state is critical towards designing adaptive and personalized
interactions and has lead to ground-braking changes on several domains during the last
few years. The transportation sector, in particular, is one of the application areas that
have invested the most in “smart” monitoring with the broader goal of increasing safety
and improving the quality of the overall experience [1]. That is especially true for the
automotive industry, as for many years the number of road accidents has been steadily
increasing and car manufacturers have shifted their attention on the search of machine
learning and AI-powered solutions.

According to the World Health Organization (WHO), each year 1.35 million people
lose their lives to road accidents while 50 million get injured [2,3]. That translates to
approximately 3700 deaths and 137,000 injuries daily. Moreover, based on the same
resource, road traffic injuries are the leading cause of death for children and young adults
between the ages of 5 to 29 years. Particularly, young males are three times more likely to

Appl. Sci. 2021, 11, 88. https://dx.doi.org/10.3390/app11010088 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2794-9115
https://www.mdpi.com/2076-3417/11/1/88?type=check_update&version=1
https://dx.doi.org/10.3390/app11010088
https://dx.doi.org/10.3390/app11010088
https://dx.doi.org/10.3390/app11010088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/app11010088
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 88 2 of 22

be involved in a car accident than young females, with mobile phone usage being the most
common cause of distractions. What is especially surprising according to WHO findings, is
that hands-free phone usage remains almost equally dangerous to the physical interaction
with the device. It is estimated that road crashes cost most countries an average of 3% of
their gross domestic product while future trends show that by 2030, fatalities related to
road accidents will be the fifth most common cause of mortality globally, from being ninth
in 2011.

Specifically in the US, the National Highway Traffic Safety Administration (NHTSA)
reports that only in 2018, 2800 lives were lost and more than 400,000 people were injured
due to distracted driving. Additionally, only in 2017, 91,000 police-reported crashes in-
volved drowsy drivers leading to an estimated 50,000 people injured and nearly 800 deaths.
However, as the NHTSA suggests, there is broad agreement across the traffic safety, sleep
science and public health communities that these numbers are an underestimate of the real
impact that driving while being mentally or physically fatigued can have. An underesti-
mate that occurs due to the lack of technology and tools to detect and account for drowsy
driving behaviors [4,5].

In this work we address the problem of driver state modeling with respect to both
distraction and alertness. The originality of our work stems from two main stand points.
First, this is one of the very few efforts to tackle both conditions in parallel and study
how they intersect. Second, in this study we focus explicitly on four different types
of physiological markers; blood volume pulse, skin conductance, skin temperature and
respiration. That is in contrast to the vast majority of driver monitoring systems that exploit
either visual-based information such as facial and motion analytics [6–8] or vehicular-based
data such as miles per hour, steering patterns, etc. [9–11]. The largest portion of studies
that research physiological signals for driver behavior modeling, focuses on detecting and
measuring stress [12–14]; a condition that may have a latent relation with both distraction
and drowsiness but is by no means identical to either of them. That is a general truth but
also holds specifically under the context of driving as confirmed by Desmond et al. [15].

Through our experimental analysis we try to answer three main questions which
also summarize the scientific contribution of this work:

1. Which physiological indicators are most indicative of drowsy and distracted behavior?
2. Are there specific statistical features coming from different signals that are particu-

larly informative?
3. Is it possible to jointly tackle the problems of drowsiness and distraction detection

and how such a framework can be formulated?

For our experiments we use a novel dataset, compiled by our team, that consists
of 45 subjects participating in a driver-simulation setup. The dataset captures varying
levels of attention and alertness, across and within participants. Additionally, participants
are exposed to different types of common driving distractions, with a special focus on
variants of cognitive distractions, which are much harder to depict using the more popular
computer vision-based approaches.

The rest of the paper is structured as follows: in the next section, we discuss how
related research has tried to address the main questions targeted by this paper. Section 3
presents the steps followed during the experimental methodology with respect to data
collection, data processing and performance evaluation. In Section 4, we present in greater
depth the different classification approaches proposed by this paper. Section 5 contains
the results achieved by each technique and discusses how different features and modeling
methods affect performance in each targeted scenario. At the end, we conclude by summa-
rizing the outcomes of our research and guided by our experimental insights we suggest
future research directions.
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2. Related Work
2.1. Understanding Distracted and Drowsy Driving Using Physiological Signals

Several studies have addressed the problem of driver state modeling using physio-
logical markers. However, in most scenarios, only a single condition was targeted thus,
making most approaches relatively limited to generalize. Two of the very first and most
insightful papers to study the problem were the works published by Brookhuis et al. in
2010 [16] and Reimer et al. [17] in 2011. The authors in both papers formulated the problem
of driver modeling as an assessment of cognitive workload and showed its strong relation
to heart-rate and heart-rate variability under the context of driving. Of special interest
are their findings on evaluating the impact of simulated scenarios compared to real-life
driving, as it was shown that in-lab driving setups can sufficiently replicate real-life driving
conditions in several cases. Specifically as discussed in [17], the simulated setup could
cause the same physiological reactions to the participants both in terms of heart-rate and
skin conductance when compared to the experiments conducted with real-life data.

While many works have targeted cognitive load since the aforementioned papers
where published [18–20] due to its ability to encapsulate information related to both
distraction and drowsiness, fewer studies have tried to decouple the two conditions and
study them independently.

The work proposed by Awais et al. [21] in 2017 showed that learning jointly electro-
cardiogram (ECG) and electroencephalogram (EEG) information could lead to promising
results with respect to drowsiness detection, while more recently in 2019, Persson et al. [22]
were the first to dig a bit deeper on the strength of ECG signals to categorize different levels
of alertness by identifying specific features of importance.

Similarly to drowsiness detection, very limited are the research efforts on detecting
distracted behaviors using explicitly physiological data. Sahayadhas et al. [23] in 2015 com-
pared the performance of ECG and EMG data for modeling distracted driving. The authors
used conventional features and classifiers and got promising results on both detection
and discrimination across different types of distractors. Taherisadr et al. [24] showed in
2018 that cepstral ECG analysis could offer informative and robust signal representations
towards detecting inattention in a subject independent manner. On the same line, De-
hzangi et al. [25] in 2019 showed that wavelet analysis of galvanic skin response (GSR) is
also highly sensitive to distracted behavior. The authors however, did not compare their
findings to any heart rate-based methods, despite their popularity in the broader area of
physiological-based driver modeling.

Riani et al. [26] were probably the first to study the two conditions independently but
under a unified machine-learning framework. The authors explored both attention and
alertness together based on a multi-class classification scheme using multiple physiological
modalities such as BVP, skin conductance, skin temperature and respiration data. However,
no experiments were conducted to investigate the classification strength of the individual
signals and no signal-based comparisons were made.

2.2. Deep Learning and Physiological Signal Processing for Driver State Modeling

As in most domains, deep-learning methods have become increasingly popular on
processing and modeling physiological data, due to their ability to learn condense and
descriptive representations. Lim et al. [27] showed in 2016 the potential of using a vanilla
two-layered CNN to jointly process vehicular, visual, audio and physiological data for
driver state modeling. Despite their novel formulation at the time, their approach was
limited as it assumed four distinct and non-overlapping classes namely drowsiness, visual
distraction, cognitive distraction and high workload. Thus, excluding the possibility of a
participant being under multiple states at the same time. In 2018, Zeng et al. [28] discussed
the application of convolutional networks with residual connections applied on EEG data
for drowsiness detection. In the same year and coming as a natural expansion of the
previous studies Choi et al. [29] proposed the application of modality-based CNNs in
combination with a shared LSTM unit responsible to account for the temporal relation of
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the incoming samples. The authors combined visual data of the driver’s face along with
driver’s heart BPM signal to tackle the problem of drowsiness detection, achieving quite
promising results both on the unimodal and multimodal experiments. The exact same
modeling approach was proposed by Rastgoo et al. in 2019 [30] but for the task of driver
stress classification. The authors also used a multimodal approach and similarly to [27] they
combined vehicular and driving-performance data with ECG signals to better model their
task. Most recently, in 2020, and inspired by past research, Gjoreski et al. [31] published a
very insightful work that explored several variations of combining convolutional and LSTM
units. The authors exploited visual, thermal and physiological modalities (ECG GSR and
BR) to model distracted driving behavior and researched how different modality-fusion and
machine-learning processing pipelines could be applied to handle the various modalities.

Despite the fact that end-to-end deep-learning methods have attracted the attention of
many recent research approaches, very few studies have focused explicitly on analyzing
the strength of deep-physiological representations under the context of driving. In addition
to that, even fewer papers have focused on identifying multiple and co-existing driver
conditions under the same framework. These are the exact research gaps that we hope to
fill through the analysis presented in this paper.

2.3. Joint Learning of Multiple Driver Behaviors

Due to its complexity, learning multiple driver behaviors under a single model remains
one of the most understudied areas of driver monotioring. In 2016 Craye et al. [32],
proposed a framework operating over visual, audio and physiological features to tackle
both driver fatigue and distraction. The authors suggested a method based on two different
Bayesian networks, each dedicated to a single condition, while both networks operated on
the same input features. In 2017, Choi et al [33], proposed a multi-class approach based
on inertial and physiological measurements to monitor stress, fatigue and drowsiness
at the same time. In spite of being one of the very first approaches to address multiple
driver conditions under the same framework, the vague distinction of the classes and
the relatively simplistic simulation setup make their overall findings hard to generalize.
In 2019, Sarkar et al. [34], proposed a single framework to jointly learn multiple user states.
In particular, the authors tried to quantify cognitive load and user’s expertise using a
deep-multitask-learning pipeline. Even though the method was evaluated on a physical
trauma treatment scenario and not in a driving setup, their analysis suggested its potential
to generalize across tasks. Finally, as referenced in Section 2.1, in 2020, Riani et al. [26]
studied alertness and distraction together by formulating their problem as a multi-class
classification task, similarly to [33]. However, their limited dataset and evaluations also
narrow down the generalizability of their findings.

In contrast to most past research works, in this study we compile a relatively larger
dataset of 45 male and female subjects with multiple recordings each, so to account for
richer alertness and distraction variations within and across participants. We focus our
analysis exclusively on physiological signals and their corresponding features in order to
explore the strength of different bio-markers to capture the two conditions under the context
of driving. Eventually, we evaluate different machine-learning classification techniques as
we explore further how modern deep-learning pipelines can be applied to jointly monitor
multiple driver states.

3. Dataset and Experimental Setup

We compiled a novel multimodal dataset consisting of rgb (red, green, blue), infrared,
thermal, audio and physiological information. The dataset, was collected under a simulated
environment with multimodal data gathered from 45 subjects. All study procedures have
been reviewed and approved by the University of Michigan’s Institutional Review Board
(IRB) under the identification code HUM00132603 on 31 October 2018. In total, the dataset
consist of 30 male and 15 female participants, all between the ages of to 20 and 33 years old.
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For the purposes of this publication we focus exclusively on the four different physiological
indicators. Figure 1 illustrates the experimental setup environment.

Figure 1. The data collection setup.

3.1. Experimental Procedure

We held two recordings for each participant. One recording took place in the morning,
usually sometime from 8 a.m. to 11 a.m., and the second recording happened during the
afternoon/evening, between 4 p.m. and 8 p.m. We asked all participants to schedule the
morning recording as the first task in their daily routines so that they are as less drowsy as
possible. On the contrary, participants were supposed to attend the afternoon recordings
later in the day, usually before going home, and were specifically instructed not to nap
throughout that day until the time of the recording. Our assumption is that in different
times of the day we could capture variant levels of alertness and biological rhythms and that
during late afternoon recordings subjects would tend to be more drowsy. This assumption
is based on several past research findings that suggest that drowsy behaviors are mostly
observed either during late night or during the late afternoon and that those are also the
time-slots that most related driving accidents occur [5,35–38]. That is especially true for
our specific target group (young adults) who were in their vast majority graduate and
undergraduate students and participated in the afternoon recording after attending long
hours of classes. Even though our analysis is representative of this age group, taking
into account that age is a relevant factor regarding the degree in which drowsiness affects
driving, we can not safely generalize our findings on elders at this point. The two recordings
did not have to happen in the same day or in any specific order. Each recording lasted on
average 45 min and consisted of three different sub-recordings; ‘baseline’, ‘free-driving’
and ‘distractions’. During each session and for both distractions and free-driving sections,
the drivers were free to drive anywhere in the virtual environment, which consisted of both
city-like environments and highways with low traffic, no pedestrians and good weather
conditions under day-light conditions.

The ‘baseline’ recording consisted of two sub-parts: the ‘base part’ and the ‘eye-
tracking’ part. In the ‘base part’ participants were asked to sit still, breath naturally and
stare at the middle of the central monitor for 2.5 min. For the ‘eye-tracking’ part, subjects
were shown a pre-recorded video with a target changing its position every few seconds.
Participants were asked to follow the target with their gaze while acting naturally. This
part lasted another 2.5 min.

During the ‘free-driving’ recording, participants had to drive uninterrupted for approx-
imately 15 min. Before the beginning of each ‘free-driving’ recording and after explaining
the basic operation controls, we gave participants a chance to drive for a few minutes so
they can familiarize themselves with the simulator. To minimize the biases introduced by
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the relatively unfamiliar virtual-driving setup, for the purposes of this paper we used only
5 min long data segments, extracted from the last 7 min of the free-driving recording, when
subjects were already used to the driving simulator.

The last part was the ‘distractions’ recording. This recording consisted of four dif-
ferent sub-parts that simulated different types of common driving distractors. Bellow
we describe the four different distractors that participants were exposed to during each
recording session.

1. Texting—Physical. Participants were asked to type a small text message on their
personal mobile device. The text was a predefined 8-word message and was dictated
to the participant by the experiment supervisor on the fly. By using predefined texts
we aimed to minimize the impact of cognitive effort that subjects had to put when
texting and focus more on the physical disengagement from driving. Nonetheless,
texting combines all three distraction classes defined by NHTSA and the CDC, which
are Manual, Visual and Cognitive. The mobile device was placed on an adjustable
holder on the right side of the steering wheel and participants had the freedom to
adjust the positioning of the holder at will, so that it fits their personal preferences.
Thus, simulating a real-car setup as accurately as possible.

2. N-Back Test—Cognitive Neutral. The second distractor was the N-Back test. This
distractor aimed to challenge exclusively the Cognitive capabilities of the subjects
while driving. N-Back is a cognitive task extensively applied in psychology and
cognitive neuroscience, designed to measure working memory [39]. For this distractor,
participants were presented with a sequence of letters, and were asked to indicate
when the current letter matched the one from n steps earlier in the sequence. For our
experiments we set N = 1 and deployed an auditory version of the task where subjects
had to listen to a prerecorded sequence of 50 letters.

3. Listening to the Radio—Cognitive Emotional. For this distractor, participants were
asked to listen to a pre-recorded audio from the news and then comment about what
they just heard by expressing their personal thoughts. As with the N-Back Test,
this distractor challenges mainly the cognitive capabilities of the participant when
driving but with one major difference. In contrast to the neutral nature of the previous
distractor here the recordings were emotionally provocative hence, motivating an
affective response from the side of the subject. In particular, the two recordings used
as stimuli for this part were related to a) a potential active shooter event that took
place in the greater Detroit area and b) reporting from a fatal road accident scene
which took place in the area of Chicago. These choices were made to help the users
relate better to the events described in the recordings.

4. GPS Interaction—Cognitive Frustration. At this step, we asked participants to find
a specific destination on a ’GPS’ through verbal interaction. The goal of this distractor
was to induce confusion and frustration to the participant; emotions that people are
likely to experience when driving, either by interacting with similar ‘smart’ systems or
through the engagement with other passengers or drivers on the road. In this case the
‘GPS’ was operated by a member of the research stuff in the background providing
miss-leading answers to the participant and repeating mostly useless information
until the desired answer was provided.

Once the participants started driving they would not stop until the end of the recording.
Thus, they did not experience any interruptions when switching from the ‘free-driving’ to
the ‘distractions’ parts. For each of the distractors we had two similar alternatives, which
we randomly switched between morning and afternoon recordings making sure that each
subject would be exposed to a different stimuli each time they participated.

3.2. Modality Description

During each recording, the following four physiological signals were captured using
the hardware equipment provided by Thought Technology Ltd and the BioGraph Infiniti
software:
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1. Blood volume pulse (BVP): BVP is an estimate of heart rate based on the volume of blood
that passes through the tissues in a localized area with each beat (pulse) of the heart.
The BVP sensor shines infrared light through the finger and measures the amount of
light reflected by the skin. The amount of reflected light varies during each heart beat
as more or less blood rushes through the capillaries. The sensor converts the reflected
light into an electrical signal that is then sent to the computer to be processed. BVB
has been extensively used as an indicator of psychological arousal and is widely used
as a method of measuring heart rate [40,41]. The BVP sensor was placed on the index
finger. We collect BVP at a rate of 2048 Hz.

2. Skin conductance: Skin conductance is collected by applying a low, undetectable
and constant voltage to the skin and then measuring how the skin conductance
varies. Similar to BVP, skin conductance variations are known to be associated with
emotional arousal and changes in the signals produced by the sympathetic nervous
system [41,42]. The sensor for these measurements was placed on the middle and ring
fingers. Skin conductance signal is captured at 256 Hz.

3. Skin temperature: This sensor measures temperature on the skin’s surface and captures
temperatures between 10 ◦C and 45 ◦C (50 ◦F–115 ◦F). The temperature sensor was
placed on the pinky finger. Skin temperature is also captured at 256 Hz.

4. Respiration: The respiration sensor detects breathing by monitoring the expansion
and contraction of the rib cage during inhalation and exhalation. By processing the
captured periodic signal important characteristics can be computed such as respi-
ration period, rate and amplitude. The respiration stripe was wrapped around the
participant’s abdomen and the sensor was placed in the center of the body. Respiration
is captured at 256 Hz.

All sensors can be seen on the top right of Figure 1. Skin conductance, respiration
and skin temperature values are padded to match the 2048Hz sampling rate used for BVP.
The total amount of data in terms of time across the different recording segments is shown
in Table 1. For each segment, approximately half of the data come from the morning
recordings and half from the afternoon.

Table 1. Total duration of available data under each recording segment. For each segment, approxi-
mately half of the data come from the morning recordings and half from the afternoon.

Recording Segment

Free-driving Texting
Physical

NBack
Cognitive
Neutral

Radio
Cognitive
Emotional

GPS
Cognitive

Frustration

#Data
(hours) ∼7.4 ∼3.1 ∼2.2 ∼3.4 ∼2

3.3. Feature Extraction

Statistical features are extracted over the four raw signals from the time and frequency
domains. Feature values are padded to match the maximum available sampling rate of
2048 Hz. In total, 73 statistical features are computed over the four raw physiological
measurements: 49 features related to the BVP signal and 24 features coming from the rest
three modalities.

• BVP features: Time domain statistical features such as mean, minimum, maximum and
standard deviation are computed describing both the overall behavior of the signal
but also the relation between consecutive inter-beat interval (IBI). NN related features
describe the interval between two normal heartbeats. pNN features refer to the total
number of pairs of consecutive normalized IBI values that differ more than 50 ms [43].
Additional features are computed to describe the spectral power statistics of different
frequency bands by grouping the frequencies into three frequency bands, very-low
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(<0.04 Hz), low (0.04–0.15Hz) and high frequencies (0.15–0.4 Hz). For each frequency
band, power related statistics are calculated.

• Respiration features: Amplitude, period and respiration rate are calculated along with
the standard statistics from the raw respiration signal.

• Respiration+BVB features: Four features are computed that combine BVP and respiration
measurements towards describing the peak to through difference in heart rate that
occurs during a full breath cycle (HR Max-Min features as seen in Figure A1 in the
Appendix A).

• Skin conductance and skin temperature features: Six features are extracted from each signal
describing standard temporal statistics over short and long term windows on top of the
raw the measurements. Features include the measurement as a percentage of change,
the long and short term window means, the standard deviation of the short term
window, the direction/gradient of the signals and the measurement as a percentage of
the mean in the short term window.

Feature estimation and hyperparameter tuning (i.e., window strides and sizes) were
automatically selected by the BioGraph Infinity software.

3.4. Feature Selection

To get a better understanding of how important the different features are and to
reduce the high feature space, we train two Decision Tree (DT) models on the tasks of
drowsiness detection and distraction detection, respectively, and we evaluate the overall
feature contribution in terms of information gain.

More specifically, we train each model on all 73 features plus the four raw signals
and we compute the increase in information gain caused by each feature, after every split,
for both tasks. Final scores are assigned by averaging the scores for each feature over
the two tasks. Equations (1)–(3) describe the mathematical formulation of our analysis
with respect to information entropy and gain. We use Python’s scikit learn library for this
purpose. Figure A1 in the Appendix A illustrates all 73 features and their final importance
scores. The top five performing features are listed and described in Table 2.

E(x) = −
n

∑
i

p(xi)log2 p(xi) (1)

where E(x) is the entropy of feature x, xi is a specific feature value, p(xi) is the probability
of xi and n is the total number of possible values that variable x can take.

IGx,t = E(y)− E(y|x) (2)

where IGx, t is the information gain with respect to feature x for task t, E(y) is the entropy of
the dependent variable y and E(y|x) is the entropy of y given feature x. E(y|x) is calculated
as shown in Equation (1) but the probabilities for the values of variable y are calculated
under the condition of feature x.

Total_IGx = ∑
i

IGx,ti (3)

where Total_IGx is the information gain with respect to feature x across both tasks and ti is
the task id.
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Table 2. Top five features based on increase of information gain when training a Random Forest clas-
sifier.

Feature Description

#1 BVP IBI pNN Intervals (%) the percentage of successive intervals that differ by more than 50 ms
#2 BVP IBI pNN Intervals the number of successive intervals that differ by more than 50 ms
#3 BVP HF % power mean the mean of power in the high frequencies
#4 BVP LF % power mean the mean of power in the low frequencies
#5 BVP IBI NN Intervals interval between two normal heartbeats

3.5. Metrics and Evaluation

We evaluate the different models using the four evaluation metrics described below:

• Sensitivity: Sensitivity (or positive recall), is estimated as the proportion of positive
samples that are classified correctly. In the context of this paper, sensitivity describes
the percentage of drowsy or distracted samples that are being correctly identified.
The formula to compute sensitivity in terms of true positives (TP) and false negatives
(FN) is: sensitivity = TP

TP+FN .
• Specificity: Specificity (or negative recall) is estimated as the proportion of negative

samples that are classified correctly. In the context of this paper, specificity describes
the percentage of alert or not-distracted samples that are being correctly identified.
The formula to compute sensitivity in terms of true negatives (TN) and false positives
(FP) is: speci f icity = TN

TN+FP .
• Average recall: Average recall corresponds to the mean value between specificity

and sensitivity. The higher the average recall the less severe the trade-off between
sensitivity and specificity.

• Receiver operating characteristic curve (ROC): ROC curve is a graphical way to visu-
alize the classification ability of a binary classifier. ROC curves describe the relation
between TP-rate and FP-rate at different thresholds. FP-rate is given as 1-specificity.
The area under the ROC curve is equal to the probability that the model will classify
a randomly chosen positive instance higher than a randomly chosen negative one.
The area under the ROC curve, also known as AUC, is a measure of the general ability
of the network to discriminate between the two classes. The higher the AUC, the better
the model.

3.6. Normalization and Classification Setup

Due to limited available compute, to reduce the computational demands of the prob-
lem we sub-sample all available information streams to 8Hz. Then, the data of each
participant are normalized based on their afternoon baseline recording (see Section 3.1).
We choose afternoon baseline over the morning one, as it led to slightly better overall
performance during experimentation. The normalization formula is shown in Equation (4).

ˆxi,j =
xi,j −mean(xa f ternoon_baseline)

std(xa f ternoon_baseline)
(4)

where ˆxi,j is the normalized feature value xi of feature x and j is the participant ID.
Finally, consecutive samples are grouped into batches of 64 by using an eight second,

non-overlapping windowing approach. As a result, all of our models provide one pre-
diction every 8 s. For all classification experiments, we apply a 10-fold cross validation
scheme, using at each fold 20% of the users for testing and the rest of the users for training.

4. Single and Joint Task Learning

For our experiments we target two main conditions: drowsiness and distraction.
For the former condition, data collected during the morning recording sessions are la-
beled as ‘alert’, while data collected during the afternoon recording session are marked as
‘drowsy’. This labeling was decided based on findings coming from related research con-
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ducted over the years [5,35–38]. For the latter, data corresponding to any of the distraction
segments are labeled as ’distracted’, while data collected under the free-driving part are
labeled as ‘not-distracted’.

4.1. Single Task Learning

For our single-task learning experiments, we investigate four different classifica-
tion techniques. In particular, three traditional machine learning classifiers are being
tested as well as a deep-learning pipeline that is known for its effectiveness on learning
spatio-temporal representations. All three standard machine learning models have been
extensively applied in the related literature for physiological signal classification tasks and
for driver monitoring in particular, while the deep structure has been evaluated on various
temporal modeling tasks for single-modality and multimodal representation learning.
More specifically, the following classifiers are being tested:

• An SVM classifier using an RBF Kernel [44–46].
• A Nearest Neighbor classifier with K = 7 [47–49].
• A Random Forest (RF) model with 100 estimators [50–52].
• A CNN-LSTM pipeline. The evaluated deep architecture was initially proposed by

Donahue et al. in 2015 for video captioning and since then has been evaluated on
several tasks that are based on physiological signal monitoring [53,54] mostly related to
the medical domain. Only quite recently was the method also applied for the problem
of multimodal stress monitoring in drivers [30]. The general model structure is shown
in Figure 2. Our model, consists of two convolutional layers with 64 filters of size five,
followed by an LSTM unit with a memory of 64. At the end, a fully connected layer
of size 64 with a softmax activation for classification is applied. After each convolu-
tional layer a 20% dropout is performed. The model is optimized based on categorical
cross-entropy using an Adam optimizer [55]. All the hyper-parameters of the model,
including the number and size of the different layers, were tuned after experimentation
and through an exhaustive grid search evaluation of different parameter-value combi-
nations. The proposed method performs practically two levels of temporal modeling
on the input data. First, the CNN takes as input windows of 64×number_o f _ f eatures
corresponding to data captured over a period of 8 s. Then, the LSTM unit accounts for
the sequence of incoming frames taking into account data captured over approximately
the past 8.5 min (given that it has a memory of 64). This design provides the model with
great temporal depth that allows it to better account for future changes in behavior.

Figure 2. Deep learning architecture for single-task learning.

4.2. Joint-Task Learning

For joint modeling of alertness and distraction, we evaluate four different deep-
learning schemes. All four architectures are shown in Figure 3 and are inspired by the
original deep model shown in Figure 2.

• Scheme A—Figure 3a: This model consists of two parallel networks, where each
branch is dedicated to a specific task. Both branches are copies of the network shown
in Figure 3. No layers are shared across the two tasks, but the two branches are trained
using the same optimization function, which is estimated as the sum of task-based
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cross entropies. For getting a classification probability for each task a softmax function
is applied at the dense layer of each branch.

• Scheme B—Figure 3b: This approach also formulates the problem as a multitask
learning process. The difference compared to Scheme A is that both the convolutional
and the LSTM layers are shared across the two tasks. After the LSTM unit, the network
splits again into two branches with a dense layer dedicated explicitly on an individual
task. As before the two tasks are optimized based on the average task-based cross
entropies and a softmax function is used to estimate the probability of the assigned
label at each branch.

• Scheme C—Figure 3c: In this approach we train a single network on a multilabel
classification task. All layers are shared and a vector of size two is being predicted at
the end, where each element corresponds to a task-specific label. The predicted vector
values are estimated based on two sigmoid functions, each one dedicated to a specific
task. In this case, all layers are shared across the two tasks and no task-based tailoring
is being applied.

• Scheme D—Figure 3d: The last model formulates the problem as a single task multi-
class classification process. In this case we have four labels, where each of them
describes a unique combination of distracted and drowsy states. In particularly the
four labels are: drowsy and distracted, drowsy and not-distracted, alert and distracted
and alert and not-distracted. This formulation was inspired by the approach initially
proposed by Riani et al. [26] where the authors did the same thing using a DT classifier.

Similarly to the single-task CNN-LSTM models, all the joint-task models are trained
based on the categorical cross entropy along with an Adam optimizer.

Figure 3. Deep learning schemes for joint modeling of driver distraction and drowsiness. (a) Scheme
A: Multitask learning with no shared layers. (b) Scheme B: Multitask learning with shared convolu-
tional and LSTM layers. (c) Scheme C: Multitask learning using a fully shared network. (d) Scheme
D: Single-task 4-class classification.

5. Results

We perform three types of experiments. Initially we show our results on drowsiness
detection by measuring on different feature sets using the CNN-LSTM pipeline. In, ad-
dition, we compare the best performing CNN-LSTM model against the three traditional
ML classifiers (Section 4.1). Then, we apply the same evaluation for the distraction detec-
tion task. At last, we explore how the different joint modeling approaches (Section 4.2)
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perform in detecting driver drowsiness and distraction in parallel and we compare their
performance against the more traditional modeling alternatives.

5.1. Single-Task Learning

Firstly we perform a general evaluation across different feature combinations using
the deep CNN-LSTM pipeline. The results for drowsiness and distraction detection are
presented in Figures 4 and 5, respectively, in terms of ROC curves and AUC score. Then,
for the best feature set at each task we evaluate all classifiers in terms of sensitivity, speci-
ficity and average recall and we discuss the contribution of different features and models
to identify the two conditions.

In particular, the following feature combinations are being presented:

• BVP: Raw BVP data plus 49 temporal features extracted from the BVP signal.
• Respiration: Raw respiration data plus eight temporal features extracted from the

respiration signal.
• Skin conductance: Raw skin conductance data plus six temporal features extracted

from the skin conductance signal.
• Temperature: Raw skin temperature data plus six temporal features extracted from

the skin temperature signal.
• All raw data and modality-based features: The input data consist of the concatenation

of all features and raw signals mentioned above.
• All raw data : Only the raw data from the four physiological sources are concatenated

and used as input features.
• BVP+respiration (BVP-R): We evaluated different combinations of raw data as input

features. Out of all the possible mixtures, combining BVP and respiration data stood
out as the most efficient combination for part of our experiments.

• Top #5 BVP features: The input data consist of the top #5 (Table 2) performing features
as identified through the analysis discussed in Section 3.4.

• Top #3 IBI BVP features : The input data consist of the top #3 BVP features that are
related to IBI (features #1, #2 and #5 of Table 2).

Figure 4. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) scores
for different feature sets on the task of drowsiness detection using the CNN-LSTM network.
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Figure 5. ROC curves and AUC scores for different feature sets on the task of distraction detection
using the CNN-LSTM network.

5.2. Drowsy Driver Modeling

For this experiments we split the data into the two following classes; recordings made
during the morning session (8 a.m. to 11 a.m.) are labeled as ‘alert’, while recordings made
during the afternoon session (4 p.m. to 8 p.m.) are marked as ‘drowsy’. We perform a
10-fold cross validation across the participants using 20% of the users for testing and the
rest 80% for training.

As shown in Figure 4 from all the evaluated feature sets, the combination of “BVP and
respiration” signals is by far the most efficient approach, achieving an AUC performance of
88%. These results are partially in line with the findings presented in Section 3.4, which
identified that specific BVP statistics are highly related to both tasks. On the other hand,
in contrast to the features identified through the analysis of Section 3.4, we observe that
respiration related data are also highly associated with drowsiness. In particular, the “top3
IBI BVP features” set along with all the “respiration related data” are responsible for the
second and third best AUC scores with 75% and 74%, respectively. However, when we
combine all BVP features, the performance drops significantly to 61%. We believe that
the significant increase in feature space along with the decrease in available data after
sub-sampling the signals to 8Hz is partially responsible for that observation, since the
network parameters do not have access to the required amount of information in order to
get properly trained. In addition, it is highly possible that several BVP features are not
actually good descriptors of drowsiness, thus adding noise to the input instead of actually
assisting to the final decision. On the other hand, it seems that just joining the two raw
information streams of BVP and respiration is sufficient for the network to capture the
important characteristics of the signals. We believe that this could potentially relate to the
fact that both signals have a periodic behavior and we know for a fact that characteristics
related to IBIs for the BVP signal and to rate and amplitude for the respiration signal,
are of special importance to the task. This can be confirmed by the high performance
observed when using explicitly the top3 IBI BVP features or the set of respiration related
data accordingly. The rest of the evaluated feature combinations do not offer any significant
value on this task showing performance that is comparable to random guess.

Focusing on the results of Table 3, we see that the CNN-LSTM model performs signifi-
cantly better compared to all the baseline classifiers when trained only on the raw BPV and
respiration data. The very poor performance of the baseline classifiers is indicative of how
challenging the targeted problem is, while at the same time highlights the superiority of the
deep spatio-temporal classifier compared to the traditional and more popular alternatives
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on the task of physiological-based drowsy driver behavior modeling. In particular, all
baseline classifiers perform very poorly in terms of sensitivity with very high specificity
scores. In other words, these models fail marginally to identify drowsy behavior. However,
it is very unlikely to identify someone who is actually alert as drowsy. On the contrary,
the CNN-LSTM model outperforms by far all baselines in terms of sensitivity with a score
of 93%, while it provides worse but reasonable results in terms of specificity with a score of
71%. This means that the chance of correctly identifying drowsy behavior with this model
is quite high, even though in approximately three out of ten times an alert driver will be
wrongfully identified as drowsy.

Table 3. Alert vs. drowsy classification using the combination of raw blood volume pulse (BVP) and
respiration data as selected by the analysis in Figure 4.

Drowsiness Detection
SVM KNN RF CNN-LSTM

Sensitivity (%) 0 17 17 93
Specificity (%) 92 91 91 71

Average Recall (%) 46 54 54 82

5.3. Distracted Driver Modeling

For this experiment we split the data as follows; data corresponding to any of the
distraction segments is labeled as ‘distracted’, while data collected under the free-driving
part is labeled as ‘not-distracted’. To minimize the biases introduced by the relatively
unfamiliar virtual-driving setup, we use five minute long data segments, extracted from
the last seven minutes of the free-driving recording, when subjects were already used to
the driving simulator.

Similarly to the previous section, we perform a feature based analysis using the deep
CNN-LSTM model. By observing the ROC curves of Figure 5 it would be safe to assume
that identifying distracted behavior based on the selected feature-sets is relatively more
challenging compared to detecting drowsiness. According to the AUC scores, all BVP
related feature combinations provide by far the best results, indicating the strong relation
of heart-rate related features to the task. More specifically, best results were achieved by
the “top5 BVP” features of Table 2, with an AUC of 82% while second comes the “top3
IBI BVP” feature set with an AUC of 80% and third the set with “all BVP” related data
with an AUC score of 79%. Of special interest is the very poor performance observed
by the combination of raw BVP and respiration data, which provided the best results in
the problem of drowsiness detection. Even though it is hard to clearly explain the very
low performance of this feature set, we suspect that the overall poor performance of the
respiration data on the task affects the results in a negative way. Judging from the AUC
score achieved by the “respiration” feature set it seems that respiratory data are not as
related to distracted behavior as they are to the drowsy one. However, these negative
results need to be further evaluated in the future.

Taking these findings into consideration, we evaluate the different classifiers on their
ability to identify distracted driving based on the “top5 BVP” feature set. The results
are presented in Table 4. Again, the CNN-LSTM model significantly outperforms all
three baselines. The model provides the most balanced results with an average recall
of 72%. The advantage of the CNN-LSTM model against its competitors, is less on its
ability to identify distracted behavior and more on its balanced performance between
sensitivity and specificity. In particular, the SVM model performs better on identifying
non-distracted driving while its predictive ability with respect to distraction detection is
almost random, thus making this approach the less appropriate of all for the purposes of the
task. On the other hand, KNN and RF classifiers perform equally to the CNN-LSTM model
on identifying drowsy driving. However, their high FP-rate makes them less appropriate
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for modeling the problem as they have almost a 50% chance on marking a not-distracted
driver as distracted.

Overall, we can argue that the CNN-LSTM pipeline is by far the most effective on
modeling both distracted and drowsy driver states, under the same experimentation
conditions. That is both in terms of correctly identifying the condition of interest (more
TPs) but also in discriminating against it (more TNs).

Table 4. Distracted vs. not-distracted classification using the top5 BVP features as selected by the
analysis in Figure 5 and Table 2.

Distraction Detection
SVM KNN RF CNN-LSTM

Sensitivity (%) 53 69 70 70
Specificity (%) 72 52 50 74

Average Recall (%) 62.5 60.5 60 72

5.4. Multitask Learning for Joint Driving Behavior Modeling

Dedicating a single machine learning model to each condition of interest has been
traditionally the most popular and effective approach of dealing with problems related
to human behavior modeling. However, in several cases we are interested in predicting
conditions that coexists and may overlap. Our assumption is that overlapping conditions
may share a common ground in terms of physiological reactions caused to the drivers.
To that end we evaluate different machine learning methods on their ability to jointly
predict driver’s state in terms of distraction and alertness. For these experiments we use
the combination of the seven temporal features that performed the best for the individual
tasks. Hence, each training feature vector consists of the raw recordings from BVP and
respiration plus the five BVP features identified through the analysis of Section 3.4.

Figure 3 illustrates all the deep learning methods evaluated. For the cases of SVM, RF
and KNN we formulate the problem similarly to the deep Scheme D model, i.e., as a 4-class
classification task.

In order to have a fair comparison against the different approaches, we evaluate all
models on their ability to correctly identify drowsiness and distraction as independent
tasks. In the case of multi-class models (ScemeD, SVM, KNN, RF) in particular, the results
are evaluated as two binary classification problems and not as a traditional four-class task.
Formulating evaluation as such, allows for a one to one comparison against the multitask
methods (Shemes A, B, C) and avoids diluting the characterization ability of the different
classifiers with respect to the individual conditions, while still learning shared parameters
between tasks.

Figure 6 shows the ROC curves for all the deep learning-based models for both
tasks. Solid lines correspond to the drowsiness detection task, while dotted lines to
distraction detection. Schemes A and B offer the most balanced results across the two
detection problems. In particular, the two models perform comparably well to the CNN-
LSTM distraction model (Figure 5), while providing the second and third best results
for the drowsiness task in terms of AUC when compared to the alternatives of Figure 4.
However, despite the fact that the performance is acceptable for both tasks, it always
remains inferior to the condition-targeted classifiers. This could be partially an effect
related to the limited amount of data available to properly tune the model parameters.
Another possible explanation could be that other than the IBI BVP features that have a
proven value on characterizing both conditions, the rest of the input features are less robust
across tasks, thus hindering the model’s ability to converge at a higher overall score.

Nonetheless, it is clear that Schemes A and B offer overall the best modeling perfor-
mance across all the approaches that jointly learn representations for the two conditions.
These architectures are the only ones that have dedicated layers for each task, while their
parameters are being updated based on an optimization error that takes into account both
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individual performances. Based on these results, we can see that the number of shared
layers does not have a significant impact on the task-specific performance, even though
this might change as the available training data increase. Scheme C, which has all layers
shared across the two tasks, performs the worst in terms of AUC. This observation to some
extend indicates the fact that the physiological responses caused by the two conditions
are not the same but are overlapping to some extend given that the model achieves a a
performance significantly higher than random for both conditions. At last, Scheme D,
which is the multi-class approach, slightly underperforms compared to the branched, mul-
titask learning approaches. The model also exploits the shared layers across tasks to learn
parameters of importance related to both conditions. At the same time, the discrimination
into four classes assists the model to learn how the different physiological responses relate
to the presence or absence of each of the conditions simultaneously. However, splitting the
data into four classes limits the available data under each category thus, having a negative
impact on models performance.

Figure 6. ROC curves of the four deep joint-modeling methods evaluated in this paper. Solid lines
correspond to drowsiness detection ROCs and dotted lines to distraction detection. Average AUC is
the AUC achieved by each model across both detection tasks.

Table 5 shows in more detail the performance of all the classifiers in terms of sensitivity,
specificity and average recall. All deep learning based methods perform significantly better
compared to the traditional machine learning models both in single-task and joint-task
evaluations (see also Tables 3 and 4). At the same time, Schemes A and B, which are the
two multitask learning approaches with a branching architecture, provide the best results
in terms of average recall. That is due to the fact that the two models offer the best trade-off
between sensitivity and specificity for the detection of both conditions. Of special interest
is the high performance observed by Scheme C in terms of sensitivity. The model offers
higher scores than all joint-learning alternatives for the drowsiness detection task, while it
outperforms by far all methods tested on the distraction detection task. That means that in
terms of detecting the conditions of interest Scheme C is the most effective one. However,
its poor performance in terms of specificity makes it an inappropriate model to be applied
in a real life scenario, since the high rate of false alarms would lead to an over-sensitive
monitoring system.
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Table 5. Task-based performance on joint condition learning of drowsiness and distraction.

Joint Condition Learning

SVM KNN RF Scheme
A

Scheme
B

Scheme
C

Scheme
D

Drowsiness
Detection

Sensitivity (%) 45 25 24 77 73 82 69
Specificity (%) 64 78 91 68 72 37 63

Average Recall (%) 54.5 51.5 57.5 72.5 72.5 59.5 66

Distraction
Detection

Sensitivity (%) 51 58 70 75 78 84 78
Specificity (%) 73 52 50 71 68 56 66

Average Recall (%) 62 55 60 73 73 70 72

6. Conclusions

In this paper, we explore different physiological markers and machine learning ap-
proaches on their ability to describe distracted and drowsy driving. For our analysis, we
compiled a dataset of 45 subjects and we recorded their BVP, respiration, skin conductance
and skin temperature responses while participating in a simulated driving setup. Based on
our analysis, the contribution of this publication can be summarized through the answers
on the following three research questions:

• Which physiological indicators are most indicative of drowsy and distracted behav-
ior?

With respect to drowsiness detection, BVP and respiration indicators proved to be
the two signals that are mostly associated with the task. In particular, the combination
of the raw BVP and respiration measurements leads to maximum drowsiness detection
performance in terms of AUC score with a value of 88%, when processed through a spatio-
temporal deep CNN-LSTM model. Second best performance, with a score of 75% AUC, is
achieved by a subset of BVP related features when processed through the same modeling
architecture, while respiration related data and features, lead to the third best performance
with a score of 74% AUC. Skin conductance and temperature signals and features lead to
significantly inferior performance, with their AUC scores fluctuating around 50%.

With regard to distraction detection, BVP proved to be again highly associated with
the task. All feature sets extracted from that signal marginally outperform all the alterna-
tive feature combinations when processed through the same spatio-temporal CNN-LSTM
architecture, by achieving AUC scores in the range between 79% to 82%. The rest of the
evaluated feature sets, which consist of various combinations of the remaining physio-
logical markers and their statistical features, always perform around 60% AUC. Hence,
showing their relation to distracted behavior but also highlighting their weakness on
robustly capturing the condition when used exclusively.

• Are there specific statistical features coming from different signals that are particu-
larly informative?

Our analysis discussed in Section 3.4 and further evaluated in Sections 5.2 and 5.3,
identified several features of importance related to the two conditions.

More specifically, we train two DT classifiers targeted on the individual tasks, using all
the available data, and we perform an entropy-based evaluation of all the available features
on their importance towards detecting the two conditions. Figure A1 in the Appendix A
illustrates the importance of all features in terms of information gain after training the
two models. Based on this analysis, we select the five most informative statistical features,
presented in Table 2. As it can be observed, all five features are related to BVP and in
particular three are extracted from the time domain and describe patterns related to BVP
IBIs and two are extracted from the spectral domain and are related to the spectral power
of the signal in different frequency bands. BVP IBI related statistics alone show great
performance on both tasks as they lead to the second best performance in both drowsiness
detection with 75% AUC and distraction detection with 80% AUC. Interestingly, when
combined with the frequency related features, the new feature set performs quite poorly on
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the drowsiness detection task leading to almost random performance with 50% AUC while
it offers the best results on drowsiness detection with 82% AUC. It is not clear yet why
adding the frequency features to the input feature set harms the classifier so abruptly with
respect to drowsiness detection and this is something that we would like to investigate
further in the future.

In addition to the BVP features, respiration related statistics showed strong association
with drowsy driving. In particular, combining the raw respiration data with temporal
features describing the temporal characteristics of the signal leads to a 74% AUC, which is
the third highest score achieved by the single-task deep model for drowsiness detection.
Specifically the features extracted from respiration correspond to: respiration amplitude,
respiration period, respiration rate, respiration rate epoch mean (where an epoch is 5 min
of data), respiration rate mean (br/min) and respiration rate std dev (br/min).

• Is it possible to jointly tackle the problems of drowsiness and distraction detection
and how such a framework can be formulated?

Overall, our experiments showed that deep CNN-LSTM-based methods significantly
outperform all other evaluated traditional machine learning alternatives, which have the
lion’s share in evaluations presented in the related literature (RFs, KNN, SVM). In particu-
lar, the single-task CNN-LSTM model leads to a maximum performance of 88% AUC with
82% average recall for the drowsiness detection task and to 82% AUC with 72% average
recall for the distraction detection task. Second best performance however across both
tasks, is recorded by the joint condition learning multitask schemes with a branching archi-
tecture (Schemes A and B of Figure 3). Our evaluations highlight the potential of multitask
learning towards directly addressing such abstract conditions with overlapping physiolog-
ical responses. Schemes A and B offer results directly comparable to the corresponding
single-task CNN-LSTM model for the distraction detection task with ~79.5% AUC and a
slightly improved 73% average recall. At the same time, for the drowsiness detection task
the models achieve a ~76.5% AUC and 72.5% average recall. Even though performance is
lower in terms of AUC and sensitivity compared to the single-task CNN-LSTM model in
the case of drowsiness detection, the classifier still performs notably higher compared to
all other evaluated methods on the task.

In general, we argue that building multitask learning models with dedicated layers
on every targeted task is the method that showed the most promising results, on joint
condition learning. Avoiding branching and having only shared layers across tasks led
to the worst results as the model struggled to effectively distinguish between conditions,
since the learned features could not scale equally across tasks. The multi-class approach
also offered inferior results compared to multitask learning as the division of training data
into multiple groups had a negative impact on the final result.

Even though condition-specific models still offer the optimal results, our findings
strongly indicate that joint condition modeling using multitask learning has great future
potential on this and similar tasks and we plan to investigate this direction further in the
near future. In addition, a limitation of the current analysis is that the levels of drowsiness
experienced by the participants are not practically measurable. Our assumption about
drowsiness is derived mostly by previous highly credible research (including NHTSA
findings [5]) and the daily schedule of our specific target group (young adults who are
graduate and undergraduate university students). In future versions of the dataset, we
plan to introduce additional drowsiness evaluation methods such as subjective sleepiness
reporting [56] and objective test-based evaluations [57] to better quantify and measure the
presence of drowsiness in our recordings.
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Appendix A

Figure A1. An epoch corresponds to 5 min of data.

References
1. Wang, Y.; Zhang, D.; Liu, Y.; Dai, B.; Lee, L.H. Enhancing transportation systems via deep learning: A survey. Transportation

Research Part C: Emerging Technologies. 2019, 99, 144–163. [CrossRef]
2. World Health Organisation. Mobile Phone Use: A Growing Problem Of Driver Distraction. 2011. Available online: https:

//www.who.int/violence_injury_prevention/publications/road_traffic/distracted_driving_en.pdf?ua=1 (accessed on 19 October
2020).

3. World Health Organisation. Road Traffic Injuries. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/
road-traffic-injuries (accessed on 19 October 2020).

4. National Highway Traffic Safety Administration (NHTSA), US Department of Transportation. 2019. Distracted Driving. Available
online: https://www.nhtsa.gov/risky-driving/distracted-driving (accessed on 19 October 2020).

5. National Highway Traffic Safety Administration (NHTSA), US Department of Transportation. 2018. Drowsy Driving. Available
online: https://www.nhtsa.gov/risky-driving/drowsy-driving (accessed on 19 October 2020).

6. Sigari, M.H.; Fathy, M.; Soryani, M. A driver face monitoring system for fatigue and distraction detection. Int. J. Veh. Technol.
2013, 5, 73–100. [CrossRef]

http://dx.doi.org/10.1016/j.trc.2018.12.004
https://www.who.int/violence_injury_prevention/publications/road_traffic/distracted_driving_en.pdf?ua=1
https://www.who.int/violence_injury_prevention/publications/road_traffic/distracted_driving_en.pdf?ua=1
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.nhtsa.gov/risky-driving/distracted-driving
https://www.nhtsa.gov/risky-driving/drowsy-driving
http://dx.doi.org/10.1155/2013/263983


Appl. Sci. 2021, 11, 88 21 of 22

7. Kutila, M.; Jokela, M.; Markkula, G.; Rué, M.R. Driver distraction detection with a camera vision system. In Proceedings of the
2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16–19 September 2007; IEEE: Piscataway, NJ,
USA, 2007; Voume 6, p. VI-201.

8. Yang, D.; Li, X.; Dai, X.; Zhang, R.; Qi, L.; Zhang, W.; Jiang, Z. All In One Network for Driver Attention Monitoring. In Proceedings
of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,
4–8 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2258–2262.

9. Harbluk, J.L.; Noy, Y.I.; Trbovich, P.L.; Eizenman, M. An on-road assessment of cognitive distraction: Impacts on drivers’ visual
behavior and braking performance. Accid. Anal. Prev. 2007, 39, 372–379. [CrossRef]

10. Savelonas, M.; Karkanis, S.; Spyrou, E. Classification of Driving Behaviour using Short-term and Long-term Summaries of Sensor
Data. In Proceedings of the 2020 5th South-East Europe Design Automation, Computer Engineering, Computer Networks and
Social Media Conference (SEEDA-CECNSM), Corfu, Greece, 25–27 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4.

11. Xie, Y.; Murphey, Y.L.; Kochhar, D. Personalized Driver Workload Estimation Using Deep Neural Network Learning from
Physiological and Vehicle Signals. IEEE Trans. Intell. Veh. 2019. [CrossRef]

12. Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp.
Syst. 2005, 6, 156–166. [CrossRef]

13. Singh, R.R.; Conjeti, S.; Banerjee, R. A comparative evaluation of neural network classifiers for stress level analysis of automotive
drivers using physiological signals. Biomed. Signal Process. Control 2013, 8, 740–754. [CrossRef]

14. Wang, K.; Guo, P. An Ensemble Classification Model With Unsupervised Representation Learning for Driving Stress Recognition
Using Physiological Signals. IEEE Trans. Intell. Transp. Syst. 2020. [CrossRef]

15. Desmond, P.A.; Matthews, G. Individual differences in stress and fatigue in two field studies of driving. Transp. Res. Part F Traffic
Psychol. Behav. 2009, 12, 265–276. [CrossRef]

16. Brookhuis, K.A.; De Waard, D. Monitoring drivers’ mental workload in driving simulators using physiological measures. Accid.
Anal. Prev. 2010, 42, 898–903. [CrossRef]

17. Reimer, B.; Mehler, B. The impact of cognitive workload on physiological arousal in young adult drivers: A field study and
simulation validation. Ergonomics 2011, 54, 932–942. [CrossRef]

18. Zhang, L.; Wade, J.; Bian, D.; Fan, J.; Swanson, A.; Weitlauf, A.; Warren, Z.; Sarkar, N. Cognitive load measurement in a virtual
reality-based driving system for autism intervention. IEEE Trans. Affect. Comput. 2017, 8, 176–189. [CrossRef] [PubMed]

19. Nourbakhsh, N.; Chen, F.; Wang, Y.; Calvo, R.A. Detecting users’ cognitive load by galvanic skin response with affective
interference. ACM Trans. Interact. Intell. Syst. TiiS 2017, 7, 1–20. [CrossRef]

20. Schmidt, M.; Bhandare, O.; Prabhune, A.; minker, W.; Werner, S. Classifying Cognitive Load for a Proactive In-car Voice Assistant.
In Proceedings of the 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService),
Oxford, UK, 3–6 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 9–16.

21. Awais, M.; Badruddin, N.; Drieberg, M. A hybrid approach to detect driver drowsiness utilizing physiological signals to improve
system performance and wearability. Sensors 2017, 17, 1991. [CrossRef] [PubMed]

22. Persson, A.; Jonasson, H.; Fredriksson, I.; Wiklund, U.; Ahlström, C. Heart Rate Variability for Driver Sleepiness Classification in
Real Road Driving Conditions. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 6537–6540.

23. Sahayadhas, A.; Sundaraj, K.; Murugappan, M.; Palaniappan, R. A physiological measures-based method for detecting inattention
in drivers using machine learning approach. Biocybern. Biomed. Eng. 2015, 35, 198–205. [CrossRef]

24. Taherisadr, M.; Asnani, P.; Galster, S.; Dehzangi, O. ECG-based driver inattention identification during naturalistic driving using
Mel-frequency cepstrum 2-D transform and convolutional neural networks. Smart Health 2018, 9, 50–61. [CrossRef]

25. Dehzangi, O.; Sahu, V.; Rajendra, V.; Taherisadr, M. GSR-based distracted driving identification using discrete & continuous
decomposition and wavelet packet transform. Smart Health 2019, 14, 100085.

26. Riani, K.; Papakostas, M.; Kokash, H.; Abouelenien, M.; Burzo, M.; Mihalcea, R. Towards detecting levels of alertness in drivers
using multiple modalities. In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to
Assistive Environments, Corfu, Greece, June 2020; pp. 1–9.

27. Lim, S.; Yang, J.H. Driver state estimation by convolutional neural network using multimodal sensor data. Electron. Lett. 2016,
52, 1495–1497. [CrossRef]

28. Zeng, H.; Yang, C.; Dai, G.; Qin, F.; Zhang, J.; Kong, W. EEG classification of driver mental states by deep learning. Cogn.
Neurodynamics 2018, 12, 597–606. [CrossRef]

29. Choi, H.T.; Back, M.K.; Lee, K.C. Driver drowsiness detection based on multimodal using fusion of visual-feature and bio-signal.
In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Korea, 17–19 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1249–1251.

30. Rastgoo, M.N.; Nakisa, B.; Maire, F.; Rakotonirainy, A.; Chandran, V. Automatic driver stress level classification using multimodal
deep learning. Expert Syst. Appl. 2019, 138, 112793. [CrossRef]

31. Gjoreski, M.; Gams, M.Ž.; Luštrek, M.; Genc, P.; Garbas, J.U.; Hassan, T. Machine Learning and End-to-End Deep Learning for
Monitoring Driver Distractions From Physiological and Visual Signals. IEEE Access 2020, 8, 70590–70603. [CrossRef]

32. Craye, C.; Rashwan, A.; Kamel, M.S.; Karray, F. A multi-modal driver fatigue and distraction assessment system. Int. J. Intell.
Transp. Syst. Res. 2016, 14, 173–194. [CrossRef]

http://dx.doi.org/10.1016/j.aap.2006.08.013
http://dx.doi.org/10.1109/TIV.2019.2960946
http://dx.doi.org/10.1109/TITS.2005.848368
http://dx.doi.org/10.1016/j.bspc.2013.06.014
http://dx.doi.org/10.1109/TITS.2020.2980555
http://dx.doi.org/10.1016/j.trf.2008.12.006
http://dx.doi.org/10.1016/j.aap.2009.06.001
http://dx.doi.org/10.1080/00140139.2011.604431
http://dx.doi.org/10.1109/TAFFC.2016.2582490
http://www.ncbi.nlm.nih.gov/pubmed/28966730
http://dx.doi.org/10.1145/2960413
http://dx.doi.org/10.3390/s17091991
http://www.ncbi.nlm.nih.gov/pubmed/28858220
http://dx.doi.org/10.1016/j.bbe.2014.12.002
http://dx.doi.org/10.1016/j.smhl.2018.07.022
http://dx.doi.org/10.1049/el.2016.1393
http://dx.doi.org/10.1007/s11571-018-9496-y
http://dx.doi.org/10.1016/j.eswa.2019.07.010
http://dx.doi.org/10.1109/ACCESS.2020.2986810
http://dx.doi.org/10.1007/s13177-015-0112-9


Appl. Sci. 2021, 11, 88 22 of 22

33. Choi, M.; Koo, G.; Seo, M.; Kim, S.W. Wearable device-based system to monitor a driver’s stress, fatigue, and drowsiness. IEEE
Trans. Instrum. Meas. 2017, 67, 634–645. [CrossRef]

34. Sarkar, P.; Ross, K.; Ruberto, A.J.; Rodenbura, D.; Hungler, P.; Etemad, A. Classification of cognitive load and expertise for
adaptive simulation using deep multitask learning. In Proceedings of the 2019 8th International Conference on Affective
Computing and Intelligent Interaction (ACII), Cambridge, UK, 3–6 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7.

35. National Heart, Lung, and Blood Institute and National Highway Traffic Safety Administration (NHTSA). Drowsy Driving and
Automobile Crashes. 1998. Available online: https://rosap.ntl.bts.gov/view/dot/1661 (accessed on 7 December 2020).

36. Beirness, D.J.; Herb, M.; Desmond, K. The road safety monitor 2004: Drowsy driving. In The 2004 Annual Public Opinion Survey
By The Traffic Injury Research Foundation. Traffic Injury Research Foundation (TIRF): Ottowa, Ontario, Canada.

37. Caponecchia, CJ.; Williamson, A. Drowsiness and driving performance on commuter trips. J. Saf. Res. 2018, 66, 179–186.
[CrossRef] [PubMed]

38. Guede, F.; Chimeno, M.; Castro J.; Gonzalez M. Driver drowsiness detection based on respiratory signal analysis. IEEE Access
2019, 7, 81826–81838. [CrossRef]

39. Kane, M.J.; Conway, A.R.; Miura, T.K.; Colflesh, G.J. Working memory, attention control, and the N-back task: A question of
construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 2007, 33, 615. [CrossRef] [PubMed]

40. Karthikeyan, P.; Murugappan, M.; Yaacob, S. Descriptive analysis of skin temperature variability of sympathetic nervous system
activity in stress. J. Phys. Ther. Sci. 2012, 24, 1341–1344. [CrossRef]

41. Mackersie, C.L.; Calderon-Moultrie, N. Autonomic nervous system reactivity during speech repetition tasks: Heart rate variability
and skin conductance. Ear Hear. 2016, 37, 118S–125S. [CrossRef]

42. Storm, H.; Myre, K.; Rostrup, M.; Stokland, O.; Lien, M.; Raeder, J. Skin conductance correlates with perioperative stress. Acta
Anaesthesiol. Scand. 2002, 46, 887–895. [CrossRef]

43. Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability: Standards of
measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [CrossRef]

44. Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998,
13, 18–28. [CrossRef]

45. Li, G.; Chung, W.Y. Detection of driver drowsiness using wavelet analysis of heart rate variability and a support vector machine
classifier. Sensors 2013, 13, 16494–16511. [CrossRef] [PubMed]

46. Chen, H.; Chen, L. Support vector machine classification of drunk driving behaviour. Int. J. Environ. Res. Public Health 2017,
14, 108. [CrossRef] [PubMed]

47. Yakowitz, S. Nearest-neighbour methods for time series analysis. J. Time Ser. Anal. 1987, 8, 235–247. [CrossRef]
48. Munla, N.; Khalil, M.; Shahin, A.; Mourad, A. Driver stress level detection using HRV analysis. In Proceedings of the 2015

international conference on advances in biomedical engineering (ICABME), Beirut, Lebanon, 16–18 September 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 61–64.

49. Wang, J.S.; Lin, C.W.; Yang, Y.T.C. A k-nearest-neighbor classifier with heart rate variability feature-based transformation
algorithm for driving stress recognition. Neurocomputing 2013, 116, 136–143. [CrossRef]

50. Liaw, A.; Wiener, M.; others. Classification and regression by randomForest. R News 2002, 2, 18–22.
51. Hassib, M.; Braun, M.; Pfleging, B.; Alt, F. Detecting and influencing driver emotions using psycho-physiological sensors and

ambient light. In IFIP Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2019; pp. 721–742.
52. Wang, M.; Jeong, N.; Kim, K.; Choi, S.; Yang, S.; You, S.; Lee, J.; Suh, M. Drowsy behavior detection based on driving information.

Int. J. Automot. Technol. 2016, 17, 165–173. [CrossRef]
53. Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep learning for healthcare applications based on physiological

signals: A review. Comput. Methods Programs Biomed. 2018, 161, 1–13. [CrossRef]
54. Rim, B.; Sung, N.J.; Min, S.; Hong, M. Deep Learning in Physiological Signal Data: A Survey. Sensors 2020, 20, 969. [CrossRef]
55. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
56. Shahid, A.; Wilkinson, K.; Marcu S.; Shapiro, C. Karolinska sleepiness scale (KSS) In STOP, THAT and One Hundred Other Sleep

Scales; Springer: New York, NY, USA, 2011; pp. 209–210.
57. Basner, M.; Mollicone, D.; Dinges, D. Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial

sleep deprivation. Acta Astronaut. 2011, 69, 949–959. [CrossRef]

http://dx.doi.org/10.1109/TIM.2017.2779329
https://rosap.ntl.bts.gov/view/dot/1661
http://dx.doi.org/10.1016/j.jsr.2018.07.003
http://www.ncbi.nlm.nih.gov/pubmed/30121104
http://dx.doi.org/10.1109/ACCESS.2019.2924481
http://dx.doi.org/10.1037/0278-7393.33.3.615
http://www.ncbi.nlm.nih.gov/pubmed/17470009
http://dx.doi.org/10.1589/jpts.24.1341
http://dx.doi.org/10.1097/AUD.0000000000000305
http://dx.doi.org/10.1034/j.1399-6576.2002.460721.x
http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868
http://dx.doi.org/10.1109/5254.708428
http://dx.doi.org/10.3390/s131216494
http://www.ncbi.nlm.nih.gov/pubmed/24316564
http://dx.doi.org/10.3390/ijerph14010108
http://www.ncbi.nlm.nih.gov/pubmed/28125006
http://dx.doi.org/10.1111/j.1467-9892.1987.tb00435.x
http://dx.doi.org/10.1016/j.neucom.2011.10.047
http://dx.doi.org/10.1007/s12239-016-0016-y
http://dx.doi.org/10.1016/j.cmpb.2018.04.005
http://dx.doi.org/10.3390/s20040969
http://dx.doi.org/10.1016/j.actaastro.2011.07.015

	Introduction
	Related Work
	Understanding Distracted and Drowsy Driving Using Physiological Signals
	Deep Learning and Physiological Signal Processing for Driver State Modeling
	Joint Learning of Multiple Driver Behaviors

	Dataset and Experimental Setup
	Experimental Procedure
	Modality Description
	Feature Extraction
	Feature Selection
	Metrics and Evaluation
	Normalization and Classification Setup

	Single and Joint Task Learning
	Single Task Learning
	Joint-Task Learning

	Results
	Single-Task Learning
	Drowsy Driver Modeling
	Distracted Driver Modeling
	Multitask Learning for Joint Driving Behavior Modeling

	Conclusions
	
	References

