A Multi-Objective Optimization of 2D Materials Modified Surface Plasmon Resonance (SPR) Based Sensors: An NSGA II Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Nat. Sect. A J. Phys. Sci. 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Kabashin, A.V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.A.; Atkinson, R.; Pollard, R.; Podolskiy, V.A.; Zayats, A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.B.; Zijlstra, P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sens. 2017, 2, 1103–1122. [Google Scholar] [CrossRef] [Green Version]
- Breveglieri, G.; Bassi, E.; Carlassara, S.; Cosenza, L.C.; Pellegatti, P.; Guerra, G.; Finotti, A.; Gambari, R.; Borgatti, M. Y-chromosome identification in circulating cell-free fetal DNA using surface plasmon resonance. Prenat. Diagn. 2016, 36, 353–361. [Google Scholar] [CrossRef]
- Piliarik, M.; Párová, L.; Homola, J. High-throughput SPR sensor for food safety. Biosens. Bioelectron. 2009, 24, 1399–1404. [Google Scholar] [CrossRef]
- Ibrahim, J.; Al Masri, M.; Verrier, I.; Kampfe, T.; Veillas, C.; Celle, F.; Cioulachtjian, S.; Lefèvre, F.; Jourlin, Y. Surface plasmon resonance based temperature sensors in liquid environment. Sensors 2019, 19, 3354. [Google Scholar] [CrossRef] [Green Version]
- Kuttge, M.; Vesseur, E.J.R.; Verhoeven, J.; Lezec, H.J.; Atwater, H.A.; Polman, A. Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy. Appl. Phys. Lett. 2008, 93, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wang, C.; Yang, R.; Liu, W.; Sun, S. A sensitive and stable surface plasmon resonance sensor based on monolayer protected silver film. Sensors 2017, 17, 2777. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.Q.; Meng, X.M.; Coquet, P.; Yong, K.T. Graphene-MoS2 Hybrid Nanostructures Enhanced Surface Plasmon Resonance Biosensors; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 207, ISBN 0060006986. [Google Scholar]
- Choi, S.H.; Kim, Y.L.; Byun, K.M. Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Express 2011, 19, 458. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018, 19, 3564. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Huang, T.; Ping, P.S.; Wu, X.; Huang, P.; Pan, J.; Wu, Y.; Cheng, Z. Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 2018, 18, 2056. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Chen, Z.; Huang, T.; Ding, H.; Wu, C. Sensitivity Enhancement of Ag-ITO-TMDCs-Graphene Nanostructure Based on Surface Plasmon Resonance Biosensors. Plasmonics 2019. [Google Scholar] [CrossRef]
- Xiao, M.; Chandrasekaran, A.R.; Ji, W.; Li, F.; Man, T.; Zhu, C.; Shen, X.; Pei, H.; Li, Q.; Li, L. Affinity-Modulated Molecular Beacons on MoS2 Nanosheets for MicroRNA Detection. ACS Appl. Mater. Interfaces 2018, 10, 35794–35800. [Google Scholar] [CrossRef]
- Chen, J.; Gao, C.; Mallik, A.K.; Qiu, H. A WS2 nanosheet-based nanosensor for the ultrasensitive detection of small molecule-protein interaction via terminal protection of small molecule-linked DNA and Nt.BstNBI-assisted recycling amplification. J. Mater. Chem. B 2016, 4, 5161–5166. [Google Scholar] [CrossRef]
- Bolotsky, A.; Butler, D.; Dong, C.; Gerace, K.; Glavin, N.R.; Muratore, C.; Robinson, J.A.; Ebrahimi, A. Two-Dimensional Materials in Biosensing and Healthcare: From in Vitro Diagnostics to Optogenetics and beyond. ACS Nano 2019, 13, 9781–9810. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Ma, L.; Zhou, M.; Li, Y.; Xia, Y.; Fan, X.; Cheng, C.; Luo, H. New opportunities for emerging 2D materials in bioelectronics and biosensors. Curr. Opin. Biomed. Eng. 2020, 13, 32–41. [Google Scholar] [CrossRef]
- Wen, W.; Song, Y.; Yan, X.; Zhu, C.; Du, D.; Wang, S.; Asiri, A.M.; Lin, Y. Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today 2018, 21, 164–177. [Google Scholar] [CrossRef]
- Qi, S.; Zhao, B.; Tang, H.; Jiang, X. Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim. Acta 2015, 161, 395–402. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, H.; Li, M.; Sun, C.; Ren, D.; Li, Y. Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO. Biosens. Bioelectron. 2018, 117, 347–353. [Google Scholar] [CrossRef]
- Sajid, M.; Osman, A.; Siddiqui, G.U.; Kim, H.B.; Kim, S.W.; Ko, J.B.; Lim, Y.K.; Choi, K.H. All-printed highly sensitive 2D MoS2 based multi-reagent immunosensor for smartphone based point-of-care diagnosis. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, P.K.; Umar, A.; Lohia, P.; Albargi, H.; Castañeda, L.; Dwivedi, D.K. 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 2020, 11, 779. [Google Scholar] [CrossRef]
- Jena, S.C.; Shrivastava, S.; Saxena, S.; Kumar, N.; Maiti, S.K.; Mishra, B.P.; Singh, R.K. Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Chen, S.; Lin, C. Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: A theoretical study. Sensors 2020, 20, 2445. [Google Scholar] [CrossRef]
- Xu, Y.; Ang, Y.S.; Wu, L.; Ang, L.K. High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: A theoretical study. Nanomaterials 2019, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Yadav, A.K.; Kushwaha, A.S.; Srivastava, S.K. A comparative study among WS2, MoS2 and graphene based surface plasmon resonance (SPR) sensor. Sens. Actuators Rep. 2020, 2, 100015. [Google Scholar] [CrossRef]
- Amoosoltani, N.; Zarifkar, A.; Farmani, A. Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 2019, 18, 1354–1364. [Google Scholar] [CrossRef]
- Sun, Y.; Cai, H.; Wang, X.; Zhan, S. Optimization methodology for structural multiparameter surface plasmon resonance sensors in different modulation modes based on particle swarm optimization. Opt. Commun. 2019, 431, 142–150. [Google Scholar] [CrossRef]
- Lin, C.; Chen, S. Design of highly sensitive guided-wave surface plasmon resonance biosensor with deep dip using genetic algorithm. Opt. Commun. 2019, 445, 155–160. [Google Scholar] [CrossRef]
- Vaz, W.S. Multiobjective optimization of a residential grid-tied solar system. Sustainability 2020, 12, 8648. [Google Scholar] [CrossRef]
- Deb, K.; Member, A.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, G.; Mattei, G. High-Performance Magneto-Optic Surface Plasmon Resonance Sensor Design: An Optimization Approach. Plasmonics 2014, 9, 1457–1462. [Google Scholar] [CrossRef]
- SCHOTT Optical Class Data Sheets. 2019. Available online: https://www.schott.com/en-us (accessed on 20 April 2021).
- Sun, P.; Wang, M.; Liu, L.; Jiao, L.; Du, W.; Xia, F.; Liu, M.; Kong, W.; Dong, L.; Yun, M. Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers. Appl. Surf. Sci. 2019, 475, 342–347. [Google Scholar] [CrossRef]
- Bruna, M.; Borini, S. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 2009, 94. [Google Scholar] [CrossRef]
- Varasteanu, P. Transition Metal Dichalcogenides/Gold-Based Surface Plasmon Resonance Sensors: Exploring the Geometrical and Material Parameters. Plasmonics 2020, 15, 243–253. [Google Scholar] [CrossRef]
- Raether, H.; Hohler, G.; Niekisch, E.A. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts Mod. Phys. 1988, 111, 136. [Google Scholar]
- Shalabney, A.; Abdulhalim, I. Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Actuators A Phys. 2010, 159, 24–32. [Google Scholar] [CrossRef]
- Wissmann, P.; Finzel, H.U. Springer Tracts in Modern Physics: Introduction; Springer: New York, NY, USA, 2007; Volume 223, ISBN 3540484884. [Google Scholar]
- Deb, K.; Sindhya, K.; Okabe, T. Self-adaptive simulated binary crossover for real-parameter optimization. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, London, UK, 7–11 July 2007; pp. 1187–1194. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Jung, J. Multiobjective optimization for a plasmonic nanoslit array sensor using Kriging models. Appl. Opt. 2017, 56, 5838. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; ISBN 1441412697. [Google Scholar]
- Blank, J.; Deb, K. Pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [Google Scholar] [CrossRef]
- Fouad, S.; Sabri, N.; Jamal, Z.A.Z.; Poopalan, P. Surface plasmon resonance sensor sensitivity enhancement using gold-dielectric material. Int. J. Nanoelectron. Mater. 2017, 10, 147–156. [Google Scholar]
- Wemple, S.H.; Didomenico, M.; Camlibel, I. Dielectric and optical properties of melt-grown BaTiO3. J. Phys. Chem. Solids 1968, 29, 1797–1803. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 3. [Google Scholar]
- Mirshafieyan, S.S.; Guo, J. Silicon colors: Spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability. Opt. Express 2014, 22, 31545. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Guo, J.; Wang, Q.; Lu, S.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 2017, 249, 542–548. [Google Scholar] [CrossRef]
L.N. | Parameters | Parameter Space | Objectives | Constraints |
---|---|---|---|---|
1 | Ag thickness | 0–100 nm | -Sensitivity | <−200 deg/RIU |
2 | Semiconductor’s thickness | 0–50 nm | FWHM | <10 deg |
3 | Semiconductor’s refractive index | 1.34–4 | Reflectivity at resonance | <1% |
4 | No. of 2D material monolayers | 1–10 L |
L.N. | Material | Configuration Metal–Semic.–2D Mat.–(ndiel) | Sensitivity (deg/RIU) | FWHM (deg) |
---|---|---|---|---|
1 | Graphene | 43 nm–11 nm–1 L (2.6) | 331 | 7.1 |
2 | 50 nm–7 nm–1 L (2.83) | 202 | 3.9 | |
3 | MoS2 | 38 nm–10 nm–1 L (2.62) | 258 | 8.9 |
4 | 45 nm–7 nm–1 L (2.66) | 205 | 6 | |
5 | WS2 | 44 nm–8 nm–1 L (2.87) | 333 | 7 |
6 | 51 nm–6 nm–1 L (2.72) | 206 | 3.7 |
L.N. | Material | Configuration Metal–Semic.–2D Mat. | Sensitivity (deg/RIU) | FWHM (deg) |
---|---|---|---|---|
1 | Graphene | 40 nm–13 nm–1 L | 330 | 7.1 |
2 | MoS2 | 39 nm–11 nm–1 L | 249 | 9.2 |
3 | WS2 | 38 nm–11 nm–1 L | 325 | 8 |
L.N. | Material | Configuration Metal–Semiconductor–2D Mat. (nsemiconductor) | Sensitivity (deg/RIU) | FWHM (deg) |
---|---|---|---|---|
1 | Graphene | 40 nm–11 nm–1 L (2.66) | 325 | 7.1 |
2 | 47 nm–8 nm–1 L (2.64) | 200 | 4.6 | |
3 | 37 nm–21 nm–2 L (1.87) | 212 | 7 | |
4 | MoS2 | 40 nm–6 nm–1 L (3.53) | 256 | 9.3 |
5 | 42 nm–6 nm–1 L (2.98) | 200 | 7.4 | |
6 | 34 nm–14 nm–1 L (2.13) | 254 | 9.2 | |
7 | WS2 | 41 nm–9 nm–1 L (2.64) | 314 | 7.9 |
8 | 48 nm–7 nm–2 L (2.51) | 208 | 4.6 | |
9 | 43 nm–5 nm–2 L (2.69) | 212 | 7 |
L.N. | Material | Configuration Metal–Semic.–2D Mat. | Sensitivity (deg/RIU) | FWHM (deg) |
---|---|---|---|---|
1 | Graphene | 43 nm–12 nm–1 L; (BaTiO3) | 302 | 7.1 |
2 | MoS2 | 39 nm–5 nm–1 L; (Si) | 232 | 9.4 |
3 | WS2 | 43 nm–10 nm–1 L; (BaTiO3) | 302 | 8 |
L.N. | Configuration | Sensitivity (deg/RIU) | Refractive Index Range | Ref. |
---|---|---|---|---|
1 | BK7–ZnO–Ag–BaTiO3–graphene | 157 | 1.330–1.350 | [28] |
2 | BK7–BP–graphene | 217 | 1.330–1.335 | [50] |
3 | BK7–BP–MoS2 | 218 | 1.330–1.335 | [50] |
4 | BK7–BP–WS2 | 237 | 1.330–1.335 | [50] |
5 | BK7–ZnO–Ag–BaTiO3–MoS2 | 174 | 1.330–1.350 | [28] |
6 | BK7–ZnO–Ag–BaTiO3–WS2 | 180 | 1.330–1.350 | [28] |
7 | BK7–Ag–BaTiO3–graphene | 257 | 1.338–1.348 | [36] |
8 | BK–Ag–BaTiO3–graphene | 302 | 1.332–1.337 | This work |
9 | BK7–Ag–Si–MoS2 | 232 | 1.332–1.337 | This work |
10 | BK7–Ag–BaTiO3–WS2 | 302 | 1.332–1.337 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varasteanu, P.; Kusko, M. A Multi-Objective Optimization of 2D Materials Modified Surface Plasmon Resonance (SPR) Based Sensors: An NSGA II Approach. Appl. Sci. 2021, 11, 4353. https://doi.org/10.3390/app11104353
Varasteanu P, Kusko M. A Multi-Objective Optimization of 2D Materials Modified Surface Plasmon Resonance (SPR) Based Sensors: An NSGA II Approach. Applied Sciences. 2021; 11(10):4353. https://doi.org/10.3390/app11104353
Chicago/Turabian StyleVarasteanu, Pericle, and Mihaela Kusko. 2021. "A Multi-Objective Optimization of 2D Materials Modified Surface Plasmon Resonance (SPR) Based Sensors: An NSGA II Approach" Applied Sciences 11, no. 10: 4353. https://doi.org/10.3390/app11104353
APA StyleVarasteanu, P., & Kusko, M. (2021). A Multi-Objective Optimization of 2D Materials Modified Surface Plasmon Resonance (SPR) Based Sensors: An NSGA II Approach. Applied Sciences, 11(10), 4353. https://doi.org/10.3390/app11104353