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Abstract: Optimization is the science that presents a solution among the available solutions con-
sidering an optimization problem’s limitations. Optimization algorithms have been introduced as
efficient tools for solving optimization problems. These algorithms are designed based on various
natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this
paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is
introduced to solve various optimization problems. In GBGBO, population members update under
the influence of two groups named the good group and the bad group. The good group consists of
a certain number of the population members with better fitness function than other members and
the bad group consists of a number of the population members with worse fitness function than
other members of the population. GBGBO is mathematically modeled and its performance in solving
optimization problems was tested on a set of twenty-three different objective functions. In addition,
for further analysis, the results obtained from the proposed algorithm were compared with eight
optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational
search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO),
and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine preda-
tors algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to
solve various optimization problems and is more competitive than other similar algorithms.

Keywords: optimization; optimization algorithm; population-based algorithm; good group; bad group

1. Introduction

Optimization is the process in which the best solution (based on a set of constraints)
to a particular problem is selected from a set of possible solutions. When an optimization
problem is expressed, it must be modeled mathematically. In this modeling, the objectives
of the problem and the limitations must be considered. In fact, an optimization problem
has three main parts: the problem variables, the primary objects of the problem including
constraints, and the secondary objects of the problem including the objective functions of
the problem [1]. After designing the optimization problem, the next step is to solve the
optimization problem using a suitable method. Optimization algorithms always have a
special application in solving optimization problems. Optimization algorithms attempt to
provide a solution by randomly scanning the search space.
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An optimization problem has a definite optimal solution called global optimal. Op-
timization algorithms with random displacement in the problem search space provide
a solution to a problem that is not necessarily global optimal, but close to it. For this
reason, the solution obtained using optimization algorithms is called the quasi-optimal
solution [2]. An optimization algorithm that presents a quasi-optimal solution closer to
the global optimal solution is a more appropriate algorithm. This issue has led to the
introduction of many optimization algorithms by researchers.

Various ideas have been applied in the design of optimization algorithms. These ideas
are based on various natural phenomena, the behavior of living things, plants, the laws
of physics, the rules of the game, etc. Optimization algorithms can be divided into four
general groups based on the main design idea. These groups are physic-based optimization
algorithms, swarm-based optimization algorithms, game-based optimization algorithms,
and evolutionary-based optimization algorithms.

Physic-based optimization algorithms are designed based on simulations of processes
and physical laws. Simulated annealing (SA) is a physics-based optimization algorithm
modeled on the process of annealing metals [3]. In physics, annealing is the heat treatment
during which changes the physical and sometimes chemical properties of a material occur.
During this process, the metal is first heated, then kept at a certain temperature, and
finally gradually cooled. The momentum search algorithm (MSA) is another physics-based
optimization algorithm based on simulation of momentum laws and Newton’s laws of
motion [4]. In MSA, the momentum that enters a bullet causes the bullet to motion toward
quasi-optimal points in the search space. The gravitational search algorithm (GSA) is
inspired by the physical law of gravity between objects at different distances from each
other. According to this law, particles (or objects) in this universe always exert a force
called gravity on each other, which is directly proportional to the mass of two objects and
inversely proportional to the square of the distance between them. In GSA, the simulation
of this concept is used in designing an optimizer for optimization problems [5].

Swarm-based optimization algorithms are modeled on various natural phenomena,
the behavior of animals, plants, and other living organisms. Particle swarm optimization
(PSO) is one of the oldest and most famous swarm-based optimization algorithms which is
designed based on the simulation of group motion of birds [6]. The seagull optimization
algorithm (SOA) is another swarm-based optimization algorithm that is designed based on
simulating the migration and aggressive behavior of a seagull in nature [7]. The teaching–
learning-based optimization (TLBO) was designed based on simulating the educational
relationship between students and teacher that leads to student learning and progress.
The TLBO has a mathematical model for teaching and learning, which is implemented
in two stages teaching and learning [8]. The whale optimization algorithm (WOA) was
developed based on simulation the social behavior of humpback whales in bubble-net
hunting strategy [9]. The gray wolf optimizer (GWO) was inspired by the leadership
hierarchy and hunting mechanism of gray wolves in nature. This natural behavior of gray
wolves is such that four types of gray wolves such as alpha, beta, delta, and omega are
used to simulate the leadership hierarchy. In addition, the three main steps of hunting—
searching for prey, encircling prey, and attacking prey—are simulated in the GWO [10]. The
tunicate swarm algorithm (TSA) was designed based on the simulation of jet propulsion
and swarm behaviors of tunicates during the navigation and foraging process [11]. The
marine predators algorithm (MPA) was inspired by the movement strategies that marine
predators use when trapping their prey in the oceans. The main inspiration of the MPA
is the widespread foraging strategy namely Lévy and Brownian movements in ocean
predators along with optimal encounter rate policy in biological interaction between
predator and prey [12].

Game-based optimization algorithms are designed using the potentials of various
individual and group games. The orientation search algorithm (OSA) was designed by
modeling the behavior of players and referees in the orientation game. In the orientation
game, players move in the game space according to the direction specified by the refer-
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ence [13]. The darts game optimizer (DGO) is another game-based optimization algorithm
that was designed based on simulation of rules of the game and the behavior of the players
in the darts game [14].

Evolutionary-based optimization algorithms as a family of stochastic search methods
are inspired by the natural process of evolution of species. The genetic algorithm (GA) is
an evolutionary-based optimization algorithm that was inspired by genetics and Darwin’s
theory of evolution and is based on the survival of the fittest or natural selection. The
GA simulates the reproductive process using three operators: selection, crossover, and
mutation [15].

Although many optimization algorithms have been developed by scientists, no opti-
mization algorithm can definitively provide global optimal solutions to the optimization
problems. An optimization algorithm which provides the best solution for one optimiza-
tion problem may fail to optimize another problem. The contribution of the authors and
the main purpose of this paper was to design an optimization algorithm that could be used
to solve optimization problems in various sciences. In designing the proposed algorithm, it
was assumed that by increasing the power of exploration and exploitation of the algorithm,
suitable quasi-optimal solutions are provided that are closer to the global optimal.

In this study, a new population-based optimization algorithm called the good and
bad groups-based optimizer (GBGBO) was developed. The main idea of the proposed
algorithm was to use more information from different population members in updating
the whole population in such a way that instead of a good member, a good group, and
instead of a bad member, a bad group would lead the population members. Thus, in each
iteration, the status of the population members was updated based on two groups: The
good group with the best values of the objective function and the bad group with the worst
values of the objective function.

The rest of the article is organized in such a way that in Section 2, the proposed
algorithm is introduced and modeled mathematically. In Section 3, the implementation of
the proposed algorithm in the optimization is simulated. The Friedman rank test analysis
is presented in Section 4. The analysis of the results and performance of the optimization
algorithm is presented in Section 5. Section 6 provides conclusions and suggestions for
future studies.

2. Good and Bad Groups-Based Optimizer

In this section, firstly the GBGBO is described, and then the mathematical modeling of
the proposed algorithm is presented in order to implement in solving optimization problems.

The GBGBO is a population-based optimization algorithm, which is based on random
scanning of the problem search space. The member of the population that has a better
objective function as the best member of the population can direct the population of
the algorithm to the optimal regions. However, the best member of the population may
not provide the suitable amount for some problem variables. Thus, instead of just the
best member of the population, GBGBO proposes a group of the best members to guide
the population in the search space. This is also debatable for the worst member of the
population. Instead of moving away from just the worst member of the population, GBGBO
suggests moving away from a group of worst members. Thus, in GBGBO, population
members update under the influence of two groups named the good group and the bad
group. A good group consists of a certain number of the population members with better
fitness function than other members and a bad group consists of a number of the population
members with a worse fitness function than other members of the population.

The population of the GBGBO was defined using a matrix in which each row repre-
sented a member that proposed a solution to the optimization problem. The population
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matrix was first generated randomly and then updated according to the algorithm steps.
This population matrix was specified in Equation (1).

X =



X1
...

Xi
...

XN

∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 · · · x1,d · · · x1,m
...

. . .
...

...
xi,1 · · · xi,d · · · xi,m
...

...
. . .

...
xN,1 · · · xN,d · · · xN,m


N×m

(1)

Here, X is the population matrix, Xi is the i-th population member, xi,d is the d-th
dimension of the i-th population member, N is the number of population members, and m
is the number of variables of the optimization problem. After determining the population
matrix, the objective function of the optimization problem was evaluated based on each
member of the population that represents a solution. The vector values of the fitness
function are specified in Equation (2).

F =



F1
...
Fi
...

FN

∣∣∣∣∣∣∣∣∣∣∣∣

F(X1)
...

F(Xi)
...

F(XN)


N×1

(2)

Here, F is the fitness function value vector and Fi is the fitness function value of the
i-th population member.

Each optimization problem has a definite number of m variables that must be specified
to optimize the objective function. In fact, the search space consists of m axes, each of
which determines the value of a problem variable. In most optimization algorithms, a
population member leads the population in the search space. That is, a good member
leads the population in all axes. However, one or more other members may be more
appropriate to guide the population in some axes. In addition, in some optimization
algorithms, moving away from the worst population member is effective in updating
and improving the population. The main idea of the GBGBO is to use the information of
population members more effectively. Accordingly, instead of a good member leading the
entire population in all axes, a group of good members was selected to lead the population.
In addition, instead of just one bad member moving the algorithm away from the bad
areas, a bad group was selected. In the GBGBO, the population members were updated
based on two good and bad groups.

Good group updating:
The criterion for selecting good members was the value of the objective function. The

number of NG members of the population that provide the best values of the objective
function was selected as a good matrix.

Bad group updating:
As mentioned, the criterion for selecting bad members was also the value of the

objective function. The number of NB members of the population that provided the worst
values of the objective function was selected as the bad matrix.

In fact, if members of the population were arranged from the smallest to the largest
value of the objective function, the NG number of the first member was selected as the
good group and the NB number of the last member was selected as the bad group. Thus,
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based on the values of the fitness functions, the good group and the bad group could be
calculated according to Equations (3) and (4).

GG =



GG1
...

GGi
...

GGN

∣∣∣∣∣∣∣∣∣∣∣∣

gg1,1 · · · gg1,d · · · gg1,m
...

. . .
...

...
ggi,1 · · · ggi,d · · · ggi,m

...
...

. . .
...

ggNG ,1 · · · ggNG ,d · · · ggNG ,m


NG×m

(3)

BG =



BG1
...

BGi
...

BGN

∣∣∣∣∣∣∣∣∣∣∣∣

bg1,1 · · · bg1,d · · · bg1,m
...

. . .
...

...
bgi,1 · · · bgi,d · · · bgi,m

...
...

. . .
...

bgNB ,1 · · · bgNB ,d · · · bgNB ,m


NB×m

(4)

Here, GG is the good group, GGi is the i-th good member, ggi,d is the d-th dimension
of the i-th good member, NG is the number of selected good members, BG is the bad group,
BGi is the i-th bad member, bgi,d is the d-th dimension of the i-th bad member, and NB is
the number of selected bad members.

Each row of the population matrix as a population member was a proposed solution
and indeed determined the variables of the problem. The best member of the population
was the member that provided the best value for the objective function. Although the best
member suggested appropriate values for the problem variables, it may not necessarily
have been appropriate to guide the population in some variables. If the members of the
algorithm population moved only under the guidance of the best member in the problem
search space, all variables of each member moved towards the variables determined by the
best member. In the GFBGO, a member of a good group was randomly selected to guide
each variable of each member of the population. In fact, a good group member may have
only led only a few variables of a population member in the search space, although a good
group member may not have been selected to lead any variables. These concepts could
also be developed for the worst members of the population and the bad group. This step
of the GBGBO was simulated using Equations (5) and (6).

xi,d =

{
xi,d + rand× (ggk,d − 2× xi,d), Fi < FGG

k
xi,d + rand× (xi,d − 2× ggk,d), else

& k ∈ 1 : NG (5)

xi,d =

{
xi,d + rand× (bgk,d − 2× xi,d), Fi < FBG

k
xi,d + rand× (xi,d − 2× bgk,d), else

& k ∈ 1 : NB (6)

Here, ggk,d is the d-th dimension of selected good member to guide the d-th dimension
of the ith population member, FGG

k is the objective function value of the k-th selected good
member, bgk,d is the d-th dimension of selected bad member to guide the d-th dimension
of the i-th population member, FBG

k is the objective function value of the k-th selected bad
member, and rand is a random number with a normal distribution within the range from 0
to 1.

After all variables of all population members were updated based on Equations (5)
and (6), the algorithm process was repeated until the stop condition was reached. Then,
after the end of the algorithm iterations, the best solution obtained using the BGBGO was
presented. Figure 1 shows the implementation of the BGBGO as a flowchart.
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Figure 1. The flowchart of the BGBGO.

3. Simulation and Results

In this section, the performance of the proposed BGBGO algorithm in solving various
optimization problems is evaluated. For this purpose, a set of twenty-three standard objec-
tive functions including unimodal, high-dimensional multimodal, and fixed-dimensional
multimodal functions [16] were optimized using BGBGO. Complete information on these
objective functions is given in Tables A1–A3 in Appendix A. Eight optimization algorithms,
including the genetic algorithm (GA) [15], particle swarm optimization (PSO) [6], gravita-
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tional search algorithm (GSA) [5], teaching–learning-based optimization (TLBO) [8], gray
wolf optimizer (GWO) [10], whale optimization algorithm (WOA) [9], tunicate swarm algo-
rithm (TSA) [11], and marine predators algorithm (MPA) [12], were investigated in order
to compare the optimization results. The experimentation was performed on MATLAB
(version R2020a) using a 64-bit Core i7 processor with 3.20 GHz and 16 GB of main memory.
Each of the optimization algorithms were independently implemented twenty times, and
at the end the optimization results were presented as the mean and standard deviation of
the best solutions as “ave” and “std”.

The values used for the main controlling parameters of the comparative algorithms
are specified in Table 1.

Table 1. Parameter values for the comparative algorithms.

Algorithm Parameter Value

GA
Type Real coded

Selection Roulette wheel (Proportionate)

Crossover Whole arithmetic (Probability = 0.8,
α = [−0.5, 1.5])

Mutation Gaussian (Probability = 0.05)

PSO
Topology Fully connected

Cognitive and social constant (C1, C2) 2, 2
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range

GSA
Alpha, G0, Rnorm, Rpower 20, 100, 2, 1

TLBO
TF: teaching factor TF = round [(1 + rand)]
random number rand is a random number in [0, 1].

GWO
Convergence parameter (a) a: Linear reduction from 2 to 0.

WOA
Convergence parameter (a) a: Linear reduction from 2 to 0.

r is a random vector in [0, 1].
l is a random number in [−1, 1].

TSA
Pmin and Pmax 1, 4

c1, c2, c3 Random numbers lie in the range from 0 to 1.

MPA
Constant number p = 0.5
Random vector R is a vector of uniform random numbers in [0, 1].

Fish Aggregating Devices (FADs) FADS = 0.2
Binary vector U = 0 or 1

3.1. Simulation Results on Unimodal Test Function F1 to F7

Seven objective functions F1 to F7 were selected as unimodal objective functions to
evaluate the performance of the GBGBO and other algorithms. Complete information on
these objective functions is given in Table A1 in Appendix A. These objective functions had
only one optimal solution and were therefore suitable for evaluating the exploitation power
of optimization algorithms. The results of the optimization of these objective functions after
twenty independent implementations are presented in Table 2. The optimization results
of these objective functions showed that the proposed GBGBO offered better solutions
than other algorithms. This indicates that the GBGBO had a high exploitation power in
achieving the optimal solution.
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Table 2. Optimization results of GBGBO and other algorithms on unimodal test function.

GA PSO GSA TLBO GWO GOA TSA MPA GBGBO

F1
Ave 13.2405 1.7740 × 10−5 2.0255 × 10−17 8.3373 × 10−60 1.09 × 10−58 2.1741 × 10−9 7.71 × 10−38 3.2715 × 10−21 3.2429 × 10−121

std 4.7664 × 10−15 6.4396 × 10−21 1.1369 × 10−32 4.9436 × 10−76 5.1413 × 10−74 7.3985 × 10−25 7.00 × 10−21 4.6153 × 10−21 4.8 × 10−138

F2
Ave 2.4794 0.3411 2.3702 × 10−8 7.1704 × 10−35 1.2952 × 10−34 0.5462 8.48 × 10−39 1.57 × 10−12 8.51 × 10−65

std 2.2342 × 10−15 7.4476 × 10−17 5.1789 × 10−24 6.6936 × 10−50 1.9127 × 10−50 1.7377 × 10−16 5.92 × 10−41 1.42 × 10−12 1.66 × 10−79

F3
Ave 1536.8963 589.492 279.3439 2.7531 × 10−15 7.4091 × 10−15 1.7634 × 10−8 1.15 × 10−21 0.0864 4.45 × 10−64

std 6.6095 × 10−13 7.1179 × 10−13 1.2075 × 10−13 2.6459 × 10−31 5.6446 × 10−30 1.0357 × 10−23 6.70 × 10−21 0.1444 4.15 × 10−74

F4
Ave 2.0942 3.9634 3.2547 × 10−9 9.4199 × 10−15 1.2599 × 10−14 2.9009 × 10−5 1.33 × 10−23 2.6 × 10−8 1.22 × 10−55

std 2.2342 × 10−15 1.9860 × 10−16 2.0346 × 10−24 2.1167 × 10−30 1.0583 × 10−29 1.2121 × 10−20 1.15 × 10−22 9.25 × 10−9 2.27 × 10−70

F5
Ave 310.4273 50.26245 36.10695 146.4564 26.8607 41.7767 28.8615 46.049 27.02145

std 2.0972 × 10−13 1.5888 × 10−14 3.0982 × 10−14 1.9065 × 10−14 0 2.5421 × 10−14 4.76 × 10−3 0.4219 3.97 × 10−15

F6
Ave 14.55 20.25 0 0.4435 0.6423 1.6085 × 10−9 7.10 × 10−21 0.398 0

std 3.1776 × 10−15 1.2564 0 4.2203 × 10−16 6.2063 × 10−17 4.6240 × 10−25 1.12 × 10−25 0.1914 0

F7
Ave 5.6799 × 10−3 0.1134 0.0206 0.0017 0.0008 0.0205 3.72 × 10−4 0.0018 3.3919 × 10−5

std 7.7579 × 10−19 4.3444 × 10−17 2.7152 × 10−18 3.87896 × 10−19 7.2730 × 10−20 1.5515 × 10−18 5.09 × 10−5 0.001 2.67 × 10−19

3.2. Simulation Results on High Dimensional Multi Modal Test Function F8 to F13

The second group of objective functions to evaluate optimization algorithms are the
high dimensional multimodal test function. The six target functions F8 to F13 are of this type.
Complete information on these objective functions is given in Table A2 in Appendix A.
These types of objective functions are several local optimal solutions and were therefore
suitable for evaluating the exploration power of the optimization algorithms. The results of
the optimization of these objective functions are presented in Table 3. These results indicate
the ability of the GBGBO to solve these types of objective functions and the superiority of
the proposed algorithm over other algorithms. Therefore, the GBGBO had good exploration
capability and scanned the search space of the problem well.

Table 3. Optimization results of GBGBO and other algorithms on high dimensional test function.

E GA PSO GSA TLBO GWO GOA TSA MPA GBGBO

F8
Ave −8184.4142 −6908.6558 −2849.0724 −7408.6107 −5885.1172 −1663.9782 −5740.3388 −3594.16321 −4548.05

std 833.2165 625.6248 264.3516 513.5784 467.5138 716.3492 41.5 811.32651 1.02 × 10−12

F9
Ave 62.4114 57.0613 16.2675 10.2485 8.5265 × 10−15 4.2011 5.70 × 10−3 140.1238 0

std 2.5421 × 10−14 6.3552 × 10−15 3.1776 × 10−15 5.5608 × 10−15 5.6446 × 10−30 4.3692 × 10−15 1.46 × 10−3 26.3124 0

F10
Ave 3.2218 2.1546 3.5673 × 10−9 0.2757 1.7053 × 10−14 0.3293 9.80 × 10−14 9.6987 × 10−12 4.44 × 10−15

std 5.1636 × 10−15 7.9441 × 10−16 3.6992 × 10−25 2.5641 × 10−15 2.7517 × 10−29 1.9860 × 10−16 4.51 × 10−12 6.1325 × 10−12 1.41 × 10−30

F11
Ave 1.2302 0.0462 3.7375 0.6082 0.0037 0.1189 1.00 × 10−7 0 0

std 8.4406 × 10−16 3.1031 × 10−18 2.7804 × 10−15 1.9860 × 10−16 1.2606 × 10−18 8.9991 × 10−17 7.46 × 10−7 0 0

F12
Ave 0.047 0.4806 0.0362 0.0203 0.0372 1.7414 0.0368 0.0851 1.60 × 10−4

std 4.6547 × 10−18 1.8619 × 10−16 6.2063 × 10−18 7.7579 × 10−19 4.3444 × 10−17 8.1347 × 10−12 1.5461 × 10−2 0.0052 2.17 × 10−17

F13
Ave 1.2085 0.5084 0.002 0.3293 0.5763 0.3456 2.9575 0.4901 1.08 × 10−4

std 3.2272 × 10−16 4.9650 × 10−17 4.2617 × 10−14 2.1101 × 10−16 2.4825 × 10−16 3.25391 × 10−12 1.5682 × 10−12 0.1932 2.98 × 10−16

3.3. Simulation Results on Fixed Dimensional Multi Modal Test Function F14 to F23

The third group of objective functions, including F14 to F23, was selected from the
fixed dimensional multimodal type. Complete information on these objective functions
is given in Table A3 in Appendix A. This type of objective function was also suitable for
evaluating the exploration power of optimization algorithms. The results of optimization of
these objective functions using GBGBO and eight other algorithms are presented in Table 4.
What is clear from these results is that the proposed GBGBO algorithm performed very
well in such objective functions and in most cases provided the global optimal solution.
This concept demonstrates the acceptable exploration ability of the GBGBO in accurately
searching the problem search space.



Appl. Sci. 2021, 11, 4382 9 of 15

Table 4. Optimization results of GBGBO and other algorithms on fixed dimensional test function.

E GA PSO GSA TLBO GWO GOA TSA MPA GBGBO

F14
Ave 0.9986 2.1735 3.5913 2.2721 3.7408 0.998 1.9923 0.998 0.998

std 1.5640 × 10−15 7.9441 × 10−16 7.9441 × 10−16 1.9860 × 10−16 6.4545 × 10−15 9.4336 × 10−16 2.6548 × 10−7 4.2735 × 10−16 1.44 × 10−16

F15
Ave 5.3952 × 10−2 0.0535 0.0024 0.0033 0.0063 0.0049 0.0004 0.003 0.0003

std 7.0791 × 10−18 3.8789 × 10−19 2.9092 × 10−19 1.2218 × 10−17 1.1636 × 10−18 3.4910 × 10−18 9.0125 × 10−4 4.0951 × 10−15 3.64 × 10−20

F16
Ave −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

std 7.9441 × 10−16 3.4755 × 10−16 5.9580 × 10−16 1.4398 × 10−15 3.9720 × 10−16 9.9301 × 10−16 2.6514 × 10−16 4.4652 × 10−16 9.93 × 10−17

F17
Ave 0.4369 0.7854 0.3978 0.3978 0.3978 0.4047 0.3991 0.3979 0.3979

std 4.9650 × 10−17 4.9650 × 10−17 9.9301 × 10−17 7.4476 × 10−17 8.6888 × 10−17 2.4825 × 10−17 2.1596 × 10−16 9.1235 × 10−15 9.93 × 10−17

F18
Ave 4.3592 3 3 3.0009 3 3 3 3 3

std 5.9580 × 10−16 3.6741 × 10−15 6.9511 × 10−16 1.5888 × 10−15 2.0853 × 10−15 5.6984 × 10−15 2.6528 × 10−15 1.9584 × 10−15 1.99 × 10−16

F19
Ave −3.85434 −3.8627 −3.8627 −3.8609 −3.8621 −3.8627 −3.8066 −3.8627 −3.8627

std 9.9301 × 10−17 8.9371 × 10−15 8.3413 × 10−15 7.3483 × 10−15 2.4825 × 10−15 3.1916 × 10−15 2.6357 × 10−15 4.2428 × 10−15 4.97 × 10−16

F20
Ave −2.8239 −3.2619 −3.0396 −3.2014 −3.2523 −3.2424 −3.3206 −3.3211 −3.3219

std 3.97205 × 10−16 2.9790 × 10−16 2.1846 × 10−14 1.7874 × 10−15 2.1846 × 10−15 7.9441 × 10−16 5.6918 × 10−15 1.1421 × 10−11 2.88 × 10−15

F21
Ave −4.3040 −5.3891 −5.1486 −9.1746 −9.6452 −7.4016 −5.5021 −10.1532 −10.1532

std 1.5888 × 10−15 1.4895 × 10−15 2.9790 × 10−16 8.5399 × 10−15 6.5538 × 10−15 2.3819 × 10−11 5.4615 × 10−13 2.5361 × 10−11 7.94 × 10−16

F22
Ave −5.1174 −7.6323 −9.0239 −10.0389 −10.4025 −8.8165 −5.0625 −10.4029 −10.4029

std 1.2909 × 10−15 1.5888 × 10−15 1.6484 × 10−12 1.5292 × 10−14 1.9860 × 10−15 6.7524 × 10−15 8.4637 × 10−14 2.8154 × 10−11 7.15 × 10−15

F23
Ave −6.5621 −6.1648 −8.9045 −9.2905 −10.1302 −10.0003 −10.3613 −10.5364 −10.5364

std 3.8727 × 10−15 2.7804 × 10−15 7.1497 × 10−14 1.1916 × 10−15 4.5678 × 10−15 9.1357 × 10−15 7.6492 × 10−12 3.9861 × 10−11 7.94 × 10−16

Optimization results of the F1 to F23 objective functions using the proposed algorithm
and eight other optimization algorithms are presented in Tables 2–4. The boxplot of
results for each algorithm and objective function are drawn in Figure 2 for further analysis
and visual comparison of the performance of the optimization algorithms. Based on the
boxplots shown in Figure 2, in the unimodal objective functions type F1, F2, F3, F4, F6,
and F7, the superiority of the GBGBO over the other eight algorithms is obvious. The
function F5 of the GWO offers better performance. However, the GBGBO offers acceptable
performance with little difference to the GWO. In the functions F9, F10, F11, F12, and
F13 of the high-dimensional multimodal objective functions type, the GBGBO is the best
optimizer among the review algorithms. In the objective function F8, the GA presented
better performance. In the functions F14, F15, F16, F18, F19, F20, F21, F22, and F23 of the fixed-
dimensional multi-model objective function type, the proposed algorithm could provide
a more efficient quasi-optimal solution with smaller values of standard deviation. The
function F17 in the GWO offers better performance. However, the GBGBO offers acceptable
performance with little difference to the GWO.
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4. Statistical Analysis

The optimization results of all three types of objective functions were presented
as the mean and standard deviation of the solutions. Although these indicators make
important information available, they alone were not enough to ensure that one algorithm
is superior to other algorithms. This is because even after twenty independent executions,
the superiority of one optimization algorithm over other algorithms may occur randomly,
even with the lowest probability. Thus, a statistical analysis of the optimization results
provided more information than the capability of an optimization algorithm. In this
article, the Friedman rank test [17] was used. The results of this test are determined in
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Table 5. Analysis and comparison of these results show that BGBGO performs better
than other algorithms in all three different types of objective functions unimodal, high
dimensional multimodal, and fixed dimensional multimodal. In addition, the result of
analysis on all twenty-three objective functions shows that the GBGBO ranks first among
compared algorithms.

Table 5. Results of Friedman rank test.

Test Function GA PSO GSA TLBO GWO GOA TSA MPA GBGBO.

1
Unimodal Friedman

value 56 55 37 27 24 41 16 36 8

(F1–F7) Friedman rank 9 8 6 4 3 7 2 5 1

2

High
dimensional
multimodal

Friedman
value 37 34 30 22 21 36 24 32 11

(F8–F13) Friedman rank 8 6 4 3 2 7 3 5 1

3

Fixed
dimension

multimodal

Friedman
value 56 48 42 37 33 37 35 23 11

(F14–F23) Friedman rank 8 7 6 5 3 5 4 2 1

4 All 23-test
function

Friedman
value 149 137 109 86 78 114 75 91 30

Friedman rank 9 8 6 4 3 7 2 5 1

5. Discussion

Exploitation and exploration indexes are two important criteria and indicators in ana-
lyzing and evaluating the performance of optimization algorithms. The exploitation power
means the ability of an optimization algorithm to provide a suitable quasi-optimal solution
at the end of the algorithm iterations. Thus, in comparing the performance of several opti-
mization algorithms on an optimization problem, the algorithm that can ultimately provide
a quasi-optimal solution closer to the global optimal has higher exploitation power. The
unimodal objective functions F1 to F7 have only one main solution and are therefore very
suitable for evaluating the exploitation power of optimization algorithms. Comparison of
the optimization results of these functions using the GBGBO and eight other algorithms in
Table 2 shows the acceptable exploitation power of the GBGBO in solving optimization
problems. Exploration power means the ability of an algorithm to accurately scan the
search space of the optimization problem. In fact, among several optimization algorithms,
an algorithm that can scan the search space well and is not limited to certain areas, as
well as can pass locally optimal solutions, has higher exploration power. This indicator is
especially important for optimization problems that have multiple local optimal solutions.
The F8 to F23 objective functions had several local optimal solutions in addition to the main
solution. Therefore, these objective functions were suitable for evaluating the exploration
power of optimization algorithms. Analysis and comparison of the optimization results of
the GBGBO and eight other algorithms on these objective functions, which are presented
in Tables 3 and 4, indicated the acceptable exploration power of the proposed GBGBO
algorithm in solving this type of objective functions. On the other hand, the results of the
Friedman rank test showed that the acceptable power of the GBGBO in exploration and
exploitation indices is not random.

6. Conclusions and Future Work

Optimization algorithms are one of the efficient tools in solving optimization prob-
lems. Optimization algorithms with random search space scanning are able to provide
quasi-optimal solutions to optimization problems. In this paper, a new optimization algo-
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rithm called the good and bad groups-based optimizer (GBGBO) was presented to solve
optimization problems. The GBGBO was designed based on simulation of the process of
guiding the population members by two groups named good and bad groups, instead of
only the best and worst members. The proposed GBGBO was mathematically modeled.
The performance of the GBGBO was implemented and evaluated on a set of twenty-three
standard objective functions. These objective functions were selected in three different
types unimodal to evaluate exploitation power, high-dimensional, and fixed-dimensional
multimodal to evaluate exploration power. Eight optimization algorithms, concretely the
genetic algorithm (GA), the particle swarm optimization (PSO), the gravitational search
algorithm (GSA), the teaching–learning-based optimization (TLBO), the gray wolf opti-
mizer (GWO), the whale optimization algorithm (WOA), the tunicate swarm algorithm
(TSA), and the marine predators algorithm (MPA), were selected to compare with the
optimization results obtained from the GBGBO. The optimization results showed that the
GBGBO is more capable of solving optimization problems than the other eight optimization
algorithms and is more competitive. In addition, the Friedman rank test was used for
statistical analysis of optimization results provided by optimization algorithms. Based
on the results of this test, the GBGBO had a good performance in solving optimization
problems and was ranked first among the compared algorithms.

The authors suggest some ideas and perspectives for future studies. The design of the
binary version, as well as the multi-objective version of the GBGBO, are two special poten-
tials for this study. Apart from this, implementing the GBGBO on various optimization
problems and real-world optimization problems could be some significant contributions
as well.
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Appendix A

Information of the twenty-three objective functions is provided in Tables A1–A3.

Table A1. Unimodal test functions.

F1(x) = ∑m
i=1 x2

i [−100, 100]m m = 30

F2(x) = ∑m
i=1|xi|+ ∏m

i=1|xi| [−10, 10]m m = 30

F3(x) = ∑m
i=1

(
∑i

j=1 xi

)2
[−100, 100]m m = 30

F4(x) = max{|xi| , 1 ≤ i ≤ m } [−100, 100]m m = 30

F5(x) = ∑m−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2)
]

[−30, 30]m m = 30

F6(x) = ∑m
i=1([xi + 0.5])2 [−100, 100]m m = 30

F7(x) = ∑m
i=1 ix4

i + random(0, 1) [−1.28, 1.28]m m = 30
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Table A2. High-dimensional multimodal test functions.

F8(x) = ∑m
i=1−xi sin

(√
|xi|
)

[−500, 500]m m = 30

F9(x) = ∑m
i=1
[

x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]m m = 30

F10(x) = −20 exp
(
−0.2

√
1
m ∑m

i=1 x2
i

)
− exp

(
1
m ∑m

i=1 cos(2πxi)
)
+ 20 + e [−32, 32]m m = 30

F11(x) = 1
4000 ∑m

i=1 x2
i −∏m

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]m m = 30

F12(x) = π
m

{
10 sin(πy1) + ∑m

i=1(yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+∑m

i=1 u(xi, 10, 100, 4)

u(xi, a, i, n) =


k(xi − a)n, xi > −a;

0, −a < xi < a;
k(−xi − a)n, xi < −a

[−50, 50]m m = 30

F13(x) = 0.1
{

sin2(3πx1)

+∑m
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxm)

]}
+∑m

i=1 u(xi, 5, 100, 4)

[−50, 50]m m = 30

Table A3. Fixed-dimensional multimodal test functions.

F14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
[−65.53, 65.53]2.

F15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5, 5]4

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5]2

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 [−5,10] × [0,15]

F18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] [−5, 5]2

F19(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij

(
xj − Pij

)2
)

[0, 1]3

F20(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij

(
xj − Pij

)2
)

[0, 1]6

F21(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10]4

F22(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10]4

F23(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10]4
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