Analysis of Quality of Backyard Compost and Its Potential Utilization as a Circular Bio-Waste Source
Abstract
:1. Introduction
1.1. Backyard Composting Methods
1.2. Determination of Compost Quality and ITS Measurement
1.3. Macro and Micro Nutrient Content of Compost
1.4. Toxicity Levels and Chemical Impact of Compost
1.5. Weed-Seed Dispersal Effect and Biological Quality
2. Materials and Methods
2.1. The Examined Composts Materials
2.2. Methods
2.2.1. Stability Measurement
2.2.2. Weed Seed Contamination Effects Determination
2.2.3. Toxic Elements and Nutrient Contents Analysis
2.2.4. Statistical Factor Analysis
3. Results
3.1. Compost Maturity
3.2. Weed Seed Dispersion
3.3. Potentially Toxic Element Content
3.4. Macro and Micronutrient Content
3.5. Results of Statistical Analysis
3.6. Practical Implication of the Study
4. Discussion
4.1. Maturity and Stability
4.2. Toxicity and Macro and Micro Nutrients
4.3. Seed Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Limitations
References
- Fogarassy, C.; Finger, D. Theoretical and Practical Approaches of Circular Economy for Business Models and Technological Solutions. Resources 2020, 9, 76. [Google Scholar] [CrossRef]
- European Comission COM. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Region. Toward A Circular Economy: Zero Waste Programme for Europe; European Comission: Brussels, Belgium, 2014. [Google Scholar]
- Blumenthal, K. Generation and Treatment of Municipal Waste. Available online: https://ec.europa.eu/eurostat/documents/3433488/5579064/KS-SF-11-031-EN.PDF/00c0b3fe-db08-4076-b39a-e92015ce99e0 (accessed on 12 May 2021).
- Alexa, L.; Dér, S. Szakszerű Komposztálás Elmélet És Gyakorlat; Profikomp Kft.: Budapest, Hungary, 2001; ISBN 978-963-00-5809-4. [Google Scholar]
- Lleó, T.; Albacete, E.; Barrena, R.; Font, X.; Artola, A.; Sánchez, A. Home and Vermicomposting as Sustainable Options for Biowaste Management. J. Clean. Prod. 2013, 47, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Toledo, M.; Siles, J.A.; Gutiérrez, M.C.; Martín, M.A. Monitoring of the Composting Process of Different Agroindustrial Waste: Influence of the Operational Variables on the Odorous Impact. Waste Manag. 2018, 76, 266–274. [Google Scholar] [CrossRef]
- Palaniveloo, K.; Amran, M.A.; Norhashim, N.A.; Mohamad-Fauzi, N.; Peng-Hui, F.; Hui-Wen, L.; Kai-Lin, Y.; Jiale, L.; Chian-Yee, M.G.; Jing-Yi, L.; et al. Food Waste Composting and Microbial Community Structure Profiling. Processes 2020, 8, 723. [Google Scholar] [CrossRef]
- Bermudez, J.F.; Saldarriaga, J.F.; Osma, J.F. Portable and Low-Cost Respirometric Microsystem for the Static and Dynamic Respirometry Monitoring of Compost. Sensors 2019, 19, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, W.; Zhang, F.; Xu, P.; Tang, S.; Xie, K.; Huang, X.; Huang, Q. Effects of Sulphur and Thiobacillus Thioparus on Cow Manure Aerobic Composting. Bioresour. Technol. 2011, 102, 6529–6535. [Google Scholar] [CrossRef]
- Deepesh, V.; Verma, V.K.; Suma, K.; Ajay, S.; Gnanavelu, A.; Madhusudanan, M. Evaluation of an Organic Soil Amendment Generated from Municipal Solid Waste Seeded with Activated Sewage Sludge. J. Mater. Cycles Waste Manag. 2016, 18, 273–286. [Google Scholar] [CrossRef]
- Cai, Q.-Y.; Mo, C.-H.; Wu, Q.-T.; Zeng, Q.-Y.; Katsoyiannis, A. Concentration and Speciation of Heavy Metals in Six Different Sewage Sludge-Composts. J. Hazard. Mater. 2007, 147, 1063–1072. [Google Scholar] [CrossRef]
- Bai, J.; Shen, H.; Dong, S. Study on Eco-Utilization and Treatments of Highway Greening Waste. Procedia Environ. Sci. 2010, 2, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Xie, B.; Khan, R.; Shen, G. The Changes in Carbon, Nitrogen Components and Humic Substances during Organic-Inorganic Aerobic Co-Composting. Bioresour. Technol. 2019, 271, 228–235. [Google Scholar] [CrossRef]
- Cooperband, L.R. Composting: Art and Science of Organic Waste Conversion to a Valuable Soil Resource. Lab. Med. 2000, 31, 283–290. [Google Scholar] [CrossRef]
- Dunst, G. Kompostierung; Leopold Stocker Verlag: Graz-Stuttgart, Austria, 1991. [Google Scholar]
- Gottschall, R. Kompostierung: Optimale Aufbereitung und Verwendung Organischer Materialien im Ökologischen Landbau; Alternative Konzepte; 4. Aufl; Müller: Karlsruhe, Germany, 1990; ISBN 978-3-7880-9798-1. [Google Scholar]
- Roulac, J.W. Backyard Composting; Green Earth Books: Totnes, UK, 1996; ISBN 978-1-900322-04-1. [Google Scholar]
- Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C. Mass Balances and Life Cycle Inventory of Home Composting of Organic Waste. Waste Manag. 2011, 31, 1934–1942. [Google Scholar] [CrossRef] [Green Version]
- Jasim, S.; Smith, S.R. The Practicability of Home Composting for the Management of Biodegradable Domestic Solid Waste. Ph.D. Thesis, Imperial College London, London, UK, 2003. [Google Scholar]
- Colón, J.; Martínez-Blanco, J.; Gabarrell, X.; Artola, A.; Sánchez, A.; Rieradevall, J.; Font, X. Environmental Assessment of Home Composting. Resour. Conserv. Recycl. 2010, 54, 893–904. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Blanco, J.; Colón, J.; Gabarrell, X.; Font, X.; Sánchez, A.; Artola, A.; Rieradevall, J. The Use of Life Cycle Assessment for the Comparison of Biowaste Composting at Home and Full Scale. Waste Manag. 2010, 30, 983–994. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.E.; Stylianou, M.A.; Michalopoulos, C.P.; Moustakas, K.G.; Hapeshis, K.M.; Vogiatzidaki, E.E.I.; Loizidou, M.D. Performance of a New Household Composter during In-Home Testing. Waste Manag. 2009, 29, 204–213. [Google Scholar] [CrossRef]
- Gómez, R.B.; Lima, F.V.; Ferrer, A.S. The Use of Respiration Indices in the Composting Process: A Review. Waste Manag. Res. 2006, 24, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricke, K.; Vogtmann, H. Compost Quality: Physical Characteristics, Nutrient Content, Heavy Metals and Organic Chemicals. Toxicol. Environ. Chem. 1994, 43, 95–114. [Google Scholar] [CrossRef]
- Jakubus, M.A. Comparative Study of Composts Prepared from Various Organic Wastes Based on Biological and Chemical Parameters. Agronomy 2020, 10, 869. [Google Scholar] [CrossRef]
- Hunyadi, G. Hulladékból Előállított Komposztok Degradációs Folyamatainak Nyomon Követése. Analyze of the Degradation Process of Waste Compost. Ph.D. Thesis, University of Debrecen, Debrecen, Hungary, 2012. [Google Scholar]
- Mathur, S.P.; Owen, G.; Dinel, H.; Schnitzer, M. Determination of Compost Biomaturity. I. Literature Review. Biol. Agric. Hortic. 1993, 10, 65–85. [Google Scholar] [CrossRef]
- López, M.; Huerta-Pujol, O.; Martínez-Farré, F.X.; Soliva, M. Approaching Compost Stability from Klason Lignin Modified Method: Chemical Stability Degree for OM and N Quality Assessment. Resour. Conserv. Recycl. 2010, 55, 171–181. [Google Scholar] [CrossRef]
- Mushtaq, M.; Iqbal, M.K.; Khalid, A.; Khan, R.A. Humification of Poultry Waste and Rice Husk Using Additives and Its Application. Int. J. Recycl. Org. Waste Agric. 2019, 8, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Sun, X. Evaluation of Maifanite and Silage as Amendments for Green Waste Composting. Waste Manag. 2018, 77, 435–446. [Google Scholar] [CrossRef]
- Kebrom, T.H.; Woldesenbet, S.; Bayabil, H.K.; Garcia, M.; Gao, M.; Ampim, P.; Awal, R.; Fares, A. Evaluation of Phytotoxicity of Three Organic Amendments to Collard Greens Using the Seed Germination Bioassay. Environ. Sci. Pollut. Res. 2019, 26, 5454–5462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morel, T.L.; Colin, F.; Germon, J.C. Methods for the Evaluation of the Maturity of Municipal Refuse Compost. In Composting of Agriculture and Other Wastes; Elsevier Applied Science Publishers: London, UK, 1985; pp. 56–72. [Google Scholar]
- Jímenez, E.I.; Garcia, V.P. Evaluation of City Refuse Compost Maturity: A Review. Biol. Wastes 1989, 27, 115–142. [Google Scholar] [CrossRef] [Green Version]
- Bari, Q.H.; Koenig, A. Effect of Air Recirculation and Reuse on Composting of Organic Solid Waste. Resour. Conserv. Recycl. 2001, 33, 93–111. [Google Scholar] [CrossRef]
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of Food Wastes: Status and Challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Scoton, E.J.; Battistelle, R.A.G.; Bezerra, B.S.; Akutsu, J. A Sewage Sludge Co-Composting Process Using Respirometric Monitoring Method in Hermetic Rotary Reactor. J. Clean. Prod. 2016, 121, 169–175. [Google Scholar] [CrossRef]
- du Plessis, C.A.; Barnard, P.; Naldrett, K.; de Kock, S.H. Development of Respirometry Methods to Assess the Microbial Activity of Thermophilic Bioleaching Archaea. J. Microbiol. Methods 2001, 47, 189–198. [Google Scholar] [CrossRef]
- Adani, F.; Gigliotti, G.; Valentini, F.; Laraia, R. Respiration Index Determination: A Comparative Study of Different Methods. Compost Sci. Util. 2003, 11, 144–151. [Google Scholar] [CrossRef]
- Sánchez Arias, V.; Fernández, F.J.; Rodríguez, L.; Villaseñor, J. Respiration Indices and Stability Measurements of Compost through Electrolytic Respirometry. J. Environ. Manage. 2012, 95, S134–S138. [Google Scholar] [CrossRef]
- Binner, E.; Zach, A. Laboratory tests describing the biological reactivity of pretreated residual wastes. In Bidlingmaier; deBertoldi, M., Diaz, L., Papadimitriou, E., Eds.; Organic Recovery and Biological Treatment; Rhombos-Verlag-ORBIT 99.: Weimar, Germany, 1999; pp. 255–261. [Google Scholar]
- Lasaridi, K.E.; Stentiford, E.I. A Simple Respirometric Technique for Assessing Compost Stabilit y. Water Res. 1998, 32, 3717–3723. [Google Scholar] [CrossRef]
- Abdi, L.; Molaee Aghaee, E.; Nazmara, S.; reza Alipour, M.; Fakhri, Y.; Mousavi Khaneghah, A. Potentially Toxic Elements (PTEs) in Corn (Zea mays) and Soybean (Glycine max) Samples Collected from Tehran, Iran: A Health Risk Assessment Study. Int. J. Environ. Anal. Chem. 2020, 1–12. [Google Scholar] [CrossRef]
- Retamal-Salgado, J.; Hirzel, J.; Walter, I.; Matus, I. Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment. Int. J. Environ. Res. Public. Health 2017, 14, 1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smedley, P.L.; Kinniburgh, D.G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Hasegawa, H. High Levels of Inorganic Arsenic in Rice in Areas Where Arsenic-Contaminated Water Is Used for Irrigation and Cooking. Sci. Total Environ. 2011, 409, 4645–4655. [Google Scholar] [CrossRef] [Green Version]
- Hajeb, P.; Sloth, J.J.; Shakibazadeh, S.; Mahyudin, N.A.; Afsah-Hejri, L. Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches: Toxic Elements in Food. Compr. Rev. Food Sci. Food Saf. 2014, 13, 457–472. [Google Scholar] [CrossRef]
- Picariello, E.; Baldantoni, D.; Izzo, F.; Langella, A.; De Nicola, F. Soil Organic Matter Stability and Microbial Community in Relation to Different Plant Cover: A Focus on Forests Characterizing Mediterranean Area. Appl. Soil Ecol. 2021, 162, 103897. [Google Scholar] [CrossRef]
- Petruzzelli, G. Heavy Metals in Compost and their Effect on Soil Quality. In The Science of Composting; de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 213–223. ISBN 978-94-010-7201-4. [Google Scholar]
- Saveyn, H.; Eder, P. End-of-Waste Criteria for Biodegradable Waste Subjected to Biological Treatment (Compost & Digestate): Technical Proposals; Publications Office: Luxembourg, 2014. [Google Scholar]
- Idelmann, M. Hygienisierung Von Kompost: Möglichkeiten Zum Nachweis Einer Erfolgreichen Abtötung Von Pathogenen Und Unkrautsamen; Dissertation, Schriftenreihe des Fachgebietes Abfalltechnik/Universität Kassel Dissertationen; Univ. Press: Kassel, Germany, 2006; ISBN 978-3-89958-203-1. [Google Scholar]
- Dahlquist, R.M.; Prather, T.S.; Stapleton, J.J. Time and Temperature Requirements for Weed Seed Thermal Death. Weed Sci. 2007, 55, 619–625. [Google Scholar] [CrossRef]
- Egley, G.H. High-Temperature Effects on Germination and Survival of Weed Seeds in Soil. Weed Sci. 1990, 38, 429–435. [Google Scholar] [CrossRef]
- Eghball, B.; Lesoing, G.W. Viability of Weed Seeds Following Manure Windrow Composting. Compost Sci. Util. 2000, 8, 46–53. [Google Scholar] [CrossRef]
- Wiese, A.F.; Sweeten, J.M.; Bean, B.W.; Salisbury, C.D.; Chenault, E.W. High Temperature Composting of Cattle Feedlot Manure Kills Weed Seed. Appl. Eng. Agric. 1998, 14, 377–380. [Google Scholar] [CrossRef]
- ÖNORM S 2027-4: Evalution of Waste from Mechanical-Biological Treatment–Part 4: Stability Parameters–Respiration Activity (AT4); Association of Germany: Berlin, Germany, 2012.
- MSZE 21420-18:2005: Hulladékok Jellemzése. A Nedvesség-És a Szárazanyag-Tartalom Meghatározása; Characterization of Wastes. Determination of Humidity and Dry Matter Content; Hungarian Standards Institution: Budapest, Hungary, 2005.
- Bozym, M. Analytical Issues in the Assessment of Waste Stabilisation Degree after Biological Treatment. CHEMIK 2012, 66, 1211–1218. [Google Scholar]
- MSZ-08-0012-4:1979: Tőzegek És Tőzegkészítmények Fizikai, Kémiai És Biológiai Vizsgálata. Gyomosító És Csírázásgátló Hatás Vizsgálata; Physical, Chemical and Biological Testing of Peat and Peat Products. Examination of Weed Expansion and Germ Killing Effect; Hungarian Standards Institution: Budapest, Hungary, 1979.
- Kristanto, G.A.; Rahmah, S.A. Assessment of Compost Maturity Using The Static Respirometry Index. Reaktor 2019, 18, 194–201. [Google Scholar] [CrossRef]
- Confesor, R.B.; Hamlet, J.M.; Shannon, R.D.; Graves, R.E. Potential Pollutants from Farm, Food and Yard Waste Composts at Differing Ages: Leaching Potential of Nutrients Under Column Experiments. Part II. Compost Sci. Util. 2009, 17, 6–17. [Google Scholar] [CrossRef]
- Barrena, R.; Font, X.; Gabarrell, X.; Sánchez, A. Home Composting versus Industrial Composting: Influence of Composting System on Compost Quality with Focus on Compost Stability. Waste Manag. 2014, 34, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Jauch, M. Kompostieren-so Geht’s: Müll Vermeiden, Kompost Sinnvoll Nutzen; Dem Kosmos-Rat vertrauen; Franckh-Kosmos: Stuttgart, Germany, 1996; ISBN 978-3-440-07096-3. [Google Scholar]
- Scaglia, B.; Tambone, F.; Genevini, P.L.; Adani, F. Respiration Index Determination: Dynamic And Static Approaches. Compost Sci. Util. 2000, 8, 90–98. [Google Scholar] [CrossRef]
- ÖNORM S 2023: Untersuchungsmethoden und Güteüberwachung von Komposten; Österreichisches Normungsinstitut: Vienna, Austria, 1993.
- Fernández-Delgado Juárez, M.; Gómez-Brandón, M.; Insam, H. Merging Two Waste Streams, Wood Ash and Biowaste, Results in Improved Composting Process and End Products. Sci. Total Environ. 2015, 511, 91–100. [Google Scholar] [CrossRef]
- Capar, S.G.; Tanner, J.T.; Friedman, M.H.; Boyer, K.W. Multielement Analysis of Animal Feed, Animal Wastes and Sewage Sludge. Environ. Sci. Technol. 1978, 12, 785–790. [Google Scholar] [CrossRef]
- Kubier, A.; Pichler, T. Cadmium in Groundwater—A Synopsis Based on a Large Hydrogeochemical Data Set. Sci. Total Environ. 2019, 689, 831–842. [Google Scholar] [CrossRef]
- Knappe, F.; Mohler, S.; Ostermayer, A.; Lazar, S.; Kaufmann, C. Comparative Evaluation of Substance Inputs Into Soils Via Different Input Paths; Federal Environmental Agency (Umweltbundesamt): Dessau-Roßlau, Germany, 2008. [Google Scholar]
- López-Núñez, R.; Ajmal-Poley, F.; Burgos-Doménech, P. Prediction of As, Cd, Cr, Hg, Ni, and Se Concentrations in Organic Amendments Using Portable X-ray Fluorescence and Multivariate Modeling. Appl. Sci. 2020, 10, 5726. [Google Scholar] [CrossRef]
- Weaver, S.E.; McWilliams, E.L. The Biology of Canadian Weeds.: 44. Amaranthus Retrojkxus L., A. Powellii S. Wats. and A. Hybridus L. Can. J. Plant Sci. 1980, 60, 1215–1234. [Google Scholar]
Code | Type | Method of Composting | Raw Materials | Preparation | Treatment | Age |
---|---|---|---|---|---|---|
A | BYC | Pile | Garden green waste | Grinding | Monthly turning | 2 years |
B | BYC | Pile | Garden green waste | Grinding | Monthly turning | 1 year |
C | BYC | Closed composting bin | Garden green waste, kitchen waste | Grinding | Monthly turning, moistening | 2 years |
D | BYC | Open composting | Garden green waste, kitchen waste | Grinding | Monthly turning, moistening | 1.5 years |
E | BYC | Open composting | Garden green waste, wood ash, poultry manure, soil | - | - | 3 years |
F | BYC | Open composting | Garden green waste, wood ash, soil | - | - | 3 years |
G | BYC | Open composting | Garden green waste, kitchen waste | Grinding | Addition of earthworms | 3 years |
H | BYC | Pile | Garden green waste, kitchen waste, rabbit manure | Grinding | Monthly turning | 2 years |
I | BYC | Open composting | Garden green waste, kitchen waste, wood ash | - | Periodic turning, addition of earthworms | 2 years |
J | BYC | Open composting | Garden green waste | Grinding | Addition of earthworms | 2 years |
K | BYC | Pile | Garden green waste, grape leaves, dishwashing water | Grinding | - | 4 years |
L | BYC | Pile | Garden green waste, sycamore leaves, poultry manure | Grinding | - | 4 years |
M | BYC | Open composting | Garden green waste, fruit waste | - | Addition of earthworms | 4 years |
N | ECOL | Open composting | Walnut leaves, bean stem (50–50%) | Periodic turning, moistening | 8 months | |
O | ECOL | Open composting | Walnut leaves | Periodic turning, moistening | 8 months | |
P | ECOL | Open composting | Horse manure and other plant materials (80-20%) | Periodic turning, moistening | 1.5 years |
Sample | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
mg × kg−1 d.m. | |||||||
A a | 0.23 ± 0.03 | 10.68 ± 0.00 | 12.25 ± 0.11 | nd | 5.12 ± 0.06 | 3.49 ± 0.12 | 49.8 ± 0.3 |
B a | 0.64 ± 0.03 | 17.42 ± 0.03 | 29.05 ± 0.28 | nd | 7.95 ± 0.29 | 15.21 ± 0.70 | 94.8 ± 0.1 |
C a | 0.69 ± 0.05 | 16.51 ± 0.12 | 32.00 ± 0.12 | nd | 9.35 ± 0.24 | 11.80 ± 0.22 | 118.7 ± 0.1 |
D a | 0.35 ± 0.01 | 12.28 ± 0.07 | 19.16 ± 0.60 | nd | 5.87 ± 0.27 | 5.30 ± 0.57 | 66.5 ± 0.3 |
E a | 0.85 ± 0.01 | 22.87 ± 0.29 | 23.35 ± 0.27 | nd | 10.06 ± 0.18 | 18.68 ± 0.49 | 134.8 ± 0.9 |
F a | 0.93 ± 0.05 | 30.02 ± 0.31 | 21.07 ± 0.39 | nd | 10.84 ± 0.1 | 14.17 ± 0.62 | 109.2 ± 0.2 |
G a | 0.87 ± 0.01 | 20.59 ± 0.19 | 11.81 ± 0.29 | nd | 8.66 ± 0.21 | 15.55 ± 0.33 | 52.7 ± 0.0 |
H a | 0.77 ± 0.03 | 11.14 ± 0.02 | 9.82 ± 0.08 | nd | 6.35 ± 0.63 | 6.56 ± 0.40 | 85.7 ± 0.7 |
I a | 0.66 ± 0.04 | 17.87 ± 0.02 | 44.03 ± 0.52 | nd | 11.76 ± 0.15 | 9.21 ± 0.41 | 53.8 ± 0.3 |
J a | 0.65 ± 0.01 | 15.11 ± 0.15 | 25.08 ± 0.47 | nd | 9.74 ± 0.01 | 8.53 ± 0.97 | 55.6 ± 0.3 |
K a | 0.91 ± 0.06 | 29.19 ± 0.46 | 98.16 ± 2.87 | nd | 7.91 ± 0.20 | 13.70 ± 1.06 | 78.9 ± 0.4 |
L a | 0.56 ± 0.03 | 10.45 ± 0.01 | 22.12 ± 0.16 | nd | 5.64 ± 0.44 | 12.12 ± 0.08 | 135.6 ± 0.1 |
M a | 0.70 ± 0.11 | 17.04 ± 0.11 | 21.74 ± 0.49 | nd | 10.21 ± 0.14 | 10.14 ± 0.12 | 71.2 ± 0.3 |
N b | nd | 11.1 ± 0.06 | 10.07 ± 0.39 | nd | 5.13 ± 0.15 | 5.6 ± 0.02 | 38.8 ± 0.5 |
O b | nd | 13.46 ± 0.24 | 12.85 ± 0.44 | nd | 5.28 ± 0.14 | 6.02 ± 0.2 | 46.6 ± 0.7 |
P b | nd | 13.42 ± 0.25 | 10.13 ± 0.53 | nd | 5.69 ± 0.13 | 5.39 ± 0.63 | 32.9 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ujj, A.; Percsi, K.; Beres, A.; Aleksza, L.; Diaz, F.R.; Gyuricza, C.; Fogarassy, C. Analysis of Quality of Backyard Compost and Its Potential Utilization as a Circular Bio-Waste Source. Appl. Sci. 2021, 11, 4392. https://doi.org/10.3390/app11104392
Ujj A, Percsi K, Beres A, Aleksza L, Diaz FR, Gyuricza C, Fogarassy C. Analysis of Quality of Backyard Compost and Its Potential Utilization as a Circular Bio-Waste Source. Applied Sciences. 2021; 11(10):4392. https://doi.org/10.3390/app11104392
Chicago/Turabian StyleUjj, Apolka, Kinga Percsi, Andras Beres, Laszlo Aleksza, Fernanda Ramos Diaz, Csaba Gyuricza, and Csaba Fogarassy. 2021. "Analysis of Quality of Backyard Compost and Its Potential Utilization as a Circular Bio-Waste Source" Applied Sciences 11, no. 10: 4392. https://doi.org/10.3390/app11104392
APA StyleUjj, A., Percsi, K., Beres, A., Aleksza, L., Diaz, F. R., Gyuricza, C., & Fogarassy, C. (2021). Analysis of Quality of Backyard Compost and Its Potential Utilization as a Circular Bio-Waste Source. Applied Sciences, 11(10), 4392. https://doi.org/10.3390/app11104392